Orthogonalized plane wave method

- In 1D, we discussed expanding in a basis of plane waves
- 3D generalization is straight for ward!

$$
H=\frac{\vec{p}^{2}}{2 m}+\sum_{\vec{t}_{n} \vec{d}_{v}} V_{v}\left(\vec{r}-\vec{d}_{\nu}-\vec{t}_{n}\right)
$$

basis vectors if composite lattice

* Basis functions:

$$
W_{\vec{k}:}(\vec{r})=\frac{1}{\sqrt{\sqrt{N \Omega}} e^{i\left(\vec{k}+\vec{h}_{i}\right) \cdot \vec{r}} \hat{L}_{\substack{\text { reciprocal } \\ \text { volume }}}^{\text {vector }} \text { lattice }}
$$

* Matrix elements:

$$
\left\langle w_{\vec{k}_{i}}\right| H\left|w_{\vec{k}_{j}}\right\rangle=\frac{\hbar^{2} k_{i}^{2}}{2 m} \delta_{i j}+\frac{1}{N \Omega} \sum_{t_{n} \vec{d}_{i}} \int e^{-i\left(\vec{k}+\vec{h}_{i}\right) \cdot \vec{r}_{V_{\nu}}\left(\vec{r}-\vec{d}_{v}-\vec{t}_{r}\right) e^{i\left(\vec{k}+\vec{h}_{j}\right) \cdot r} d r} d \vec{r}
$$

- Can write: $\quad V_{\gamma}\left(\vec{r}-\vec{d}_{\gamma}-\vec{t}_{r}\right)=\sum_{\vec{g}_{m}}^{c} \tilde{v}_{\nu}\left(\vec{g}_{r}\right) \exp \left[i \vec{g}_{m} \cdot\left(\vec{r}-\vec{d}_{\nu}-\vec{t}_{n}\right)\right]$

$$
=\sum_{\vec{g}_{m}} \tilde{v}_{\nu}\left(\vec{g}_{m}\right) e^{i \vec{g}_{m} \cdot \vec{r}} e^{-i \vec{g}_{m} \cdot \vec{d}_{\nu}}
$$

So matrix elements are:

$$
\begin{aligned}
& \text { So matrix elements are: } \\
& =\frac{\hbar^{2} k_{i}^{2}}{2 m} \delta_{i j}+\frac{1}{N \Omega} \sum_{d_{v}, \vec{g}_{m}} \int \exp \left[i\left(\vec{h}_{j}-\vec{h}_{i}+\vec{g}_{m}\right) \cdot \vec{r}\right] \tilde{v}_{v}\left(\vec{g}_{m}\right) d^{3} r e^{-i \vec{g}_{m} \cdot \overrightarrow{d v}} \\
& =\frac{\hbar^{2} k_{i}^{2}}{2 m} \delta_{i j}+\sum_{\vec{d}_{\nu}} e^{-i\left(\vec{h}_{i}-\vec{h}_{j}\right) \cdot \vec{d}_{v}} \tilde{v}_{\nu}\left(\vec{r}_{i}-h_{j}\right)
\end{aligned}
$$

"Structure factor", depends on basis
"Form factor" just Fourier transform of $V_{a v}$
o expand crystal wavefunction at \vec{k} :

$$
\psi_{\vec{k}}(\vec{r})=\sum_{i}^{\prime} c_{i \vec{k}} w_{\vec{k}}(\vec{r})
$$

* Solve secular equation:

$$
\operatorname{det}\left|\left(\frac{k_{i}^{2} \hbar^{2}}{2 m}-E\right) \delta_{i j}+\sum_{\overrightarrow{d \nu}} e^{-i\left(h_{i}-h_{j}\right) \cdot \vec{d}_{\nu}} \tilde{v}_{\nu}\left(\vec{h}_{i}-\vec{h}_{j}\right)\right|=0
$$

- But there is a problem with this method: Treatment of "core states requires way too many plane waves!!
* Why? Core states are very localized.
* Consider 1 s state of Si_{i} :

