Beyond the ore-election approximation ( $G$ and $P$ chapter IV)

- An approximation that we have been making implicitly and explicitly is that we can discuss electrons individually
* Approach that we took:
- Treat single electron in periodic potential via single-particle schrödinger equation
- generates a band structure of allowed states in reciprocal space
- Fill bands with electrons in single-particle Bloch functions $\Psi_{n k}$
- But what about coulomb interactions between elections?
- Strictly speaking, we should solve many-Body S.E.
* Recall, for fixed nuclear configuration (more later), electronic many-body $H$ is:

$$
H=\sum_{i} \frac{\vec{P}_{i}^{2}}{2 m}+\frac{1}{2} \sum_{i \neq j} \frac{e^{2}}{\left|\vec{r}_{i}-\vec{r}_{j}\right|}+V_{\text {ext }}(\vec{r})
$$



* Recall also that this is impossible to solve for more than a few electrons
* We will discuss various approximations to solving
the many - body problem.

Constructing the many-body vavefunction

- First step: Choose a basis of single-election orbitals $\phi_{i}(\vec{r})$
* Assume they are orthonormal and form a complete set

$$
\psi_{i}(\vec{r} \sigma)=\phi_{i}(\vec{r}) x_{i}(\sigma) \text { spin part }
$$

* Consider expressing the G.S. many-body wavefunction:

$$
\underline{\Psi}_{0}\left(\vec{r}_{1} \sigma_{1}, \vec{r}_{2} \sigma_{2}, \cdots, \vec{r}_{N} \sigma_{N}\right)=\psi_{1}\left(\vec{r}_{1}^{v} \sigma_{1}\right)^{\text {position of }} \psi_{2}\left(\vec{r}_{2} \sigma_{2}\right)^{\text {election }} \ldots \psi_{N}\left(\vec{r}_{N} \sigma_{N}\right)
$$

- Note: Two sets of indicies: $\psi_{1}\left(\vec{r}, \sigma_{1}\right)$

Basis function number $\hat{\imath} \tau$ election number

- Many issues with this including that $\frac{\Psi}{}$ does not have the correct antisymmetry (should pick up when we swap $e^{-}$indices)
* We can Make the RHS antisymmetric by applying opperator A:

$$
\underline{\Psi}_{0}\left(\vec{r}_{1} \sigma_{1}, \vec{r}_{r} \sigma_{2}, \cdots, \vec{r}_{N} \sigma_{N}\right)=A\left\{\psi_{1}\left(\vec{r}_{1} \sigma_{1}\right) \psi_{2}\left(\vec{r}, \sigma_{2}\right) \ldots \psi_{N}\left(\vec{r}_{N} \sigma_{N}\right)\right\}
$$

where:

$$
A=\frac{1}{\sqrt{N!}} \sum_{i=1}^{N!} \longleftarrow(-1)^{p_{i}} p_{i}
$$

- Where $P_{i}$ is a permutation of election coordinates - $(-1)^{p_{i}}=\begin{array}{rrrrr}-1 & \text { if we permute odd number of } \\ & +1 & 11 & k & 11\end{array}$
- Simple example: Two orbitals, two electrons, one spin up ore spin down

$$
\psi_{1}(\vec{r}, \uparrow), \psi_{2}\left(\vec{r}_{2} \downarrow\right)
$$

$$
A\left\{\psi_{1}(\vec{r}, \uparrow) \psi_{2}\left(\vec{r}_{2} \downarrow\right)\right\}=\frac{1}{\sqrt{2}}\left[\psi_{1}\left(\vec{r}_{1} \uparrow\right) \psi_{2}\left(\vec{r}_{2} \psi\right)-\psi_{1}\left(\vec{r}_{2} \downarrow\right) \psi_{2}\left(\vec{r}_{1} \uparrow\right)\right]
$$

i.e., a singlet spin state.
permutate electron number

- Systematic way of geverating antisymmetric combination of orbitals: Slater determinant
Take $\vec{r}_{i} \equiv \vec{r}_{i} \sigma_{i}$, three orbitals $(i=1,2,3)$ :

$$
\begin{aligned}
& \frac{1}{\sqrt{6}}\left|\begin{array}{lll}
\psi_{1}\left(\vec{r}_{1}\right) & \psi_{1}\left(\vec{r}_{2}\right) & \psi_{1}\left(\vec{r}_{3}\right) \\
\psi_{2}\left(\vec{r}_{1}\right) & \psi_{2}\left(\vec{r}_{2}\right) & \psi_{2}\left(\vec{r}_{3}\right) \\
\psi_{3}\left(\vec{r}_{1}\right) & \psi_{3}\left(\vec{r}_{2}\right) & \psi_{3}\left(\vec{r}_{3}\right)
\end{array}\right| \\
& =\frac{1}{\sqrt{6}}\left[\quad \psi_{1}\left(\vec{r}_{1}\right) \psi_{2}\left(\vec{r}_{2}\right) \psi_{3}\left(\vec{r}_{3}\right)-\psi_{1}\left(\vec{r}_{1}\right) \psi_{2}\left(\vec{r}_{3}\right) \psi_{3}\left(\vec{r}_{2}\right)\right. \\
& -\underbrace{-\psi_{1}\left(\vec{r}_{2}\right) \psi_{2}\left(\vec{r}_{1}\right)}_{P} \psi_{3}\left(\vec{r}_{3}\right)+\psi_{P}^{\psi_{1}\left(\vec{r}_{2}\right) \psi_{2}\left(\vec{r}_{3}\right) \psi_{3}\left(\vec{r}_{1}\right)} \text { P} \\
& +\underbrace{\psi_{1}\left(\vec{r}_{3}\right) \psi_{2}\left(\vec{r}_{1}\right) \psi_{3}\left(\vec{r}_{2}\right)}_{p}-\psi_{p}^{\psi_{1}\left(\vec{r}_{3}\right) \psi_{2}\left(\vec{r}_{2}\right) \psi_{3}^{P}\left(\vec{r}_{1}\right)}]
\end{aligned}
$$

