
PHY 555: Solid-state Physics I
Homework #3
Due: 10/05/2022

Homework is due by the end of the due date specified above. Late homework will be subject to 3 points
off per day past the deadline, please contact me if you anticipate an issue making the deadline.
It should be turned in via blackboard. For the conceptual and analytical parts, turn in a scan or picture of
your answers (please ensure that they are legible) or an electronic copy if done with, e.g., LATEX. For the
computational part, turn in your source code and a short description of your results (including plots). The
description can be separate (e.g., in LATEX or word), or combined (e.g., in a jupyter notebook). Let me know if
you are not sure about the format.

Conceptual

1. 5 points Consider a 1D periodic potential that results in bands of allowed energies separated by
gaps. If we “fill” an entire band with electrons how many electrons do we have in our entire crystal?
How many per repeat unit? Explain.

2. 10 points In the analytic and computational questions on this homework, the theme is that often
the generalization of formalism between systems of 1, 2, and 3 dimensions is trivial (or at least
straightforward), but the properties and physics can be quite different. Once you have completed
problems 3, 4, and 5, summarize in one sentence per problem how this was illustrated.

Analytical

3. 25 points In class, we derived the semiclassical velocity, which in 3D can be written as

v(k) ≡ 〈ψnk|
p
m
|ψnk〉 =

1
h̄

∂εnk

∂k
= 〈unk|

(
1
h̄

∂Hk

∂k

)
|unk〉, (1)

where Hk is the cell-periodic Hamiltonian (i.e., Hk|unk〉 = εnk|unk〉) and bold quantities indicate
vectors. We related this quantity to the response of an electron to an external electric field. Actually,
our derivation was incomplete, as we will explore in this problem.

Consider a Hamiltonian H with a periodic potential, whose eigenstates are Bloch states ψnk(r) =
unk(r)eik·r given by H|ψnk〉 = εnk|ψnk〉. Now we add an electric field to the Hamiltonian via the
term H′ = eE · r, where E is the strength of the electric field, e is the electron charge, and r is the
position operator.

(a) Using nondegenerate perturbation theory, write the change in the wavefunction |ψnk〉 from
this perturbation to first order in E. We will refer to this quantity as |δψnk〉.

(b) Show that the corresponding expression for the cell periodic part can be written as

|δunk〉 = ieh̄E · ∑
n′ 6=n

|un′k〉〈un′k| 1h̄
∂Hk
∂k |unk〉

(εnk − εn′k)2 . (2)

(c) Now write v(k) including the first-order-in-E changes in cell-periodic wavefunctions, i.e, on
the right-hand-side of Eq. (1), replace |unk〉 with |unk〉+ |δunk〉 and neglect terms of order E2.
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Show that v(k) = 1
h̄

∂εnk
∂k + e

h̄ E× Bn(k) where

Bn(k) = i ∑
n′ 6=n

〈unk|∂Hk/∂k|un′k〉 × 〈un′k|∂Hk/∂k|unk〉
(εnk − εn′k)2 , (3)

and× denotes the cross product. Hint: You may find the following vector triple product useful:
a× (b× c) = b(c · a)− c(a · b).

(d) The quantity Bn(k) is known as the Berry curvature, and is important in, e.g., the study of
topological materials. Show that if we interpret the Berry curvature as a magnetic field in
reciprocal space, the term e

h̄ E× Bn(k) can be written in the form of a Lorenz force in reciprocal
space.

4. 20 points In class we discussed the Fermi energy EF and density of states (DOS) for the free-electron
gas in three dimensions.

(a) Determine the average energy per electron (in class denoted as E0/N) for the 1D and 2D free
electron gasses.

(b) Determine the DOS for the free-electron gas in one and two dimensions. Schematically plot the
energy dependence of the DOS.

(c) To leading order in T, what is the temperature dependence of the Fermi energy in the 1D free-
electron gas? What happens if we try to use the Sommerfeld expansion to linear order for the
T-dependence of the Fermi energy in 2D?

(d) Find the T dependence of EF (without using the Sommerfeld expansion) by calculating

N = 2
(

L
2π

)2 ∫
f (E)d2k, (4)

relating N to EF(T = 0) and solving for EF(T). Show that the result is discontinuous at T = 0,
and hence the Sommerfeld expansion does not apply.

Computational

5. 40 points In class we discussed the one-dimensional nearest-neighbor tight-binding model with
dispersion E(k) = E0 + 2γ cos(ka). The generalization to two and three dimensions, i.e., square and
cubic lattices (where a is the distance between sites) is quite simple: E2D(k) = E0 + 2γ[cos(kxa) +
cos(kya)] and E3D(k) = E0 + 2γ[cos(kxa) + cos(kya) + cos(kza)]. In this problem, set E0 = 0, γ =
−0.5 Ha and a = 1 Bohr.

(a) Write a program to calculate and plot the density of states for the 1D, 2D, and 3D tight-binding
models. Use the same strategy as Homework 1 problem 5(c), i.e., replacing the delta function
with a Gaussian. Note that for, e.g., the 3D case, you will have to make a grid of k = (kx, ky, kz)
in three dimensions. Increase the number of k points until your DOS is converged. For each
case, normalize by the number of k points Nk such that the DOS integrates to 2 total electrons.
You may find that, especially in 3D, you require many k’s and the sum takes quite long, so
converge the DOS as much as you can.

(b) Write a program that numerically determines the Fermi energy for the 1D, 2D, and 3D tight-
binding models for a given number of electrons ne per unit cell. What is the Fermi level in each
case for an occupation of 0.5 electrons per unit cell?
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(c) For the 2D case, write a program to make a plot of the Fermi surface, i.e., the occupation in the
kx, ky plane, for a given temperature. For 0.5, 1.0, and 1.5 electrons per unit cell, make plots for
kBT = 0.05|γ| and kBT = 0.5|γ|. You can neglect any T-dependence of the Fermi level.
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