
PHY 555: Solid-state Physics I
Homework #7
Due: 12/09/2022

Homework is due by the end of the due date specified above. Late homework will be subject to 3 points
off per day past the deadline, please contact me if you anticipate an issue making the deadline.
It should be turned in via blackboard. For the conceptual and analytical parts, turn in a scan or picture of
your answers (please ensure that they are legible) or an electronic copy if done with, e.g., LATEX. For the
computational part, turn in your source code and a short description of your results (including plots). The
description can be separate (e.g., in LATEX or word), or combined (e.g., in a jupyter notebook). Let me know if
you are not sure about the format.

Conceptual

1. 5 points Explain what the one-electron approximation is and how Hartree-Fock and density-functional
theory go beyond it.

2. 10 points Compare and contrast Hartree-Fock and density-functional theory in terms of the follow-
ing aspects:

(a) General philosophy for addressing the many-electron problem.

(b) The resulting single-electron problem to solve.

(c) The physical interpretation of the auxiliary single-particle orbitals and eigenvalues.

3. 5 points Explain the adiabatic Born-Oppenheimer approximation used in calculating nuclear dy-
namics.

Analytical

4. 25 points We have discussed plane waves and atomic orbitals for performing calculations of the
electronic structure of solids and materials. In addition, gaussians are another common basis set, and
useful for other calculations in solids. The benefit of gaussians as a basis set is that they are localized
functions, so do not require pseudopotentials like plane waves, and integrals are easier to calculate
than atomic orbitals. For example, one of the useful property about gaussians is the gaussian product
theorem (GPT) that states that the product of two gaussians is also a gaussian, centered at the “center
of gravity” of the two original gaussians. I.e., for χa(r) = e−α(r−A)2

and χb(r) = e−β(r−B)2
,

χa(r)χb(r) = e−
αβ

α+β (A−B)2
e−(α+β)(r−P)2

(1)

where P = (αA + βB)/(α + β).

(a) Consider a basis set of gaussians of the form φi(r) = Aieαi |r−Ri |2 . Using the GPT [Eq. (1)], show
that we can calculate the overlap between gaussians, i.e., Sij =

∫
φi(r)φj(r)dr with the simple

relation

Sij = Ai Aje
−

αiαj
αi+αj

(Ri−Rj)
2
(

π

αi + αj

)3/2

(2)

Note that we neglect the complex conjugation since all gaussians considered here will be real.
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(b) In general Coulomb matrix elements, for Vext and the two electron integrals, are tricky to cal-
culate. This is because we need to be careful integrating over divergences of the form 1/|r− r′|
when r = r′. With gaussians, there is an elegant way to evaluate these matrix elements, utiliz-
ing the integral transformation

1
|r−RC|

=
2√
π

∫ ∞

0
e−|r−RC |2t2

dt (3)

Consider a gaussian charge density ρi(r) = (αi/π)3/2 exp(−αi|r− Ri|2), which could corre-
spond to a basis function, or product of basis functions (both are gaussians!). Show using the
result of (a) that ρi(r) is normalized to unity. Then, using Eq. (3) and Eq. (1), show that the
electrostatic potential at point RC, i.e.,

Vi(RC) =
∫

ρi(r)
|r−RC|

dr (4)

can be written as

Vi(RC) =
1

|Ri −RC|
erf
(√

αi|Ri −RC|2
)

, (5)

where erf is the error function and we use atomic units throughout so me = e = h̄ = 1. Hint:
One way to proceed is to first perform the integral over r, and then make the change of variables
from t to u = t/

√
αi + t2; then relate the resulting expression to the integral definition of the

error function: erf(z) =
√

4
π

∫ z
0 e−τ2

dτ.

(c) Using the result of (b) and Eq. (1), show that an arbitrary Coulomb matrix element between
gaussians

Uijkl =
∫ ∫ φi(r1)φj(r1)φk(r2)φl(r2)

|r1 − r2|
dr1dr2 (6)

can be written as

Uijkl =
SijSkl

|Rij −Rkl |
erf
(√

ωijkl |Rij −Rkl |2
)

(7)

where Rij = (αiRi + αjRj)/((αi + αj) (similarly for Rkl) and ωijkl =
(αi+αj)(αk+αl)
αi+αj+αk+αl

.