- we will use shorthand for slater def: $\Psi_{0}=\frac{1}{\sqrt{N!}} \operatorname{det}\left\{\Psi_{1} \Psi_{2} \ldots \psi_{N}\right\}$
- Now that we have an antisymmetric wave function, need to calculate matrix elements with it
* kinetic energy and external potential can be written as sum over single-electron operators:

$$
\begin{gathered}
G_{1}=\sum_{i}^{N} h_{i}=\sum_{i}^{N} h\left(r_{i}\right) \leftarrow h=\frac{p^{2}}{2 m}+V_{\text {ext }} \leftarrow \begin{array}{c}
\text { nuclear-nuckar, } \\
\text { election-nuclear }
\end{array} \\
\left\langle\Psi_{0}\right| G_{1}\left|\Psi_{0}\right\rangle=\frac{1}{N!}\left\langle\operatorname{det}\left\{\psi_{1} \Psi_{2} \ldots \psi_{N}\right\}\right| G_{1}\left|\operatorname{det}\left\{\psi_{1} \Psi_{2} \ldots \psi_{N}\right\}\right\rangle
\end{gathered}
$$

- Consider element with nonpermuted terms:
$\left\langle\psi_{1} \psi_{2} \cdots \psi_{N}\right| G_{1}\left|\psi_{1} \psi_{2} \cdots \psi_{N}\right\rangle \sim$ write ordering to comespond to for our example of three spin orbitals $\left(\vec{r}_{i} \equiv \vec{r}_{i} \sigma_{i}\right)$ :

$$
\begin{aligned}
& \left\langle\psi_{1} \psi_{2} \psi_{3}\right| G_{1}\left|\psi_{1} \psi_{2} \psi_{3}\right\rangle= \\
& \quad \int \psi_{1}^{*}\left(\vec{r}_{1}\right) \psi_{2}^{*}\left(\overrightarrow{r_{2}}\right) \psi_{3}^{*}\left(\vec{r}_{3}\right)\left[h\left(\vec{r}_{1}\right)+h\left(\vec{r}_{2}\right)+h\left(\vec{r}_{3}\right)\right] \psi_{1}\left(\vec{r}_{1}\right) \psi_{2}\left(\vec{r}_{2}\right) \psi_{3}\left(\vec{r}_{3}\right) d \vec{r}_{1} d \vec{r}_{2} d \vec{r}_{3} \\
& =\int \psi_{1}^{*}\left(\vec{r}_{1}\right) h\left(\vec{r}_{1}\right) \psi_{1}\left(\vec{r}_{1}\right) d \vec{r}_{1} \cdot \int \psi_{2}^{*}\left(\vec{r}_{2}\right) \psi_{2}\left(\vec{r}_{2}\right) d \vec{r}_{2} \cdot \int \psi_{3}^{*}\left(\vec{r}_{3}\right) \psi_{3}\left(\vec{r}_{3}\right) d \vec{r}_{3}
\end{aligned}
$$

+ (similar terms for $h\left(\vec{r}_{2}\right), \vec{h}\left(\vec{r}_{3}\right)$

$$
=\left\langle\psi_{1}\right| h_{1}\left|\psi_{1}\right\rangle+\left\langle\psi_{2}\right| h_{2}\left|\psi_{2}\right\rangle+\left\langle\psi_{3}\right| h_{3}\left|\psi_{3}\right\rangle=\sum_{i}^{N}\left\langle\psi_{i}\right| h\left|\psi_{i}\right\rangle
$$

What about, e. g.,

$$
\begin{aligned}
& \left\langle\psi_{1} \psi_{2} \psi_{3}\right| G_{1}\left|\psi_{2} \psi_{1} \psi_{3}\right\rangle= \\
& \quad \int \psi_{1}^{*}\left(\vec{r}_{1}\right) \psi_{2}^{*}\left(\vec{r}_{2}\right) \psi_{3}^{*}\left(\vec{r}_{3}\right)\left[h\left(\vec{r}_{1}\right)+h\left(\vec{r}_{2}\right)+h\left(\overrightarrow{r_{3}}\right)\right] \psi_{1}\left(\vec{r}_{2}\right) \psi_{2}\left(\vec{r}_{1}\right) \psi_{3}\left(\vec{r}_{3}\right) d \vec{r}_{1} d \vec{r}_{2} d \vec{r}_{3} \\
& =\int \psi_{1}^{*}\left(\vec{r}_{1}\right) h\left(\vec{r}_{1}\right) \psi_{2}\left(\overrightarrow{r_{1}}\right) d \vec{r}_{1} \cdot \int \psi_{3}^{*}\left(\vec{r}_{2}\right) \psi_{1}\left(\vec{r}_{2}\right) d \vec{r}_{2} \cdot \int \psi_{3}^{*}\left(\vec{r}_{3}\right) \psi_{3}\left(\vec{r}_{3}\right) d \vec{r}_{3}
\end{aligned}
$$

+ (similarly for $h\left(\vec{r}_{\gamma}\right), h\left(\vec{r}_{3}\right)$ terms)

$$
=0
$$

- So only nonzero matrix elewents are between terms with the same permutation!
- $N$ ! of these terms (cancel $1 / N!$ )

$$
\Rightarrow\left\langle\Psi_{0}\right| G_{1}\left|\Psi_{0}\right\rangle=\sum_{i}\left\langle\psi_{i}\right| h\left|\psi_{i}\right\rangle
$$

