I.C: Crystal lattices (G and P ch. I)

- Key feature of (crystalline) solids: Periodicity
- Ir 10, periodicity is trivial
- What about 20 and 3D??
* Periodicity more complicated, but still have same concepts
* Crystals described by lattice of points where ore or more atoms are located at/around
* There is a finite number of periodic latices!
- Why? Only certain shapes tessellate to fill space

Squares/rectangles

Hexagons

NOT Pentagons!

* properties of crystals have the same periodicity and symmetry as the lattice (for the most part)
* "Reciprocal space" will play a significant role, as it did in 10
- No longer just scalar $-\frac{\pi}{4} \leq k<\frac{\pi}{4}$, now have reciprocal lattice vectors

Bravais lattices

- Definition: regular periodic arrangement of paints in space connected by translation vectors:

$$
\vec{t}_{n}=n_{1} \vec{t}_{1}+n_{2} \vec{t}_{2}+n_{3} \vec{t}_{3}
$$

$$
\in \mathbb{Z}
$$

primitive/ fund a mental
translation vectors

- Primitive unit cell: parallalpiped formed by $\vec{t}_{1}, \vec{t}_{2}, \vec{t}_{3}$
x unit cell volume: $\Omega=\vec{t}_{1} \cdot\left(\vec{t}_{2} \times \vec{t}_{3}\right)$
* (order of vectors chosen to form "righ thand" system)
* Contains ore "lattice point"
* unit cell usually defined by cell lengths a, b, c and angles α, β, γ
* NOT UNIQUE! Infinite number of choices describing the same infinite lattice

- Can always define a 3×3 transformation matrix $m \rightarrow$ has unit determinant and integer values

$$
m_{i j}(i, j=1,2,3)
$$

Consider new triad of points

$$
\begin{aligned}
& \vec{t}_{1}^{\prime}=m_{11} \vec{t}_{1}+m_{12} \vec{t}_{2}+m_{13} \vec{t}_{3} \\
& \vec{t}_{2}^{\prime}=m_{2} \vec{t}_{1}+m_{22} \vec{t}_{2}+m_{23} \vec{t}_{3} \\
& \vec{t}_{3}=m_{31} \vec{t}_{1}+m_{32} \vec{t}_{2}+m_{33} \vec{t}_{3}
\end{aligned}
$$

- Can show that set of points generated by $\vec{t}_{1}^{\prime}, \vec{t}_{2}^{\prime}, \vec{t}_{3}^{\prime}$ are the same as $\vec{t}_{1}, \vec{t}_{2}, \vec{t}_{5}$
- Volume is the same since $\operatorname{det} M=1$
- Example:

$$
\begin{aligned}
& \vec{t}_{1}=(a, 0,0) \rightarrow \text { area is } a b \\
& \vec{t}_{L}=(0, b, 0) \\
& \vec{t}_{\prime}^{\prime}=(2 a,-b, 0) \\
& \vec{t}_{\prime}^{\prime}=(-a, b, 0)
\end{aligned}
$$

$$
\binom{\vec{t}_{1}^{\prime}}{\vec{t}_{2}^{\prime}}=\left(\begin{array}{cc}
2 & -1 \\
-1 & 1
\end{array}\right)\binom{\vec{t}_{1}}{\vec{t}_{2}}
$$

L area is $\left|\vec{t}_{1}^{\prime} \times \vec{t}_{2}^{\prime}\right|$

$$
=a b
$$

- Sometimes it 13 useful to use non primitive cells that better illustrate the lattice
* Called "conventional unit cells"
* Consider 20 "centered" rectangular lattice

$$
\text { - area }=\frac{a b}{2}
$$

$$
\binom{\vec{t}_{1}}{\vec{t}_{2}}=\left(\begin{array}{cc}
1 & 0 \\
-1 & 2
\end{array}\right)\binom{\vec{t}_{1}^{\prime}}{\vec{t}_{2}^{\prime}}
$$

