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PHY 555: Solid-state Physics I
Homework #2
Due: 09/21/2022

Homework is due by the end of the due date specified above. Late homework will be subject to 3 points
off per day past the deadline, please contact me if you anticipate an issue making the deadline.
It should be turned in via blackboard. For the conceptual and analytical parts, turn in a scan or picture of
your answers (please ensure that they are legible) or an electronic copy if done with, e.g., LATEX. For the
computational part, turn in your source code and a short description of your results (including plots). The
description can be separate (e.g., in LATEX or word), or combined (e.g., in a jupyter notebook). Let me know if
you are not sure about the format.

Conceptual

1. 5 points Explain why crystal momentum h̄k does not correspond to the true momentum of electrons
in a periodic potential, but is still a useful quantity.

2. 5 points We discussed how 1
h̄

dE(k)
dk corresponds to a “semiclassical” velocity of electrons. What is

meant by semiclassical, and why is it an appropriate label for this expression?

3. 5 points Argue that the “overlapping band” situation shown in Fig. 1 is not possible for an electron
in a one-dimensional periodic potential. (Hint: What type of differential equation is the Schrödinger
equation in 1D? How many solutions does it have for a given energy? What do the band dispersions
we have analyzed look like with respect to ±k? ) What does this imply about the locations of band
extremea for 1D potentials?

Figure 1: Impossible bands in 1D periodic potential.

Analytical

4. 15 points Show that for wavefunctions in Bloch form, i.e., ψk(x) = uk(x)eikx, the expectation value
of the kinetic energy operator can be written as

〈ψk|
p2

2m
|ψk〉 = 〈uk|

(p + h̄k)2

2m
|uk〉 (1)

5. 30 points We discussed in class that the electronic structure is given by the Bloch wavefunctions
evaluated at k’s in the first Brillouin zone. At a given k, say k0, there are an infinite number of solu-
tions to the Schrödinger equation, labeled by n, at increasing energies Enk0 . Because the eigenfunc-
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tion ψnk0 form a complete set we can actually use them to represent the wavefunction and energies
at any other k.

(a) Consider the expansion the crystal wavefunction in terms of Bloch functions of the form:

ψk(x) = ∑
n

cnk

[
ei(k−k0)xψnk0(x)

]
. (2)

Show that if we know the wavefunctions (ψnk0) and energies (Enk0) at k0, we can determine the
wavefunction and energies at any other k. Hint: It is sufficient to show that the matrix elements
of the Hamiltonian with respect to the basis functions in the square brackets in Eq. (2) can be
determined if ψnk0 and Enk0 are known.

(b) Consider a given energy state n and k-point k. Assume that this state is nondegenerate. Treat
h̄(k− k0)p/m as a perturbing potential and write the energy Enk up to second order in k− k0
using nondegenerate perturbation theory.

(c) Consider the case where k0 is a band extremum. Show that the energy versus k can be written
as a quadratic dispersion around k0, with an “effective mass” different from the free-electron
mass.

Computational

6. 40 points Consider the Mathieu potential discussed in I.5.2 of Grosso and Parravicini, where V(x) =
2V1[1− cos(2πx/a)]. We will solve for the band structure of an electron in this potential using a
plane wave basis.

(a) Show (analytically) that the matrix elements between plane waves for the Mathieu potential
are of the tridiagonal form

〈Wkm |H|Wkn〉 =
[

h̄2(k + hn)2

2m
+ 2V1

]
δmn −V1δm,n+1 −V1δm,n−1 (3)

where δ is the Kronecker delta function, and Wkn = 1√
L

ei(k+hn)x and hn = 2πn/a.

(b) Write a program to calculate the retarded Green’s function from the continued-fraction expres-
sion:

G00,k(E) =
1

E− α0(k)−
V2

1

E−α1(k)−
V2

1

E−α2(k)−
V2

1
...

− V2
1

E−α−1(k)−
V2

1

E−α−2(k)−
V2

1
...

, (4)

where αn(k) = 2V1 + (h̄2/2m)(k + 2πn/a)2. Note that a small imaginary number should be
added to the energy (E → E + iη) to obtain the retarded version. You will have to choose a
finite number of fractions to include, make sure it is large enough that the quantities in the
following parts are converged.

(c) For parameters V1 = 5(h̄2/2m)(π/a)2 and a = 5 Bohr, plot the real and imaginary parts of
G00,k(E) as a function of energy for fixed k = π/a (use η = 0.01 Ha). You should see a series of
poles of the real part and peaks of the imaginary part. The poles and peaks will be at the same
energies, which correspond to the allowed energies for the given k point.

(d) From the poles or the peaks of G00,k, plot the band dispersion E(k) in the first Brillouin Zone
over the energy range from 0 to 10 Ha. To do this, you will need to identify the peak/pole
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energies at each k (note that αn depends on k), and plot them for a mesh of k points in the first
Brillouin zone.

(e) Using the imaginary part of the Green’s function, plot the total density of states over the energy
range from 0 to 10 Ha. Note that you will need to sum over diagonal elements of G, i.e.,
∑k ∑m Gmm,k. You can obtain Gmm,k by shifting the indices of α in Eq. (4), i.e., for m = 1,

G11,k(E) =
1

E− α1(k)−
V2

1

E−α2(k)−
V2

1

E−α3(k)−
V2

1
...

− V2
1

E−α0(k)−
V2

1

E−α−1(k)−
V2

1
...

, (5)

Taking m = 0− 4 in your sum should give you a converged DOS.
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