* Coulomb interaction requires two-particle operators:

$$
G_{2}=\frac{1}{2} \sum_{i \neq j}^{N} \frac{e^{2}}{\left|\vec{r}_{i}-\vec{r}_{j}\right|} \equiv \frac{1}{2} \sum_{i \neq j}^{N} \frac{e^{2}}{r_{i j}}
$$

- What terms of $\left\langle\Psi_{0}\right| \zeta_{2}\left|\Psi_{0}\right\rangle$ are nonzero?
- Consider $e^{2} / r_{12}$ in our trree-orbital example. ronpermutated case:

$$
\begin{aligned}
& \left\langle\psi_{1} \psi_{2} \psi_{3}\right| \frac{e^{2}}{r_{12}}\left|\psi_{1} \psi_{2} \psi_{3}\right\rangle= \\
& \int \psi_{1}^{*}\left(\vec{r}_{1}\right) \psi_{2}^{*}\left(\overrightarrow{r_{2}}\right) \frac{e^{2}}{r_{12}} \psi_{1}\left(\vec{r}_{1}\right) \psi_{2}\left(\vec{r}_{2}\right) d \vec{r}_{1} d \vec{r}_{r} \cdot \overbrace{0^{2}}^{*}\left(\vec{r}_{3}\right) \psi_{3}\left(\vec{r}_{3}\right) d \vec{r}_{3}
\end{aligned}
$$

- What about $\left\langle\psi_{1} \psi_{2} \psi_{3}\right| \frac{e^{2}}{r_{12}}\left|\psi_{2} \psi_{1} \psi_{3}\right\rangle$

$$
=-\int \psi_{1}^{*}\left(\vec{r}_{1}\right) \psi_{2}^{*}\left(\vec{r}_{2}\right) \frac{e^{2}}{r_{12}} \psi_{1}\left(\vec{r}_{2}\right) \psi_{2}\left(\vec{r}_{1}\right) d \vec{r}_{1} d \vec{r}_{2}
$$

- Permutations involving $\psi_{3}$ will vanish since $\int \psi_{3}^{*}\left(\vec{r}_{3}\right) \psi_{i}\left(\vec{r}_{3}\right) d \vec{r}_{3}=\delta_{3 i}$
- In general:

$$
\left\langle\Psi_{0}\right| G_{2}\left|\psi_{0}\right\rangle=\frac{1}{2} \sum_{i \neq j}^{2}\left[\left\langle\psi_{i} \psi_{j}\right| \frac{e^{2}}{r_{12}}\left|\psi_{i} \psi_{j}\right\rangle-\left\langle\psi_{i} \psi_{j}\right| \frac{e^{2}}{r_{12}}\left|\psi_{i} \psi_{i}\right\rangle\right]
$$

L just two electron coordinates so only reed $r_{12}$

* What if we have different slater determinants?
- Consider $\Psi_{\mu, m}$ which differs from $\Psi_{0}$ by replacing $\psi_{m}$ by $\Psi_{\mu}$ :

$$
\Psi_{0}=\operatorname{det}\left\{\psi_{1} \psi_{2} \cdots \psi_{m} \cdots \psi_{N}\right\}, \Psi_{\mu, m}=\operatorname{det}\left\{\psi_{1} \psi_{2} \cdots \psi_{\mu} \cdots \psi_{N}\right\}
$$ (all other orbital the same and in the same order)

- For $G_{1}$, any term that is not $\left\langle\psi_{\mu}\right| h\left|\psi_{m}\right\rangle$ is zero because $\left\langle\psi_{\mu} \mid \psi_{i}\right\rangle=\sin$ and $\left\langle\psi_{i} \mid \psi_{m}\right\rangle=\operatorname{sim}$

So $\left\langle\Psi_{\mu, m}\right| G_{1}\left|\Psi_{0}\right\rangle=\left\langle\psi_{\mu}\right| h\left|\psi_{m}\right\rangle$

Similarly,

$$
\begin{aligned}
& \left\langle\Psi_{\mu, m}\right| G_{2}\left|\Psi_{0}\right\rangle=\sum_{j}\left[\left\langle\psi_{\mu} \psi_{j}\right| \frac{e^{2}}{r_{12}}\left|\psi_{m} \psi_{j}\right\rangle-\left\langle\psi_{\mu} \psi_{j}\right| \frac{e^{2}}{r_{12}}\left|\psi_{j} \psi_{m}\right\rangle\right] \\
& {\left[\frac{1}{2} \text { cancelled by, e. } e_{1},\left\langle\psi_{\mu} \psi_{i}\right| \frac{e^{2}}{r_{12}}\left|\psi_{n} \psi_{j}\right\rangle=\left\langle\psi_{j} \psi_{\mu}\right| \frac{e^{2}}{r_{12}}\left|\psi_{j} \psi_{m}\right\rangle\right]}
\end{aligned}
$$

- If we replace two spin-orbitals, matrix elements with $G_{1}$ vanish and:

$$
\left\langle\Psi_{\mu r, m n}\right| G_{2}\left|\Psi_{0}\right\rangle=\left\langle\psi_{\mu} \psi_{\nu}\right| \frac{e^{2}}{r_{12}}\left|\psi_{m} \psi_{n}\right\rangle-\left\langle\psi_{\mu} \psi_{\nu}\right| \frac{e^{2}}{r_{12}}\left|\psi_{n} \psi_{m}\right\rangle
$$