Note, $\operatorname{det} M \neq 1!!$

- five possible Bravais lattices in 2D

- 14 Bravais lattices in 3D
* Split into 7 "crystal systems"
- Cubic crystal system: $a=b=c, \alpha=\beta=\gamma=90^{\circ}$

Primitive Body-Centered face-centered

- Tetragonal: $a=b \neq c, \alpha=\beta=\gamma=90^{\circ}$

Primitive

Body-centered

- Orthorhombic: $a \neq b \neq c, \alpha=\beta=\gamma=90^{\circ}$
primitive Base-centered Body-centered face-centered

- Hexagonal: (only primitive) $a=b \neq c, \alpha=\beta=90^{\circ} \quad \gamma=120^{\circ}$

- Trigonal (only primitive): $a=b=c, \alpha=\beta=\gamma \neq 90^{\circ}$

- Monoclinic: $a \neq b \neq c, \alpha=\gamma=90^{\circ} \neq \beta$

- Triclinic (only primitive); $a \neq b \neq c, \alpha \neq \beta \neq \gamma$

"Composite" crystals with a basis
- Bravais lattice points given by $\vec{t}_{1}, \vec{t}_{2}, \vec{t}_{3}$
- At each laffice point there can be multiple atoms * positions described by basis vectors
* Defined with respect to lattice points, but not given by primitive lattice vectors
* Can be the same element or different
- Complete crystal structure defined by:
crystal structure $=\left\{\begin{array}{l}\vec{t}_{1}, \vec{t}_{2} \vec{t}_{3} \longleftarrow \text { primitive translation vectors } \\ \vec{d}_{1}, \vec{d}_{2}, \ldots, \vec{d}_{\nu} \longleftarrow \text { basis vectors }\end{array}\right.$
- Simple lattice: only atoms at lattice sites, no basis vector 3
* Atomic positions: $\vec{R}_{n}=u_{1} \vec{t}_{1}+n_{2} \vec{t}_{2}+n_{3} \vec{t}_{3}$
- Composite lattice: two or more atoms in primitive cell * Atomic positions! $\vec{R}_{n}^{(1)}=\vec{d}_{1}+n_{1} \vec{t}_{1}+n_{2} \vec{t}_{2}+n_{3} \vec{t}_{3}$

$$
\begin{gathered}
\vec{R}_{n}^{(2)}=\vec{d}_{2}+n_{1} \vec{t}_{1}+n_{2} \vec{t}_{2}+n_{3} \vec{t}_{3} \\
\vdots \\
\vec{R}_{n}^{(n)}=\vec{d}_{2}+n_{1} \vec{t}_{1}+n_{2} \vec{t}_{2}+n_{3} \vec{t}_{3}
\end{gathered}
$$

* Composed of interpenetrating sublattices
- All atoms in sublatfice are the same
- Different sublattices may or may not have different elements
- Example of simple lattice: face-centered cubic Al

* Atoms located at lattice points

$$
\begin{aligned}
& \vec{t}_{1}=\frac{a}{2}(0,1,1) \\
& \vec{t}_{2}=\frac{a}{2}(1,0,1) \\
& \vec{t}_{3}=\frac{a}{2}(1,1,0)
\end{aligned}
$$

* Ore sublatifice so all atoms must be the same
- Example of composite lattice: $C_{s} C l$ structure

* looks like body -center cubic but with a different aton at. the center
* Bravais latifice is simple cube

$$
\begin{aligned}
& \vec{t}_{1}=a(1,0,0) \\
& \vec{t}_{2}=a(0,1,0) \\
& \vec{t}_{3}=a(0,0,1)
\end{aligned}
$$

* Basis vectors (two sublattices):

$$
\begin{aligned}
& \vec{d}_{1}=0 \\
& \vec{d}_{2}=\frac{a}{2}(1,1,1)
\end{aligned}
$$

- See G and P Sec. II. 2 for many more examples!

Wigner - Spite Primitive cell

- we said before that the choice of primitive cell is not unique
* Actually infinite number of choices (by varying the origin)
- Ore useful choice suggested by wigner and Sertz * Definition: Consider a laffice point. The us cell is the one where any point on the cell is closer to that lattice point than any other lattice point.
* Construction: draw lines between lattice points and bisect them with lines (in 20) or planes (3D).