Bohr radius

- $F C C$ lattice ($w /$ basis) with $a=10.26 a_{B}$ (convention cell) \Rightarrow primitive cell volume is $\Omega=a^{3} / 4$
- radius of $1 s$ approx. $a_{1 s} \approx a_{B} / z \leftarrow$ nuclear charge
- If we want the maximum \vec{k} plane wave in our basis to have a wavelength of $a_{1 s}$,

$$
\left|\vec{k}_{\text {max }}\right| \approx \frac{2 \pi}{a_{15}}=\frac{2 \pi z}{a_{B}}
$$

- Number of reciprocal lattice vectors N in sphere of radius $\left|\vec{k}_{\text {max }}\right|$ is in vol of prim call in reciprocal

$$
\begin{aligned}
& \frac{4}{3} \pi\left|k_{\max }\right|^{3}=\frac{K}{3} \pi \frac{(2 \pi)^{3} z^{3}}{a_{B}^{3}}=N \Omega_{k}=\frac{N(2 \pi)^{3}}{\Omega}=\frac{N \mid 2 \pi)^{3}}{a^{3}} 4 \\
& N=\frac{\pi}{3} 14^{3}\left(\frac{a}{a_{B}}\right)^{3}=\frac{\pi}{3} 14^{3} \cdot 10.26^{3} \approx 3 \times 10^{6}
\end{aligned}
$$

- Thus we need to solve $10^{6} \times 10^{6}$ secular matrix to have a basis that describes Si_{i} is orbital
- How can we avoid this issue? In any case, we are most interested in properties of valence electrons, not core.
* Solution:
- Assume we know the form of the core states, i.e., they remain atomic -like (tight-binding picture)
- Obtain a new basis that is orthogonalized WRT the core orbitals
* or thogonalization:
- Assume we know the first x_{c} eigenfuctions of H :

$$
H \psi_{c}=E_{c} \psi_{c}, c=1,2, \cdots, n_{c}
$$

- For any $\tilde{v e r s i o n}_{i}$ basis state ϕ_{i}, consider an orthogonalized version $\tilde{\phi}_{i}$:

$$
\left|\tilde{\phi}_{i}\right\rangle=\left|\phi_{i}\right\rangle-\sum_{c}\left|\psi_{c}\right\rangle\left\langle\psi_{c} \mid \phi_{i}\right\rangle
$$

- Then we can expand any state "above" n_{c} as

$$
\left|\psi_{i}\right\rangle=\sum_{j} c_{i j}\left|\tilde{\phi}_{j}\right\rangle \quad, i \neq 1,2, \cdots, n_{c}
$$

- Thus to get ψ_{i} 's and E_{i} 's, solve secular equation:

$$
\begin{aligned}
&\left.\operatorname{det}\left|\left\langle\widetilde{\phi}_{i}\right| H\right| \widetilde{\phi}_{j}\right\rangle-E\left\langle\tilde{\phi}_{i} \mid \tilde{\phi}_{j}\right\rangle \mid=0 \\
&\left.\Rightarrow \operatorname{det}\left|\left\langle\widetilde{\phi}_{i}\right| H-E\right| \widetilde{\phi}_{j}\right\rangle \mid=0 \\
&\left\langle\widetilde{\phi}_{i}\right| H-E\left|\widetilde{\phi}_{j}\right\rangle=\left\langle\phi_{i}\right| H-E\left|\phi_{j}\right\rangle-\left\langle\phi_{i}\right| H-E\left[\sum_{c}\left|\psi_{c}\right\rangle\left\langle\psi_{c} \mid \phi_{j}\right\rangle\right] \\
&-\left[\sum_{c}^{2}\left\langle\phi_{i} \mid \psi_{c}\right\rangle\left\langle\psi_{c}\right|\right] H-E\left|\phi_{j}\right\rangle \\
&+\sum_{c c^{\prime}}\left\langle\phi_{i} \mid \psi_{c}\right\rangle\left\langle\psi_{c}\right| H-E\left|\psi_{c}{ }^{\prime}\right\rangle\left\langle\psi_{c^{\prime}} \mid \phi_{j}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
&=\left\langle\phi_{i}\right| 1+-E\left|\phi_{j}\right\rangle-\left\langle\phi_{i}\right|\left[\sum_{c}^{c}\left(E_{c}-E\right)\left|\psi_{c}\right\rangle\left\langle\psi_{c}\right|\right]\left|\phi_{j}\right\rangle \\
&-\left\langle\phi_{i}\right|\left[\sum_{c}^{c}\left(E_{c}-E\right)\left|\psi_{c}\right\rangle\left\langle\psi_{c}\right|\right]\left|\phi_{j}\right\rangle \text { cancels ore } \\
& \text { of prev. } \\
&+\left\langle\phi_{i}\right|\left[\sum_{c^{\prime}}^{1}\left(E_{c}-E\right)\left|\psi_{c}\right\rangle\left\langle\psi_{c} \mid \psi_{c^{\prime}}\right\rangle\left\langle\psi_{c}{ }^{\prime}\right]\right]\left|\phi_{j}\right\rangle^{\text {terms }}
\end{aligned} \quad \begin{aligned}
=\left\langle\phi_{i}\right|[H-E+\underbrace{\left.\sum_{c}^{1}\left(E-E_{c}\right)\left|\psi_{c}\right\rangle\left\langle\psi_{c}\right|\right]}_{c}\left|\phi_{j}\right\rangle
\end{aligned}
$$

- So we can write the secular equation in terms of original basis functions:
$\left.\operatorname{det}\left|\left\langle\phi_{i}\right| H+U^{\text {rep }}\right| \phi_{j}\right\rangle-E \delta_{i j} \mid=0$
- Note that eigenvectors of gives coeft of $\left|\psi_{i}\right\rangle=\sum_{j}^{1} c_{i j}\left|\hat{\phi}_{j}\right\rangle$
- Veep for $E>E_{c}$ is a repulsive potential, increases energy above core states
- Note veep is a non local potential! I.e., ir position basis:

$$
\langle r| v^{\text {rep }}\left|r^{\prime}\right\rangle=\sum_{c}^{2}\left(E-E_{c}\right) \psi(r) \psi\left(r^{\prime}\right) \equiv v^{\text {rep }}\left(r, r^{\prime}\right) \neq v^{\text {rep }}(r) \delta\left(r-r^{\prime}\right)
$$

* Description of core and valence states see discuss
- Core \rightarrow Bloch sums of atomic orbitals $\Phi_{\vec{k}}^{e}(\vec{r})$ binding
- Vakuce \rightarrow Orthogonalized plane waves:

Plane wave wi $\vec{k}_{j}=k+h_{j}$

$$
\left|\tilde{w}_{\vec{k}_{j}}\right\rangle=\left|w_{\vec{k}_{j}}\right\rangle-\sum_{\text {Core }}^{c}\left|\Phi_{\vec{k}}^{c}\right\rangle\left\langle\Phi_{\vec{k}}^{c} \mid w_{\vec{k}_{j}}\right\rangle
$$

- Secular equation: $\left.\operatorname{det}\left|\left\langle\tilde{\omega}_{\vec{k}_{i}}\right| H\right| \tilde{w}_{\vec{k}_{j}}\right\rangle-E\left\langle\omega_{\vec{k}_{i}} \mid \omega_{\vec{k}_{j}}\right\rangle \mid=0$
- or alternatively?

$$
\begin{aligned}
& \operatorname{det} \left\lvert\,\left\langle w_{\vec{k}_{i}}\right| \underbrace{\frac{\vec{p}^{2}}{2 m}+U}_{\text {crystal } H}+U^{\text {rep }}\right.\left.\| w_{\vec{k}_{j}}\right\rangle-E \delta_{i j} \mid=0 \\
& U^{\text {rep }}=\sum_{\text {core }}^{\infty}\left(E-E_{c}\right)\left|\Phi_{\vec{k}}^{c}\right\rangle\left\langle\Phi_{\vec{k}}^{c}\right|
\end{aligned}
$$