- If we replace three or more spin-orbitals, matrix elements with $G_{1}, G_{2}$ are zero
* Let's analyze the spin part for an arbitrary twoelectron integral:

$$
\begin{aligned}
& \left.\left.\left\langle\psi_{\alpha} \psi_{\beta}\right| \frac{e^{2}}{r_{12}}\left|\psi_{\gamma} \psi_{\delta}\right\rangle=\int \psi_{\alpha}\left(\vec{r}_{1} \sigma_{1}\right) \psi_{\beta}\left(\vec{r}_{2} \sigma_{2}\right) \frac{e}{r_{12}} \psi_{\gamma}\left(\vec{r}_{1} \sigma_{1}\right) \psi_{\delta} \right\rvert\, \vec{r}_{2} \sigma_{2}\right) d\left(\vec{r}_{1} \sigma_{1}\right) d\left(\vec{r}_{2} \sigma_{2}\right) \\
= & \underbrace{\int x_{\alpha}\left(\sigma_{1}\right) x_{\gamma}\left(\sigma_{1}\right) d \sigma_{1}}_{\delta_{\gamma_{2}, x_{\gamma}}} \int \underbrace{\int x_{\beta}\left(\sigma_{\gamma}\right) x_{\delta}\left(\sigma_{2}\right) d \sigma_{2}}_{\delta x_{\beta} \psi_{\delta}} \int \phi_{\alpha}\left(\vec{r}_{1}\right) \phi_{\beta}\left(\vec{r}_{2}\right) \frac{e}{r_{12}} \phi_{\gamma}\left(\vec{r}_{1} \mid \phi_{\gamma}\left(\vec{r}_{\gamma}\right) d \vec{r}_{1} d \vec{r}_{2}\right.
\end{aligned}
$$

- So for integrals of the form: $\left\langle\psi_{\alpha} \psi_{\beta}\right| \frac{e^{2}}{r_{12}}\left|\psi_{\alpha} \psi_{\beta}\right\rangle$, the delta functions are satisfied automatically regardless of spin.
$\rightarrow$ Known as "direct" Coulomb, classical electrostatic interaction between charge densities:

$$
e^{2} \int \frac{\rho\left(\vec{r}_{1}\right) \rho\left(\vec{r}_{2}\right)}{\left|\vec{r}_{1}-\vec{r}_{2}\right|} d \vec{r}_{1} d \vec{r}_{2}, \rho\left(\vec{r}_{1}\right)=\phi_{\alpha}^{*}\left(\vec{r}_{1}\right) \phi_{\alpha}\left(\vec{r}_{1}\right), \rho\left(\vec{r}_{2}\right)=\phi_{\beta}^{*}\left(\vec{r}_{2}\right) \phi_{\beta}\left(\vec{r}_{2}\right)
$$

- For integrals of the form $\left\langle\Psi_{\alpha} \varphi_{\beta}\right| \frac{e^{2}}{r_{12}}\left|\psi_{\beta} \psi_{2}\right\rangle$, only nonzero if $X_{\alpha}$ and $X_{\beta}$ are the same spin!
$\rightarrow$ "Exchange interaction," can be thought of as energy of parallel versus antiparallel spins.

Hartree - Fock equations

- Idea: Describe the ground state of system with $W$ interacting electrons as a single slater determinate of optimized orbitals
* Note: Exact solution 13 generally made up of many slater determinants
* We will optimize the orbital part of the wavefunction for a given fixed spin configuration.
* Energy for given slater determinant $\Psi_{0}$ is "Direct" could "Exchange"

$$
E_{0}=\left\langle\psi_{0}\right| H\left|\psi_{0}\right\rangle=\sum_{i}^{2}\left\langle\psi_{i}\right| h\left|\psi_{i}\right\rangle+\frac{1}{2} \sum_{i j}^{\infty}\left[\left\langle\psi_{i} \psi_{j}\right| \frac{e^{2}}{r_{12}}\left|\psi_{i} \psi_{j}\right\rangle-\left\langle\psi_{i} \psi_{i}\right| \frac{e^{2}}{r_{12}}\left|\psi_{j} \psi_{i}\right\rangle\right]
$$

- We will vary the $N$ contributing spin orbitals $\left\{\psi_{i}\right\}$ to minimize $E_{0}$
- Add constraint that $\left\langle\psi_{i} \mid \psi_{i}\right\rangle=\delta_{i j}$ :

$$
G\left(\left\{\psi_{i}\right\}\right)=\sum_{i}\left\langle\psi_{i}\right| h\left|\psi_{i}\right\rangle+\frac{1}{2} \sum_{i j}\left[\left\langle\psi_{i} \psi_{j}\right| \frac{c^{2}}{r_{12}}\left|\psi_{i} \psi_{j}\right\rangle-\left\langle\psi_{i} \psi_{j}\right| \frac{e^{2}}{r_{12}}\left|\psi_{s} \psi_{i}\right\rangle\right]-\sum_{i j} \varepsilon_{i j}\left\langle\psi_{i} \mid \psi_{j}\right\rangle
$$

- Consider just the variation in $\psi_{i}^{*}$ :

$$
\begin{aligned}
& \delta G=\sum_{i}\left\langle\delta \psi_{i}\right| h\left|\psi_{i}\right\rangle+\frac{2}{2} \sum_{i j}\left[\left\langle\delta \psi_{i} \psi_{j}\right| \frac{e^{2}}{r_{12}}\left|\psi_{i} \psi_{j}\right\rangle\right.\left.-\left\langle\delta \psi_{i} \Psi_{j}\right| \frac{c^{2}}{r_{12}}\left|\psi_{i} \psi_{i}\right\rangle\right] \\
&-\sum_{i j} \varepsilon_{i j}\left\langle\delta \psi_{i} \mid \psi_{j}\right\rangle=0 \\
& \quad \text { form } \text { il }_{i j} \text { and }
\end{aligned}
$$