* Properties: ~ Primitive cell
- Constructed from underlying Bravais lattice if there is a basis
- Has all of the symmetry of the Bravais lattice
* Fie., most symmetric choice of primitive cell

Reciprocal Lattice

- We saw in 1D that it is useful to consider the electronic structure in reciprocal space
- How do we do this in 3D?
* Instead of one, we have three primitive reciprocal lattice vectors:

$$
\vec{t}_{i} \cdot \vec{g}_{j}=2 \pi \delta_{i j} \text { convention }
$$

real space $\hat{\imath}$ primitive lattice vectors $\left(\vec{g}_{1}, \vec{g}_{2}, \vec{g}_{3}\right)$

$$
\text { primitive lattice }\left(\vec{t}_{1}, \vec{t}_{2}, \vec{t}_{3}\right)
$$

* As before, wavevectors k(e.g., for plane waves) defined in reciprocal space
* Reciprocal lattice points: $\vec{g}_{m}=m_{1} \vec{g}_{1}+m_{2} \vec{g}_{2}+m_{3} \vec{g}_{3}$
* Only depends on real-space laffice vectors
- Same no matter the basis
* since $\vec{g}_{1} \perp \vec{t}_{2}$ and $\vec{g}_{1} \perp \vec{t}_{3}, \quad \vec{g}_{1} \| \vec{t}_{2} \times \vec{t}_{3}$

So: $\vec{g}_{1}=\frac{2 \pi}{\Omega} \vec{t}_{2} \times \vec{t}_{3}$ where $\Omega=\vec{t}_{1} \cdot\left(\vec{t}_{2} \times \vec{t}_{3}\right)$
$\longrightarrow \underset{\substack{\text { volume } \\ \text { cell }}}{ }$

- By cyclic permutations:

$$
\vec{g}_{2}=\frac{2 \pi}{\Omega} \vec{t}_{3} \times \vec{t}_{1}, \quad \vec{g}_{3}=\frac{2 \pi}{\Omega} \vec{t}_{1} \times \vec{t}_{2}
$$

* NOTE: Reciprocal lattice is a lattice of points in reciprocal space related to the real-space lattice vectors by the a bare relations
* Volume of unit cell in reciprocal space:

$$
\begin{aligned}
\Omega_{k} & =\vec{g}_{1} \cdot\left(\vec{g}_{2} \times \vec{g}_{3}\right)=\frac{(2 \pi)^{3}}{\Omega^{3}}\left(\vec{t}_{2} \times \vec{t}_{3}\right) \cdot\left[\left(\vec{t}_{3} \times \vec{t}_{1}\right) \times\left(\vec{t}_{1} \times \vec{t}_{2}\right)\right] \\
& =\frac{(2 \pi)^{3}}{\Omega^{3}}\left(\vec{t}_{2} \times \vec{t}_{3}\right) \cdot[-(\underbrace{}_{\Omega} \times \vec{t}_{3}) \times\left(\vec{t}_{1} \times \vec{t}_{2}\right)] \\
& =\frac{(2 \pi)^{3}}{\Omega^{3}}\left(\vec{t}_{2} \times \vec{t}_{3}\right) \cdot[-\underbrace{\vec{t}_{1} \cdot\left(\vec{t}_{3} \times \vec{t}_{2}\right)}_{\Omega}] \vec{t}_{1}=(a \times b) \times(a \times c) \\
& =\frac{(a \pi c)) a}{\Omega^{2}} \underbrace{\left(\vec{t}_{2} \times \vec{t}_{3}\right) \cdot \vec{t}_{1}}_{\Omega}=\frac{(2 \pi)^{3}}{\Omega}=\Omega_{k}
\end{aligned}
$$