- So to compute the matrix elements, we reed ovelaps between Φ^{c} and $W_{\vec{k}_{j}}$:

$$
\begin{aligned}
\left\langle\Phi_{\vec{k}}^{c} \mid w_{\vec{k}_{j}}\right\rangle & =\int\left\langle\Phi_{\vec{k}}^{c} \mid r\right\rangle\left\langle r \mid \omega \vec{k}_{j}\right\rangle d^{3} r \\
& =\frac{1}{\sqrt{N}} \sum_{\vec{t}_{r}}^{c} \int e^{-i \vec{k} \cdot \vec{t}_{r}} \phi_{c}^{*}\left(\vec{r}-\vec{t}_{r}\right) \cdot \frac{1}{\sqrt{N \Omega}} e^{i\left(\vec{k}+\vec{h}_{j}\right) \cdot \vec{r}} d^{3} r \\
& =\frac{1}{N \sqrt{\Omega}} \sum_{t_{r}}^{1} \int e^{i\left(\vec{k}+\vec{h}_{j}\right) \cdot\left(\vec{r}-\vec{t}_{r}\right)} \phi_{c}^{*}\left(\vec{r}-\vec{t}_{r}\right) d^{3} r
\end{aligned}
$$

at each \vec{t}_{r}, change variables to get same term as $\vec{E}_{r}=0$

$$
=\frac{1}{\sqrt{\Omega}} \int e^{i\left(\vec{k}+\vec{h}_{j}\right) \cdot \vec{r}} \phi_{c}^{*}(\vec{r}) d^{3} r
$$

- Core atomic-like orbital can be written as a radial part times spherical harmonic:
$\phi_{c}(\vec{r})=R_{n l}(\vec{r}) Y_{e m}(\vec{r})$ (for $n \ell m$ quantum numbers)
- Car also write plane wave on terms of spherical harmonics: soluricalel function
- Then we have:

$$
\begin{aligned}
& \text { label gl }
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{4 \pi}{\sqrt{\Omega}} \sum_{\ell^{\prime} m^{\prime}} Y_{\ell^{\prime} m^{\prime}}^{*}\left(\vec{k}_{j}\right) i^{\ell^{\prime}} \int \underbrace{\iint_{e^{\prime} m^{\prime}}(\vec{r}) Y_{\ell m}^{*}(\vec{r}) \sin \theta d \phi d \theta}_{\delta_{l e^{\prime}} \delta_{m m^{\prime}}} \int_{\ell^{\prime}}\left(k_{i} r\right) R_{n e}^{*}(r) r^{2} d r \\
& =\frac{4 \pi}{\sqrt{\Omega}} Y_{e m}^{d}\left(\vec{k}_{j}\right) i^{l} \int j_{l}\left(k_{j} r\right) R_{n l}^{k}(r) r^{2} d r
\end{aligned}
$$

- So:

$$
\begin{aligned}
\left\langle w_{\vec{k}_{i}}\right| v^{\text {rep }}\left|w_{\vec{k}_{j}}\right\rangle & =\sum_{n \ell m}^{\text {core }}\left(E-E_{n \ell}\right)\left\langle w_{\vec{k}_{i}} \mid \Phi_{\vec{k}}^{n l m}\right\rangle\left\langle\Phi_{\vec{k}}^{n l m} \mid w_{\vec{k}_{j}}\right\rangle \\
& =\sum_{n \ell}^{\text {core }}\left(E-E_{n \ell}\right) P_{l}\left(\hat{k}_{i} \cdot \hat{k}_{j}\right) A_{n l}\left(\left|k_{i}\right|\right) A_{n \ell}\left(\left|k_{j}\right|\right)
\end{aligned}
$$

$\begin{aligned} \text { Legendre polynomial: } P_{l}\left(\hat{k}_{i} \cdot \hat{k}_{j}\right) & =\sum_{m=-l}^{+\ell} Y_{l m}^{*}\left(\vec{k}_{i}\right) Y_{l m}\left(\vec{k}_{j}\right)\end{aligned}$