Since this reeds to be true for any $\delta \psi_{i}^{*}$, we have that

$$
\sum_{i} h\left|\psi_{i}\right\rangle+\sum_{i j}^{2}\left[\left\langle\psi_{j}\right| \frac{e^{2}}{r_{12}}\left|\psi_{i} \psi_{j}\right\rangle-\left\langle\psi_{j}\right| \frac{e^{2}}{r_{12}}\left|\psi_{j} \psi_{i}\right\rangle\right]=\sum_{i j}^{2} \varepsilon_{i j}\left|\psi_{j}\right\rangle
$$

So for each $\psi_{i}$ we can write: diagonalized: $\sum_{i j} \varepsilon_{i j}=\varepsilon_{i} \delta_{i j}$

$$
\left[\frac{p^{2}}{2 m}+V_{\text {ext }}+V_{\text {coulomb }}+V_{\text {exchange }}\right]\left|\psi_{i}\right\rangle=\varepsilon_{i}\left|\psi_{j}\right\rangle \text { "Hartree" part }
$$

Where: $\left\langle\vec{r}_{1}\right| V_{\text {coulomb }}\left|\psi_{i}\right\rangle=\sum_{j}^{1} \psi_{i}\left(\vec{r}_{1} \sigma_{1}\right) \int \psi_{j}^{*}\left(\vec{r}_{2} \sigma_{2}\right) \frac{e^{2}}{\left|\vec{r}_{1}-\vec{r}_{r}\right|} \psi_{j}\left|\vec{r}_{2} \sigma_{r}\right| d\left(\vec{r}_{2} \sigma_{2}\right)$

$$
\left\langle\vec{r}_{1}\right| \psi_{\text {exchange }}\left|\psi_{i}\right\rangle=-\sum_{j}^{1} \psi_{j}\left(\vec{r}_{1} \sigma_{1}\right) \int \psi_{j}^{*}\left(\vec{r}_{2} \sigma_{2}\right) \frac{e^{2}}{\left|\vec{r}_{i}-\vec{r}_{\gamma}\right|} \psi_{i}\left(\vec{r}_{2} \sigma_{\gamma}\right) d\left(\vec{r}_{2} \sigma_{2}\right)
$$

* Note: Subtlety about the total energy
- We can write the Hartree-Fock equation as

$$
\begin{aligned}
& F \psi_{i}=\varepsilon_{i} \psi_{i}, F=h+V_{\text {coulomb }}+V_{\text {exchange }} \\
& \Rightarrow \varepsilon_{i}=\left\langle\psi_{i}\right| h\left|\psi_{i}\right\rangle+\sum_{j}^{o c c i}\left[\left\langle\psi_{i} \psi_{j}\right| \frac{e^{2}}{r_{12}}\left|\psi_{i} \psi_{j}\right\rangle-\left\langle\psi_{i} \psi_{j}\right| \frac{e^{2}}{r_{12}}\left|\psi_{j} \psi_{i}\right\rangle\right]
\end{aligned}
$$

- But before we said the every was:

$$
E_{0}=\left\langle\psi_{0}\right| H\left|\psi_{0}\right\rangle=\sum_{i}^{o c c}\left\langle\psi_{i}\right| h\left|\psi_{i}\right\rangle+\frac{1}{2} \sum_{i j}^{o c t}\left[\left\langle\psi_{i} \psi_{j}\right| \frac{e^{2}}{r_{12}}\left|\psi_{i} \psi_{j}\right\rangle-\left\langle\psi_{i} \psi_{i}\right| \frac{e^{2}}{r_{12}}\left|\psi_{j} \psi_{i}\right\rangle\right]
$$

So:

$$
E_{0}^{H F}=\sum_{i}^{0 c c} \varepsilon_{i}-\frac{1}{2} \underbrace{\sum_{i j}^{0 c e}\left[\left\langle\psi_{i} \psi_{j}\right| \frac{e^{2}}{r_{12}}\left|\psi_{i} \psi_{j}\right\rangle-\left\langle\psi_{i} \psi_{j}\right| \frac{e^{2}}{r_{12}}\left|\psi_{j} \psi_{i}\right\rangle\right]}_{\text {"Double counting" term }}
$$

- What is the physical meaning of $\varepsilon_{i}$ ? Consider an ionization process where we remove an election from orbital $\Psi_{m}$

$$
\begin{aligned}
& \text { * } E_{0}^{H F}(N)-E_{0}^{H F}(N-1)=\left\langle\psi_{m}\right| h\left|\psi_{m}\right\rangle+\sum_{\substack{j \\
j}}^{0 c c}\left[\left\langle\psi_{m} \psi_{j}\right| \frac{e^{2}}{r_{12}}\left|\psi_{m} \psi_{j}\right\rangle\right. \\
& \begin{array}{l}
\left.\tau_{\text {factor of } 2}-\left\langle\psi_{m} \psi_{j}\right| \frac{e^{2}}{r_{12}}\left|\psi_{i} \psi_{m}\right\rangle\right] \\
\text { from } \psi_{i} \text { first or second }
\end{array} \\
& =\varepsilon_{m} \\
& \text { position }
\end{aligned}
$$