* For arbitrary lattice point in real $\left(t_{n}\right)$ and reciprocal space:

$$
\vec{g}_{m} \cdot \vec{t}_{n}=2 \pi M \text { where } m \in \mathbb{Z}
$$

* If vector q satisfies $\vec{q} \cdot \vec{t}_{n}=2 \pi M$ for any \vec{t}_{r}, it is a reciprocal lattice vector
- why? can write $\vec{q}=c_{1} \vec{g}_{1}+c_{2} \vec{g}_{2}+c_{3} \vec{g}_{3}$

$$
\vec{t}_{x}=\underbrace{d_{1}}_{d_{1}, d_{2}, d_{3} \in \mathbb{Z}}+d_{2} \vec{t}_{2}+d_{3} \vec{t}_{3}
$$

$$
\text { so } \vec{q} \cdot \vec{t}_{h}=2 \pi\left(c_{1} d_{1}+c_{2} d_{2}+c_{3} d_{3}\right)
$$

$$
=2 \pi M \quad \text { if } \quad C_{1}, C_{2}, C_{3} \in \mathbb{Z}
$$

but integer multiples of $\left[\vec{g}_{1}, \vec{g}_{2}, \vec{g}_{3}\right)$ is the definition of reciprocal lattice vectors

- This implies that a plane wave $e^{i \vec{k} \cdot \vec{r}}$ has the periodicity of the lattice iff \vec{k} is a reciprocal lattice vector
Consider $\omega(\vec{r})=e^{i \vec{g}_{m} \cdot \vec{r}}$

$$
\begin{aligned}
\omega(\vec{r}) & =e^{i \vec{g}_{m} \cdot r^{r}} \\
W\left(\vec{r}+\vec{t}_{n}\right)=e^{i \vec{g}_{m} \cdot \vec{r}} e^{i \vec{y}_{m} \cdot \vec{t}_{n}} & =e^{i \vec{g}_{m} \cdot r} e^{2 \pi i \vec{M}} \\
& =W(\vec{r})
\end{aligned}
$$

- Thus if $f(r)$ has the periodicity of the lattice:

$$
f(r)=\sum_{\vec{g}_{m}} f_{m} e^{i \vec{j}_{m} \cdot \vec{r}}
$$

and if $F(k)$ has the periodicity of the reciprocal lattice:

$$
F(k)=\sum_{\vec{t}_{m}} F_{m} e^{i \vec{k} \cdot \vec{t}_{m}}
$$

- This is the generalization to 3D of the discussion of the ID fourier transform of the periodic potential that led us to Bloch's theorem

Planes and directions in Bravais lattices

- Recall: Brajais lattice defined by points connected by translation vectors:

$$
\vec{t}_{n}=n_{1} \vec{t}_{1}+n_{2} \vec{t}_{2}+n_{3} \vec{t}_{3}
$$

$$
\text { - } n_{1}, n_{2}, n_{3} \in \mathbb{Z}
$$

- $\vec{t}_{1}, \vec{t}_{2}, \vec{t}_{3}$ are prim. translation vectors
- we can use reciprocal laffice vectors to define 2 planes in real space on which all lattice points fall
- Consider reciprocal lattice vector with minimum length in a given direction.
* Implies that if $\vec{g}_{m}=m_{1} \vec{g}_{1}+m_{2} \vec{g}_{2}+m_{3} \vec{g}_{3}$
then m_{1}, m_{2}, m_{3} have no common divisors
* The scalar product of \vec{S}_{n} with any \vec{t}_{n} is:

$$
\vec{g}_{m} \cdot \vec{t}_{n}=0, \pm 2 \pi, \pm 4 \pi, \pm 6 \pi, \ldots
$$

- why? if $\vec{g}_{m} \cdot \vec{t}_{r}=0, \pm 2 \pi r, \pm 4 \pi \nu, \cdots$ with $\nu>1$, then $\vec{g}_{m / v}$ would also be a reciprocal lattice vector and m_{1}, m_{2}, m_{3} would have a common divisor
* Therefore: all translation vectors in real space belong to equidistant planes perpendicular to \vec{g} separated by: $d=\frac{2 \pi}{\left|g_{m}\right|}$
- We will return to this when discussing diffraction
- thus lattice points fall on these 20 plaves (see next page)
- Lattice planes defined by \vec{g}_{m} :