- Many other methods (sec G and P Ch. V) have similar spirit of combining plane waves for itinerant valence/ conduction electrons with radial/atomic functions for core states

Pseudopotential method

- OPW allows us to separate "inert" core from valence states (or unoccupied "conduction" states)
- Problem: we still have to deal with the full crystal potential $v(r)$
* Atomic-like so strong in the core region
* Also, valence - election wave functions will have oscillations in core region since they need to be or thogonal to core
- Solution: replace crystal potential in core region with a weaker "pseudopotential"
* Eigenstates will be "pseudo wavefunctions," only required to match true wavefunctions outside of core region
* We kind of did this wI op, prep cancels some of $V(\vec{r})$ in the core region
* replace $V+V^{\text {rep }}$ with $V^{p s p}$:

$$
\operatorname{det}\left|\left(\frac{\hbar^{2} k_{i}^{2}}{2 m}-E\right) \delta_{i j}+\sum_{d_{\nu}} e^{-i\left(\vec{h}_{i}-\vec{h}_{j}\right) \cdot \overrightarrow{d v}} V_{\nu}^{\text {sp }}\left(\vec{h}_{i}-\vec{h}_{j}\right)\right|=0
$$

* Can often choose $V^{\text {ASP }}$ to have few fourier components
- Example in G and P sec. $U .4$ (and HW $ت$): bandstructure of S_{i} with just three parameters and ~ 40 reciprocal lattice vectors
- How do we determine $V^{p s p}$?
* Empirical psendopotentials: fit to experiment of other calculations (S_{i} example)
* Atomic/ab-initio pseudopotentials: Calculate V of free atom, take exact U outside of radius r_{c} from core, use approximate (weak) form inside of r_{c}
- Simplest form: $V^{P S P}(r)=\left\{\begin{array}{cll}A & \text { for } r<r_{c} \\ -\frac{e^{2}}{r} & \text { for } & r>r_{c}\end{array}\right.$
- Another prescription: Parametrize radial pseudowavefunctions as:

$$
\begin{array}{ll}
R^{p s p}(r)=\left\{\begin{array}{ll}
r^{l} e^{p(r)} & \text { for } r<r_{c} \\
\text { adjustable parallel }
\end{array} R_{a}(r)\right. & \text { for } r>r_{c}
\end{array}
$$

where $p(r)=\lambda_{0}+\lambda_{2} r^{2}+\lambda_{3} r^{3}+\lambda_{4} r^{4}$
plug into radial S.E. to get:

$$
V^{p s p}(r)=\left\{\begin{array}{ll}
E_{a}^{e}+2 \frac{l+1}{r} p^{\prime}(r)+p^{\prime \prime}(r)+\left[p^{\prime}(r)\right]^{2} & \text { for } r<r_{c} \\
V_{a}(r) & \text { no liver term in } p \\
& \text { so } p^{\prime}(r) \alpha r \text { as } r \rightarrow 0
\end{array} \text { for } r>r_{c}\right.
$$

- Choose λ 's so wavefunction is normalized to 1 to conserve charge in core region, and $R\left(r_{c}\right)$ and derivatives are continuous
- Note: $R^{p s p}$ has no nodes:

- Note: UPsP is different for different angular momentum. In practice, it will have a nonlocal part of the form $V_{N L}^{P S D}=\sum_{n e m}\left|\phi_{n \ell m}\right\rangle\left\langle\phi_{n l m}\right|$

- Most popular modern "a binitio" treatment of solids use plane waves and pseudopotentials!

Methods for describing bands in 3D what have we learned?

- Can describe bands in 3D empirically with relatively fer free parameters
- Tight-binding: make Bloch sums for different types of orbitals, parametrize matrix elements based on orbital type and direction
* Often most convenient for (semi) analytical description of solids
- plane-wave expansion: Have to combine localized atanic-line functions for core electrons with itinerant plane waves
* ofkn most convenient for full numerical treatment of solids

