
PHY 555: Solid-state Physics I
Homework #6
Due: 11/11/2022

Homework is due by the end of the due date specified above. Late homework will be subject to 3 points
off per day past the deadline, please contact me if you anticipate an issue making the deadline.
It should be turned in via blackboard. For the conceptual and analytical parts, turn in a scan or picture of
your answers (please ensure that they are legible) or an electronic copy if done with, e.g., LATEX. For the
computational part, turn in your source code and a short description of your results (including plots). The
description can be separate (e.g., in LATEX or word), or combined (e.g., in a jupyter notebook). Let me know if
you are not sure about the format.

Conceptual

1. 5 points What is the problem with the naïve plane-wave expansion for calculating the bandstructure
of solids that motivated using the orthogonalization procedure?

Analytical

2. 20 points Ab-initio pseudopotentials are generated by fitting to numerical calculations conducted on
isolated atoms. Though not commonly used, we can get a sense of how this is done by analyzing
the method of Kerker, J. Phys. C 13 L189 (1980) (See https://iopscience.iop.org/article/10.
1088/0022-3719/13/9/004/pdf). In this method, We first consider the radial pseudowavefunction
which is of the form Fpsp(r) = rRpsp(r) = rl+1ep(r) where l is the angular quantum number and
p(r) = αr4 + βr3 + γr2 + δ with adjustable parameters α, β, γ, and δ.

The pseudopotential is chosen such that Fpsp(r) satisfies a radial Schrödinger equation (using atomic
units so h̄ = m = 1) [

− d2

dr2 +
l(l + 1)

r2 + Vpsp(r)− Ea

]
Fpsp(r) = 0 (1)

where Ea is the energy of the atomic radial function, given by the radial Schrödinger equation for
the atom [

− d2

dr2 +
l(l + 1)

r2 + Va(r)− Ea

]
Pa(r) = 0, (2)

where Pa(r) = rRa(r) is the “exact” atomic radial wavefunction, which we assume that we can
calculate, and Va is the atomic potential (i.e., −Z/|r|).

(a) Show that Eq. (1) gives Vpsp(r) = Ea + λ(2l + 2 + λr2) + 12αr2 + 6βr + 2γ where λ = 4αr2 +
3βr + 2γ.

(b) Show that if p(r) had a term linear in r, Vpsp(r) would be singular at r = 0.

(c) The adjustable parameters are determined by placing constraints on the pseudowavefunction.
We already constrained the eigenvalues Ea to be the same for both potentials. Now, choose a
cutoff radius, outside of which the potentials coincide. I.e.,

Vpsp(r) =

{
E + λ(2l + 2 + λr2) + 12αr2 + 6βr + 2γ, if r < rc

Va(r), if r > rc
(3)
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Then, we enforce the following conditions at rc: (i) Fpsp(rc) = Pa(rc), (ii) d
dr Fpsp(rc) =

d
dr Pa(rc),

and (iii) d2

dr2 Fpsp(rc) = d2

dr2 Pa(rc). Show that these conditions give the three equations for p(r)
and its derivatives:

ln
[

Pa(rc)

rl+1
c

]
= p(rc) (4)

rc
P′a(rc)

Pa(rc)
= l + 1 + rc p′(rc) (5)

r2
c Va + (l + 1)2 − r2

c

[
Ea +

(
P′a(rc)

Pa(rc)

)2
]
= r2

c p′′(rc) (6)

where, e.g., P′a(rc) =
dP(r)

dr

∣∣
rc

.

(d) In part (c) we have three equations, but there are four unknowns in Fpsp(r). The last unknown
is fixed by constraining the total charge within rc to be that same for the atomic and pseudo
wavefunctions. Take Qa to be the charge inside of the cutoff radius rc for the exact atomic
wavefunction. Write an equation for δ based on this constraint. Hint: You will come across
an integral involving Fpsp which cannot be solved analytically, so you can leave it in your
expression for δ.

Computational

Table 1: Empirical pseudopotential parameters for selected materials (in Rydbergs) and lattice constants
of the conventional cubic cell (in Angstroms).

a (Å) Vs√
3

Vs√
4

Vs√
8

Vs√
11

Va√
3

Va√
4

Va√
8

Va√
11

Si 5.43 −0.21 0.0 0.04 0.08 0.0 0.0 0.0 0.0
Ge 5.66 −0.23 0.0 0.01 0.06 0.0 0.0 0.0 0.0
Sn 6.49 −0.20 0.0 0.0 0.04 0.0 0.0 0.0 0.0

GaAs 5.64 −0.23 0.0 0.01 0.06 0.07 0.05 0.0 0.01

3. 25 points In the previous problem, we discussed ab initio pseudopotentials; another approach based
on empirical pseudopotentials can also be used along with a plane-wave basis to generate band-
structures of materials. In Cohen and Bergstresser, Phys. Rev. 141, 789 (1965) (https://journals.
aps.org/pr/pdf/10.1103/PhysRev.141.789), it was shown that the band structure of several semi-
conductors could be reproduced with very few empirical parameters. The solids that were con-
sidered in that work had either the “diamond” or “zincblende” structures. These structures are
both based on the face-centered cubic Bravais lattice, with two basis vectors b± = ±τττ where
τττ = a(1/8, 1/8, 1/8) (a is the lattice constant of the conventional cubic cell). In the diamond struc-
ture, e.g., Si, Ge, or Sn, both sublattices are the same atom; in zincblende, e.g., GaAs, they are
different atoms. It was shown in Cohen and Bergstresser that the empirical pseudopotential can we
written as the Fourier series

V(r) = ∑
G
[Vs

G cos(G · τττ) + iVa
G sin(G · τττ)] eiG·r, (7)

where Vs
G and Va

G are empirical parameters that only depend on the magnitude of G. Consider
the first five shells of G vectors for FCC: (2π/a)(0, 0, 0), (2π/a)(±1,±1,±1), (2π/a)(±2, 0, 0),
(2π/a)(±2,±2, 0), and (2π/a)(±3,±1,±1) (where we are including all permutations of ± and
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x, y, and z coordinates). The magnitude of these vectors are (2π/a) times 0,
√

3,
√

4,
√

8,
√

11, re-
spectively. The empirical parameters for these shells for several solids is given in Table 1 (note that
Vs

0 is just a rigid energy shift, so can be any value).

(a) Write a program that uses the pseudopotential method with the parameters in Table 1 to plot
the bandstructures of Si, Ge, Sn, and GaAs along the path L → Γ → X → K → Γ (see Fig. 1
and Table 2 for high-symmetry k points/paths) in the energy range from 0 to 0.8 Ha. Compare
your results to the corresponding figures in Cohen and Bergstresser.

(b) In these materials, the first four bands are filled, and the rest of the bands are empty. What
happens between Si, Ge, and Sn in terms of the gap between filled and empty states?

(c) Qualitatively compare the filled and first empty states of GaAs with those from the tight-
binding case you solved in Homework 5. What can you say about the orbital makeup of these
states based on the comparison?

Figure 1: Brillouin zone and high-symmetry points/lines for the face-centered cubic Bravais lattice. (b1,
b2, b3 are the reciprocal lattice vectors corresponding to g1, g2, and g3 in the table below.)

Table 2: High-symmetry k points of the face-centered cubic lattice.
×g1 ×g2 ×g3

Γ 0 0 0
K 3/8 3/8 3/4
L 1/2 1/2 1/2
U 5/8 1/4 5/8
W 1/2 1/4 3/4
X 1/2 0 1/2
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