- We denote this family of places $\left(m_{1}, m_{2}, m_{3}\right)$
* Note that there may be several families of places that are equivalent by symmetry
- For example in a cube, all faces are symmetrically equivalent, so $(0,01),(0,10),(1,00)$ are equivalent
- Denote set of sym. equivalent families of planes as $\left\{m_{1}, m_{2}, m_{3}\right\}$
- E.g., for cubic $\{1,0,0\} \rightarrow(0,0,1),(0,1,0),(1,0,0)$
- Alternative (equivalent) way of defining/construcfing these planes: Miller indices
* Consider plane given by 3 non collinear lattice points
* Take the inverse of the intercepts with the primitive lattice vectors $\vec{\epsilon}_{1}, \vec{t}_{2}, \vec{t}_{3}$
* multiply by smallest factor to get three integers
- Example:

* Intercepts: $\vec{R}_{1}=2 \vec{t}_{1}, \vec{R}_{2}=3 \vec{t}_{2}, \vec{R}_{3}=\vec{t}_{3}$ inverses: $\frac{1}{2}, \frac{1}{3}, 1$
make integer 3: $\left(\frac{1}{2}, \frac{1}{3}, 1\right) * 6=(3,2,6) \approx$ Miller indices
* Consider reciprocal lattice vector: $\vec{g}_{m}=3 \vec{g}_{1}+2 \vec{g}_{2}+6 \vec{g}_{5}$
- $\vec{g}_{m} \cdot \vec{R}_{1}=12 \pi, \vec{g}_{m} \cdot \vec{R}_{2}=12 \pi, \quad \vec{g}_{m} \cdot \vec{R}_{3}=12 \pi$
\Rightarrow Thus \vec{S}_{n} is perpendicular to $\vec{R}_{1}-\vec{R}_{2}$ and $\vec{R}_{2}-\vec{R}_{3}$
\Rightarrow Thus $\vec{\zeta}_{m}$ is perpendicular to the lattice plane!
* Miller indices of plane equilavent to reciprocal lattice vector perpendicular to it.
- Crystallographic directions between lattice points: * write vector connecting two lattice points as $\vec{t}_{n}=n_{1} \vec{t}_{1}+n_{2} \vec{t}_{2}+n_{3} \vec{t}_{3}$
* divide n_{1}, n_{2}, n_{3} be highest common factor to get l_{1}, l_{2}, l_{3}
* Notation for diration is $\left[l_{1}, l_{2}, l_{3}\right]$
* Including sym. equivalent directions: $\left\langle l_{1}, l_{2}, l_{3}\right\rangle$

The Brillouin zone in 30 crystals

- Definition: The first Brillouin zone is the Wigner-seite cell of the reciprocal lattice
* Only depends on the geometry of the Bravais lattice, does not depend on the basis
- For some Bravais lattices, the real - and reciprocal-space lattices have the same shape (e.g., simple cubic and hexagonal)
* Consider the example of simple cubic:

$$
\begin{array}{lll}
\vec{t}_{1}=a(1,0,0) & \vec{t}_{2}=a(0,1,0) & \vec{t}_{3}=a(0,0,1) \\
\vec{g}_{1}=\frac{2 \pi}{a}(1,0,0) & \vec{g}_{2}=\frac{2 \pi}{a}(0,1,0) & \vec{g}_{3}=\frac{2 \pi}{a}(0,0,1)
\end{array}
$$

- For a square, the uS construction is trivial:
$\therefore \quad 0 \quad$ cube w/ side length $2 \pi / a$
- How would we plot the electronic bands in a 3D Brillouin zone?
\Rightarrow Define "his h-symmetry" points, connect them with lines, plot a long lines.