5. 25 points An important contribution to the energy of ionic materials is the sum of electrostatic inter-
actions between oppositely charged ions. In class we discussed how to describe this in 1D via the
Madelung constant, which gave the potential energy of a given reference ion due to the Coulomb
interaction with all other positive and negative ions in the crystal. Here we will determine the
Madelung constant in higher dimensions via the Ewald method.

(a) We start by smearing the point charges representing the ion at the origin into a gaussian nor-
malized to +e, ρ(r) = (+e)

( η
π

)3/2 e−ηr2
where r = |r|. What is the electrostatic potential ϕ(r)

resulting from this charge density?

(b) Show that ϕ(0) does not diverge, but when η → ∞, the potential becomes the Coulomb poten-
tial.

(c) Consider a crystal with lattice points tn, and ions of charge −e at sites tn, and charge +e at sites
tn + d. If we take the ions to be point charges, what is the potential energy V(r) felt by the ion
at the origin from all of the other ions?

(d) Now we use a trick, where we write the Coulomb interaction as− e2

r = − e2

r

[
erf(

√
ηr2) + erfc(

√
ηr2)

]
where erfc is the complimentary error function defined such that erf + erfc = 1. Use this to
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(trivially) write V(r) as two terms, i.e., V(r) = V1(r) + V2(r), where V1(r) involves the erfc
terms, and V1(r) involves the erf terms.

(e) Argue that V1(0), which we need for the Madelung constant, is short-ranged in real space.
How should we choose η to converge with fewer lattice vectors in the sum?

(f) Write the second term in the form V2(r) = U(r)− e2

r erf(
√

ηr2), and note that U(r) is a periodic
function. Because of this, we can write U(r) as a Fourier series U(r) = ∑Gm 6=0 eiGm·rŨ(Gm)

where Ũ(Gm) = 1
NΩ

∫
e−iGm·rU(r)dr and NΩ is the volume of the crystal (note, we neglect

the Gm = 0 term, since it should be zero in a charge neutral crystal). Calculate the Fourier
coefficients Ũ(Gm) and use them to show that

V2(0) =
4πe2

Ω ∑
Gm 6=0

(
1− eiGm·d

) e−G2
m/4η

G2
m
− 2e2

√
η

π
(8)

where N is number of unit cells in the crystal. Note that this term is short-ranged in reciprocal
space. How should we choose η to make V2(0) converge faster, i.e., with fewer reciprocal lattice
vectors in the sum?

Hint: Note that the Fourier transform of the error function is given by∫ ∞

−∞

e2

r
erf
(√

ηr2

)
eik·rdr =

4πe2

k2 e−k2/4η (9)

6. 20 points In class we discussed the linear chain with nearest-neighbor interactions, for which the
energy within the harmonic approximation is E = 1

2 C ∑n(un − un+1)
2. Now consider the linear

chain without the assumption of only nearest-neighbor interactions, i.e., with energy

E = ∑
n

∑
m>0

1
2

Cm[un − un+m]
2. (10)

(a) Show that the dispersion relation in this case is

ω(q) = 2

√
∑

m>0
Cm

sin2[mqa/2]
M

(11)

(b) Show that the long-wavelength limit is proportional to |q|.

(c) Show that your result from (b) for the small q behavior of ω(q) will diverge if Cm = 1/mp

where 1 < p < 3. In this case, we can use another approach to determine the long-wavelength
limit: replace the sum over m in Eq. (11) with an integral since at small q, the wavelength is
very large compared to the interatomic spacing. Use this approach to show that for p = 3/2,
ω(q) ∝ q1/4.

7. 20 points So far, we have only considered classical lattice dynamics. We now treat the quantum
counterpart, using the example of the monatomic linear chain. Then the nuclear Hamiltonian is

H = ∑
n

1
2M

p2
n +

1
2

C ∑
n
(2u2

n − unun+1 − unun−1) (12)

where now un and pn are the coordinate and conjugate momentum of the nucleus at the nth site,
which obey the commutation relations [un, pn′ ] = ih̄δn,n′ and [un, un′ ] = [pn, pn′ ] = 0.
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(a) Consider the phonon creation and annihilation operators defined as

aq =
1√
N

∑
tn

e−iqtn

[
un

√
Mω(q)

2h̄
+ ipn

√
1

2h̄Mω(q)

]
(13)

a†
q =

1√
N

∑
tn

eiqtn

[
un

√
Mω(q)

2h̄
− ipn

√
1

2h̄Mω(q)

]
, (14)

where we will later choose ω(q) to diagonalize H. Show that the transformation from un, pn to
aq, a†

q is canonical, i.e., that the commutation rules are preserved. Specifically,
[

aq, a†
q′

]
= δq,q′

and
[
aq, aq′

]
=
[

a†
q , a†

q′

]
= 0.