- Koopmang theorem: $\varepsilon_{m}$ is the energy required to remove an election from spin-orbital $\psi_{m}$
- Excitation energies: Consider moving an electron from a filled orbital to an empty ("virtual") ore
* Excitation Clergy:

$$
\begin{aligned}
& \Delta E=\left\langle\Psi_{\mu, m}\right| H\left|\Psi_{\mu, m}\right\rangle-\left\langle\Psi_{0}\right| H\left|\Psi_{0}\right\rangle \\
& =\left\langle\psi_{\mu}\right| h\left|\psi_{\mu}\right\rangle-\left\langle\psi_{m}\right| h\left|\psi_{m}\right\rangle \\
& +\sum_{j}^{o c c}\left[\left\langle\psi_{\mu} \psi_{j}\right| \frac{e^{2}}{r_{12}}\left|\psi_{\mu} \psi_{j}\right\rangle-\left\langle\psi_{\mu} \psi_{j}\right| \frac{e^{2}}{r_{12}}\left|\psi_{j} \psi_{\mu}\right\rangle\right] \measuredangle \text { Extra term } \\
& -\left[\left\langle\psi_{\mu} \psi_{m}\right| \frac{e^{2}}{r_{12}}\left|\psi_{\mu} \psi_{m}\right\rangle-\left\langle\psi_{\mu} \psi_{m}\right| \frac{e^{2}}{r_{12}}\left|\psi_{m} \psi_{\mu}\right\rangle\right] \leftarrow \underset{\psi_{\mu}}{\text { Remark term between }} \\
& -\sum_{j}^{o c c}\left[\left\langle\psi_{j} \psi_{m}\right| \frac{e^{2}}{r_{12}}\left|\psi_{j} \psi_{m}\right\rangle-\left\langle\left.\psi_{i} \psi_{m} \frac{e^{2}}{r_{12}} \right\rvert\, \psi_{m} \psi_{j}\right\rangle\right] \in \text { Remove all other } \\
& 4 \text { m terms } \\
& =\underbrace{\varepsilon_{\mu}-\varepsilon_{m}}-[\underbrace{\left\langle\psi_{\mu} \psi_{m}\right| \frac{e^{2}}{r_{12}}\left|\psi_{\mu} \psi_{m}\right\rangle-\left\langle\psi_{\mu} \psi_{m}\right| \frac{e^{2}}{r_{12}}\left|\psi_{m} \psi_{\mu}\right\rangle}]
\end{aligned}
$$

Energy difference coulomb interaction between election in $\psi_{\mu}$ between states and "hole" in $\psi_{m}$.

Density functional theory (DFT)

- By far the most popular way of describing the electronic structure of solids
- A different philosophy than Hartree-Fock
* HF: approximate the ground-state wavefunction
* DFT: Focus on the ground-state density
* Why? Many body wave function $\Psi\left(\vec{r}_{1}, \vec{r}_{2}, \cdots, \vec{r}_{N}\right)$ function of 3 N election coordinates. The density $n(\vec{r})$ is a function of 3 coordinates!
- Does the density contain less information than the wave function?
* Hohenberg - Kohn theorem says no!
* Write many-body $H$ as $H=H_{\text {int }}+$ Next where:
$H_{\text {int }}=T+V_{e e}=\sum_{i} \frac{P_{i}^{2}}{2 m}+\frac{1}{2} \sum_{i \neq i} \frac{e^{2}}{\left|\vec{r}_{i}-\vec{r}_{i}\right|} \quad \begin{aligned} & \text { (drop nuclei-nuclei } \\ & \text { interaction for now }\end{aligned}$ drop nucki - nuclei
interaction for now) $V_{\text {ext }}=-\sum_{i, I} \frac{z_{I} e^{2}}{\left|\vec{r}_{i}-\vec{R}_{I}\right|} \in \frac{\text { NOTE: Next defines the system you }}{\text { are considering; operator Hint is always }} \begin{aligned} & \text { the same. }\end{aligned}$
- Assume ground-state wavefunction $\Psi_{G}$ is non degenerate
- One-body ground-state density 13 :

$$
n(\vec{r})=\left\langle\Psi_{G}\right| \sum_{i} \delta\left(\vec{r}-\vec{r}_{i}\right)\left|\Psi_{G}\right\rangle
$$

- Since Vext is a local potential, $V_{\text {ext }}=\sum_{i} \int V_{\text {ext }}(\vec{r}) \delta\left(\vec{r}-\vec{r}_{i}\right) d^{3} r$ So: $\left\langle\Psi_{G}\right| V_{\text {ext }}\left|\Psi_{G}\right\rangle=\int n(\vec{r}) V_{\text {ext }}(\vec{r}) d^{3} r$
- Therefore, if we know $\Psi_{G}$ and given $v_{\text {ext }}(\vec{r})$,
we can determine $n(\vec{r})$
- So we can write: $F\left[v_{\text {ext }}\right]=n(\vec{r})$

I some "functional", i.e., a function $F$ of a function $V_{\text {ext }}(\vec{r})$

- Question:? can we invert this equation to get $V_{\text {ext }}(\vec{r}) \stackrel{?}{=} G_{T}[n(\vec{r})]$ ?