$$
\begin{aligned}
& \Gamma=(0,0,0) \rightarrow \text { always called } \Gamma \\
& x=\frac{2 \pi}{a}\left(0, \frac{1}{2}, 0\right) \\
& M=\frac{2 \pi}{a}\left(\frac{1}{2}, \frac{1}{2}, 0\right) \\
& \overrightarrow{k y} \quad R=\frac{2 \pi}{a}\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)
\end{aligned}
$$

- For example (see G and P p. 165):

- Why?
\rightarrow often important elements of the dispersion (e.g. extrema) are at high-symmetry points
\Rightarrow Gives a sense of properties along different symmetry - in equivalent directions in a crystal
- Most Bravais lattices have different shapes for the real-and reciprocal - space lattices
* See G and P See. II. 5 for many examples

Electronic structure and dynamics in 3D crystals

- We have already discussed the effect of periodicity in 10
* Many concepts and formalism apply also to 30
- Recall: $V(\vec{r})$ having the periodicity of the lattice mears that we can write:

$$
V(r)=\sum_{\vec{g}_{m}} V\left(\vec{g}_{m}\right) e^{i \vec{g}_{m} \cdot \vec{r}}
$$

* Now apply $V(r)$ to plane waves: $W_{k}(\vec{r})=\frac{1}{\sqrt{N \Omega}} e^{i \vec{i} \cdot \vec{r}}$

$$
\left\langle w_{k}\right| v\left|w_{k^{\prime}}\right\rangle=\int d^{3} r \int d^{3} r^{\prime}\left\langle w_{k} \mid r\right\rangle\langle r| v\left|r^{\prime}\right\rangle\left\langle r^{\prime} \mid w_{k^{\prime}}\right\rangle
$$

$U(r)$ is diagonal in
real space, ie. $\overrightarrow{\rightarrow r}(r-r)^{\prime}$

$$
\begin{aligned}
& V(r) \text { is diagonal in } \\
& \text { real space, i.e. } \underset{\overrightarrow{~ i ~}}{\vec{\prime}}=\frac{1}{N \Omega} \sum_{\vec{g}_{m}} V\left(\vec{g}_{m}\right) \int_{\text {crustal }} e^{i\left(-\vec{k}^{\prime}+\vec{k}+\vec{g}_{m}\right.} \\
&= \begin{cases}0 & \text { if } \vec{k}^{\prime} \neq \vec{k}+\vec{g}_{m} \\
V\left(\vec{k}^{\prime}-\vec{k}\right) & \text { if } \vec{k}^{\prime}=\vec{k}+\vec{g}_{m}\end{cases}
\end{aligned}
$$

- Therefore, if \vec{k} and \vec{k}^{\prime} are both in the first $B Z$, the periodic potential does not mix them
- Thus, we can write!

$$
\begin{aligned}
& \psi_{\vec{k}}(\vec{r})=\sum_{\vec{g}_{n}} a_{n}(\vec{k}) e^{i\left(\vec{k}+\vec{g}_{n}\right) \cdot r} \\
& \Rightarrow \psi_{\vec{k}}(\vec{r})=e^{i \vec{k} \cdot \vec{r}} u_{\vec{k}}(\vec{r}) \\
& \longrightarrow \text { incant }
\end{aligned}
$$

itinerant \longrightarrow cell periodic part plane wave

* As before we can plot $E(\vec{k})$ in first $B Z$, will be bands of allowed energies separated by gaps
* As before, $\hbar \vec{k}$ is "crystal momentum" of e^{-}
k-points in 3D
- In 1D, when we considered Bom-Von Karmen boundary conditions we found that:
$k=\frac{2 \pi n}{N a} \quad n \in \mathbb{Z}, N$ is number of repeat units of length
- In 3D, Bur B.C.S require:

$$
\psi(\vec{r})=\psi\left(\vec{r}+N_{1} \vec{t}_{1}\right)=\psi\left(\vec{r}+N_{2} \vec{t}_{2}\right)=\psi\left(\vec{r}+N_{3} \vec{t}_{3}\right)
$$