(b) Show that

un =
1√
N

∑
q

√
h̄

2Mω(q)
eiqtn

[
aq + a†

−q

]
(15)

pn =
−i√

N
∑

q

√
h̄Mω(q)

2
eiqtn

[
aq − a†

−q

]
(16)

(c) Now plug these expressions into Eq. (12). Also, we can use a trick where we set

ω(q) =
C

Mω(q)

(
2− eiqa − e−iqa

)
, (17)

in the potential energy term (where a is the atomic spacing). This is equivalent to saying
ω2(q) = C

M

(
2− eiqa − e−iqa) which is what we found for the classical case. Show that this

results in the Hamiltonian of the linear chain expressed as

H = ∑
q

h̄ω(q)
(

a†
q aq +

1
2

)
(18)

Hint: Recall the following expressions that may be useful:

1
N ∑

tn

e−i(q−q′)tn = δq,q′ (19)

1
N ∑

q
e−iq(tn−tn′ ) = δn,n′ (20)

Computational

8. 20 points In this problem, we consider a simple diatomic molecule made up of a hydrogen atom
and a helium atom (H-He) with two electrons. We set the location of H at RH = (0, 0, 0) and He is
RHe = (1.5117, 0, 0) Bohr. We use a basis set made up of two Gaussians:

φ1(r) = 0.3696e−0.4166|r−RH|2 (21)

φ2(r) = 0.5881e−0.7739|r−RHe|2 (22)

We will neglect spin and use atomic units throughout so me = e = h̄ = 1.
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(a) Calculate the kinetic energy matrix elements with the basis functions:

Tij =
∫

φi(r)
(
−1

2
∇2
)

φj(r)dr. (23)

(b) Use your results from problem 4 to calculate the matrix elements of the external potential

Vij = −
∫

φi(r)
ZH

|r−RH|
φj(r)dr−

∫
φi(r)

ZHe

|r−RHe|
φj(r)dr. (24)

(c) Use your results from problem 4 to calculate the Coulomb and exchange matrix elements

Uijkl =
∫ ∫ φi(r1)φj(r1)φk(r2)φl(r2)

|r1 − r2|
dr1dr2. (25)

(d) Calculate the nuclear-nuclear repulsion energy VN = ZHeZH/|RH −RHe|.

9. 20 points Now we have all of the information to solve for the energy of the molecule using Hartree-
Fock (HF). directly solving the HF equation is challenging, especially because of the exchange term,
which makes it an integro-differential equation. For “closed shell” systems where we can neglect
the spin part (as we do here), we can actually express the equation in a form much easier to solve:

FC = SCεεε. (26)

In this equation, S is the overlap matrix between basis functions discussed in problem 4(a); C is
the matrix of expansion coefficients for the basis elements, i.e., the wavefunctions solving the HF
equations will be given by is given by ψj = ∑i Cijφi; and F is the Fock matrix with elements

Fij = Tij + Vij + ∑
kl

Pkl(Uijkl −
1
2

Uilkj) ≡ Tij + Vij + Gij, (27)

where Pkl are the elements of the 2× 2 “charge density matrix.” They are related to the expansion
coefficient via

Pkl = 2
N/2

∑
i

CkiC∗li, (28)

where N is the number of electrons in the system (in our case there will be two). It is called the
charge-density matrix because the total charge density of the system can be written as ρ(r) =

∑ij Pijφi(r)φ∗i (r). Perform the following steps to solve for the energy of the H-He molecule using
Hartree-Fock:

(a) Choose an initial guess for P (for example, all elements zero).

(b) Calculate F using Eq. (27).

(c) Solve the generalized eigenvalue problem in Eq. (26). If you are using python, you can use
scipy.linalg.eigh, e.g., with the line:

epsilon, C = scipy.linalg.eigh(F, S, eigvals_only=False)

(d) Determine an updated P using C and Eq. (28).

(e) Calculate the energy via

E = ∑
ij

Pij

(
Fij −

1
2

Gij

)
+ VN . (29)

(f) Repeat steps (b)-(e) to get an updated guess of the energy. Continue cycling until the energy
changes by less than 10−5 Ha.
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