Ta different functional
$\Rightarrow$ If we can, that means there is a one-one mapping between ground-state density and external potential
$\Rightarrow$ A system (e.g., crystalline solid) is defined by Sext, So this would imply that all properties of system can be defined in terms of $n(\vec{r})$

- Let's prove it:

Consider two Hamiltonians with different external potentials:

$$
H=H_{\text {int }}+V_{\text {ext }}, \quad \bar{H}=H_{\text {int }}+\bar{V}_{\text {ext }}
$$

With ground-state wave functions $\left|\Psi_{G}\right\rangle,\left|\Psi_{G}\right\rangle$
11 " 11 energies $E_{G}, \bar{E}_{G_{7}}$
Now we write!

$$
\begin{aligned}
\left\langle\bar{\Psi}_{G}\right| H\left|\bar{\Psi}_{G}\right\rangle & =\left\langle\bar{\Psi}_{G}\right| H_{\text {int }}+V_{\text {ext }}\left|\bar{\Psi}_{G}\right\rangle=\left\langle\bar{\Psi}_{G}\right| H_{\text {int }}+V_{\text {ext }}+\bar{V}_{\text {ext }}-\bar{V}_{\text {ext }}\left|\bar{\Psi}_{G_{7}}\right\rangle \\
& =\bar{E}_{G}+\left\langle\bar{\Psi}_{G}\right| V_{\text {ext }}-\bar{V}_{\text {ext }}\left|\bar{\Psi}_{G}\right\rangle \\
& =\bar{E}_{G}+\int \bar{n}(\vec{r})\left[V_{\text {ext }}+(\vec{r})-\bar{V}_{\text {ext }}(\vec{r})\right] d^{3} r
\end{aligned}
$$

since the true ground-state energy of $1 t$ must be lower than $\left\langle\Psi_{C_{T}}\right| H\left|\bar{\Psi}_{G_{7}}\right\rangle$ :

$$
E_{G}<\bar{E}_{C_{7}}+\int \bar{n}(\vec{r})\left[\operatorname{Vext}(\vec{r})-\bar{V}_{\operatorname{ext}}(\vec{r})\right] d^{3} r
$$

But we can obtain a similar version by consddeling $\langle\Psi a| \vec{H}\left|\Psi_{G}\right\rangle$ :

$$
\begin{aligned}
& \bar{E}_{G}<E_{G}+\int n(\vec{r})\left[\overline{v e x t ~}(\vec{r})-V_{\text {ext }}(\vec{r})\right] d^{3} r \\
& \bar{E}_{G}<E_{G}-\int n(\vec{r})\left[V_{\text {ext }}(\vec{r})-\bar{V}_{\text {ext }}(\vec{r})\right] d^{3} r \\
& \Rightarrow E_{G}>\bar{E}_{G}+\int n(\vec{r})\left[V_{\text {ext }}(\vec{r})-\bar{V}_{\text {ext }}(\vec{r})\right] d^{3} r!
\end{aligned}
$$

So we find that for $V_{\text {ext }}(\vec{r}) \neq \bar{V}$ ext $(\vec{r})$, $\bar{n}(\vec{r}) \neq n(\vec{r})$ !

* Schematic:

$\Rightarrow$ Ground state density "ove-to-ore" with vext, so uniquely determines $H, \Psi(G$, and all properties of the system
* This means we can define a functional of $n$ that gives the energy so that:
$E\left[n_{G S}\right]=E_{G S}$, where $n_{G S}$, EGS are GS density and every
* Written in another form: election -election
interaction energy

$$
E\left[n(\vec{r}) ; V_{\text {ext }}(\vec{r})\right]=T[n(\vec{r})]+V_{e e}[n(\vec{r})]+\int_{\uparrow} V_{e x t}(\vec{r}) n(\vec{r}) d^{3} r
$$

K. ${ }^{\uparrow}$. functional of $n$
$\uparrow$ energy

- The problem: Even though we know $E[n], T[n], V$ eve $[n]$ exist we do not know what they are.

Kohn-Sham equations

- We need to figure out an expression for energy functionals
- We also need to obtain the density.
* of course we can get $n$ via: $n=\langle\Psi| \sum_{i} \delta\left(\vec{r}-\vec{r}_{i}\right)|\Psi\rangle$ but then we would need to know $\Psi$ and would have solved the problem anyway
- Kohn-Sham approach to theses two problems:
* Write $n(\vec{p})$ as sum over some set of orthonormal orbitals!

body $n(\vec{r})=\sum_{i}^{( } \phi_{i}^{*}(\vec{r}) \phi_{i}(\vec{r})$ orbitals
density
- Note: $\phi_{i}(\vec{r})$ are single -particle orbitals, only depend on 3 coordinates $(\vec{r})$ not $3 N\left(\vec{r}_{1} \cdots \vec{r}_{N}\right)$
- Note: We could construct an approximate GS many-body wavefunction like: $\Psi=\operatorname{det}\left\{\phi_{1} \cdots \phi_{N}\right\}$ but it would not correspond to a true many-body GS in any rigorous sense
* Now we write down some contributions to $E[n]$ that we know:
- Classical Coulomb, ie., Hartree energy:

$$
E_{H}[n]=\frac{1}{2} \int n(\vec{r}) \frac{e^{2}}{\left|\vec{r}-\vec{r}^{\prime}\right|} n\left(\vec{r}^{\prime}\right) d \vec{r} d \vec{r}^{\prime}=\frac{1}{2} \sum_{i j}^{\prime}\left\langle\phi_{i} \phi_{j}\right| \frac{e^{2}}{r_{12}}\left|\phi_{i} \phi_{j}\right\rangle
$$

(note that in general, $E_{e e}[n] \neq E_{H}[n]$ )

- Single -particle kinetic energy:

$$
T_{0}[n]=\sum_{i}^{2}\left\langle\phi_{i}\right| \frac{p^{2}}{\partial m}\left|\phi_{i}\right\rangle
$$

(note, in general $T[n] \neq T_{0}[n]$ )