\# repeat units in dir 1

* repeat units in dir 2 in dir 3
*If ψ is a Bloch function with wavevector \vec{k},

$$
\psi_{\vec{k}}\left(\vec{r}+N_{1} \vec{t}_{1}\right)=u_{k}\left(\vec{r}+N_{1} \vec{t}_{1} \backslash e^{i \vec{k}\left(\vec{r}+N_{1} \vec{t}_{1}\right)}=\psi_{\vec{k}}(\vec{r}) e^{i \vec{k} \cdot N_{1} \vec{t}_{1}}\right.
$$

- Need to have: $e^{i \vec{k} \cdot w_{1} \vec{b}_{1}}=e^{i \vec{k} \cdot w_{2} \overrightarrow{t_{2}}}=e^{i \vec{k} \cdot w_{3} \vec{t}_{3}}=1$
- Comparable \vec{k} vectors are:

$$
k=\frac{m_{1}}{w_{1}} \vec{g}_{1}+\frac{m_{2}}{w_{2}} \vec{g}_{2}+\frac{m_{3}}{N_{3}} \vec{g}_{3} ; m_{1}, m_{2}, m_{3} \in \mathbb{Z}
$$

- \vec{k} inside first Brillouin zone are given by choosing $0 \leq m_{i}<N_{i}$
- Thus $\underbrace{N_{1} \cdot N_{2} \cdot N_{3}} \vec{k}$ in $1^{s 5} B Z$.
\# of primitive cells in the crystal
- Density of \vec{k} in reciprocal space: $y^{\text {volume of of }}$

$$
\begin{aligned}
& W(\vec{k})=\frac{1}{\frac{1}{N_{1}} \vec{\xi}_{1} \cdot\left(\frac{1}{N_{2}} \vec{g}_{2} \times \frac{1}{N_{3}} \vec{g}_{3}\right)}=\frac{N_{1} N_{2} N_{3}}{\Omega_{k}}=\frac{U^{k}}{(2 \pi)^{3}} \\
& \mathbb{L}_{\text {unit }} \\
& \text { cell in }
\end{aligned}
$$

- $\sum_{\vec{k}}^{\prime} f(\vec{k}) \Longrightarrow \frac{V}{(2 \pi)^{3}} \int f(\vec{k}) d \vec{k}$
$\hat{\tau}_{\text {unit }}$ cell in reciprocal space
- Semiclassical relations we had in ID apply in 30 (just add vectors \ddot{C}):

$$
*\left\langle\psi_{n \vec{k}}\right| \frac{\vec{p}}{m}\left|\psi_{n \vec{k}}\right\rangle=\frac{1}{\hbar} \frac{\partial E_{n \vec{k}}}{\partial \vec{k}}
$$

* for $m \neq n$:

$$
\begin{aligned}
\left\langle\psi_{n \vec{k}}\right| \frac{\hbar \vec{P}}{m}\left|\psi_{n \vec{k}}\right\rangle & =-\left(E_{m \vec{k}}-E_{n \vec{k}}\right)\left\langle u_{m \vec{k}}\right| \frac{\partial}{\partial \vec{k}}\left|u_{n \vec{k}}\right\rangle \\
\left\langle u_{m \vec{k}}\right| \vec{r}\left|u_{n \vec{k}}\right\rangle & =i\left\langle u_{m \vec{k}} \left\lvert\, \frac{\partial}{\partial \vec{k}} u_{n \vec{k}}\right.\right\rangle
\end{aligned}
$$

* Recall our kip expansion to second order in $1 D$:

$$
E_{u k}=E_{n k_{0}}+\frac{\hbar^{2}\left[k-k_{0}\right)^{2}}{2 m^{*}}
$$

where $\frac{m}{m^{*}}=1+\frac{2}{m n^{\prime} \neq n} \sum_{n_{n-0}} \frac{\left\langle\psi_{n k_{0}}\right| p\left|\psi_{n^{\prime} k_{0}}\right\rangle\left\langle\psi_{n^{\prime} k_{0}}\right| p\left|\psi_{n k_{0}}\right\rangle}{E_{n-1}}$