* Now we write the energy functional as:

$$
E\left[n, v_{e x t}\right]=T_{0}[n]+E_{H}[n]+\int v_{\text {ext }}(\vec{r}) n(\vec{r}) d^{3} r+E_{x c}[n]
$$

or:

$$
E\left[n, v_{\text {ext }}\right]=\sum_{i}\left\langle\phi_{i}\right| \frac{p^{2}}{2 m}+v_{\text {ext }}\left|\phi_{i}\right\rangle+\frac{1}{2} \sum_{i j}^{v}\left\langle\phi_{i} \phi_{j}\right| \frac{e^{2}}{r_{12}}\left|\phi_{i} \phi_{j}\right\rangle+E_{x c}[n]
$$

Where $E_{x c}[n] \equiv T[n]-T_{0}[n]+E_{e e}[n]-E_{H}[n]$

- Exc is call "exchange - correlation" functional
- Basically all of the stuff we don't know
* Now we minimize EWRT $\phi_{i}^{*}$ as we did for Hartree - fork to get an equation for $\phi_{i}$ :

$$
\left[\frac{P^{2}}{2 m}+V_{\text {ext }}+V_{\text {coulomb }}+V_{x c}\right]\left|\phi_{i}\right\rangle=\varepsilon_{i}\left|\phi_{i}\right\rangle \quad \begin{gathered}
\text { Kohn-Sham } \\
\text { equation }
\end{gathered}
$$

- Vcoulomb is Hartree Coulomb interaction potential, same as HF
- $U_{x c}$ is defined as:

$$
\delta E_{x c}[n] \equiv \int V_{x c}(\vec{r}) \delta n(\vec{r}) d^{3} r=\int V_{x c}(\vec{r}) \delta \sum_{i}^{2} \phi_{i}^{*}(\vec{r}) \phi_{i}(\vec{r}) d^{3} r
$$

So: $\quad U_{x c}(\vec{r})=\frac{\delta E_{x c}[n]}{\delta_{n}(\vec{r})}$

- Similar to HF, exact GS energy is:

$$
E_{G S}=\sum_{i}^{\infty} \varepsilon_{i}-\frac{1}{2} \sum_{i j}^{c}\left\langle\phi_{i} \phi_{j}\right| \frac{e^{2}}{r_{12}}\left|\phi_{i} \phi_{j}\right\rangle+\underbrace{E_{x c}[n]-\int v_{x c}(\vec{r}) u(\vec{r}) d^{s} r}_{\substack{\text { Not zero since } V_{x c} \\ \text { "Double counting" } \\ \text { of Hartree potential } \\ \text { is defined by functional } \\ \text { derivative wRT } n}}
$$

- Wore: No Koopmans' theorem for DFT $Q_{i}$ and $\varepsilon_{i}$. Rigorously they have no physical meaning, but are often associated with the band siticfure
- We still have not really made any progess since we don't know Exc!
- Kohn and Sham did propose an approximate Exc: Local Density Approximation (LDA)
* Consider a solid as a "nonuniform election gas"

position $\vec{r}$
has density $n(\vec{r})=n_{0}$ map to
uniform election
gas wI density $n_{0}$
- $E_{x c}^{L D A}[n]=\int \varepsilon_{x c}(n(\vec{r})) n(\vec{r}) d^{3} r$
$\Psi_{\text {many - body exchange -correlation energy }}$
per $e^{-}$of uniform gas of density $N(\vec{r})$

$$
V_{x c}^{L D A}(\vec{r}) \equiv \frac{\delta E_{x c}^{L D A}}{\delta n(\vec{r})}=\varepsilon_{x c}(n(\vec{r}))+n(\vec{r}) \frac{d \varepsilon_{x c}(n(r))}{d n(r)}
$$

- Total energy is thus!

$$
E_{0}^{L D A}=\sum_{i}^{\infty} \varepsilon_{i}-\frac{1}{2} \int n(\vec{r}) \frac{e^{2}}{\left|\vec{r}-\vec{r}^{\prime}\right|} n(\vec{r}) d \vec{r} d \vec{r}^{\prime}-\int n(\vec{r}) \frac{d \varepsilon_{x c}(n(\vec{r}))}{d n(\vec{r})} n(n d \vec{r}
$$

* This is useful because there are high-accusacy calculations of $\varepsilon_{x c}$ for uniform election gas at different densities
- see leperley and Alder Phys. Rev. Lett. 45, 566 (1980) or Fig. 6 in Sec.IU. 7 in $G$ and $P$

Beyond one-election approximation Summary

- We had been neglecting explicit electron-election coulomb interactions
- Discussed two ways of including approximate interactions (Note: there are many more)
* Hartree - Fock: Approximate the many-body wave function with a single slater determinant made up of single-particle orbitals which are solutions to:

$$
\left[\frac{p^{2}}{\partial m}+V_{\text {ext }}+V_{\text {coulomb }}+V_{\text {exchange }}\right]\left|\psi_{i}\right\rangle=\varepsilon_{i}\left|\psi_{j}\right\rangle
$$

- If often used in chemistry for molecules
* Density functional theory: From Hohen berg - Kohn, we know that the many-body density contains all information about a system with a given Next.
- To get density, solve auxiliary single-particle problem:

$$
\left[\frac{P^{2}}{2 m}+V_{\text {ext }}+V_{\text {coulomb }}+V_{x c}\right]\left|\phi_{i}\right\rangle=\varepsilon_{i}\left|\phi_{i}\right\rangle
$$

- where many-body density is $n\langle\vec{r}\rangle=\sum_{i}^{d} \phi_{i}^{*}(\vec{r}) \phi_{i}(\vec{r})$
- All approximations reside in exchange-correlation potential, LDA is ore approximation to $X C$
- DFT is the most popular way of describing the electronic structure of solids!