- In 30:

$$
E_{n \vec{k}}=E_{n \vec{k}_{0}}+\sum_{\alpha \beta} \frac{\hbar^{2}}{2 m}\left(\frac{m}{m^{*}}\right)_{\alpha \beta}\left(\vec{k}-\vec{k}_{0}\right)_{\alpha}\left(\vec{k}-k_{0}\right)_{\beta}
$$

Where $\left(\frac{m}{m^{7}}\right)_{\alpha \beta}=\delta \alpha \beta+\frac{2}{m} \sum_{n^{\prime} \neq n} \frac{\left\langle\psi_{n} \vec{k}_{0}\right| \vec{P}_{\alpha}\left|\psi_{n^{\prime}} \vec{k}_{0}\right\rangle\left\langle\psi_{n^{\prime} \vec{k}_{0}}\right| \vec{P}_{\beta}\left|\psi_{n_{0} \vec{o}_{0}}\right\rangle}{E_{n \vec{k}_{0}}-E_{n} \vec{k}_{0}}$

Crystal lattices: What have we learned?

- Periodicity is more complicated in 3D!
- Finite number of periodic lattices in $2 D$ and 30 * Called, Bravais Lattices, defined by lattice points:

$$
\vec{t}_{n}=n_{1} \vec{t}_{1}+n_{2} \vec{t}_{2}+n_{3} \vec{t}_{3}, \quad n_{1}, n_{2}, n_{3} \in \mathbb{Z}
$$

$L_{s} \vec{t}_{1}, \vec{t}_{2}, \vec{t}_{\xi}$ are primitive lattice vectors

* 5 lattices in 20, 14 Bravais lattices in 3D
* Smallest repeating unit cell in 20/30 called the primitive cell
- not unique! Infinite number of choices
- Contains one lattice point
- Wigner-seite construction gives ore chore with full symmetry of the crystal
- Atomic Positions in crystal given by laffice vectors in simple lattices, and lattice vectors + basis vectors in composite lattices:

$$
\begin{aligned}
& \vec{e}_{i}=b_{i}+n_{1} \vec{b}_{1}+h_{2} \vec{t}_{j}+h_{3} \vec{t}_{3} \\
& \text { L"sublattice" }
\end{aligned}
$$

- Reciprocal lattice in 2D and $3 D$ defined by reciprocal lattice points!

$$
\begin{aligned}
& \vec{g}_{m}=m_{1} \vec{g}_{1}+m_{2} \vec{g}_{2}+m_{3} \vec{g}_{3} \quad m_{1}, m_{2}, m_{3} \in \mathbb{Z} \\
& L_{3} \vec{g}_{1}=\underbrace{\frac{2 \pi}{\Omega_{\text {cell }}} \vec{t}_{2} \times \vec{t}_{3}, \quad \vec{g}_{2}=\frac{2 \pi}{\Omega_{\text {cell }}} \vec{t}_{3} \times \vec{t}_{1}, \vec{g}_{3}=\frac{2 \pi}{\Omega_{\text {cell }}} \vec{t}_{1} \times \vec{t}_{2}}_{\begin{array}{c}
\text { volume of } \\
\text { real space } \\
\text { primitive cell }
\end{array}}
\end{aligned}
$$

* Volume of primitive cell in reciprocal space: $\frac{(2 \pi)^{3}}{\Omega_{\text {cell }}}$
* Plane waves that have the periodicity of the lattice have k 's that are reciprocal lattice vectors
- If $f(r)$ is periodic $w /$ the laffice! $f(r)=\sum_{\vec{g}_{m}}^{l} f_{m} e^{i \vec{g}_{r} \cdot \vec{r}}$
- Bloch's thor em in 3D: $\Psi_{\vec{k}}(\vec{r})=e^{i \vec{k} \cdot \vec{r}} u_{\vec{k}}(\vec{r})$
* First Brillouin zone: Wigner-seite cell of reciprocal lattice
- plot bands along "high-symmetry lines" in BZ
- Semiclassical relations generalize trivially to 3D
- Effective mass becomes a 3×3 matrix

