Beyond the one-electron approximation (G and P chapter IV)
- An approximation that we have been making implicitly and explicitly is that we can discuss electrons individually
* Approach that we took!
• Treat single electron in periodic potential via single-particle Schrödinger equation
• generates a band structure of allowed states in reciprocal space
 Fill bands with electrons in single-particle Bloch functions Ynk
- But what about Coulomb interactions between electrons?
- Strictly speaking, we should solve Many-Body S.E.
* Decall, for fixed nuclear configuration (more latri) electronic Many-body H is:
$H = \sum_{i} \frac{\vec{P}_{i}^{2}}{2m} + \frac{1}{2} \frac{e^{2}}{i^{2}i^{2}} + V_{ext}(\vec{r})$ $f(\vec{r}) = \sum_{i} \frac{1}{2m} \frac{1}{2} \frac{e^{2}}{i^{2}i^{2}} + \frac{1}{2} \frac{e^{2}}{i^{2}i^{2}} + \frac{1}{2} \frac{e^{2}}{i^{2}} + \frac{1}{2$
electron e-e Coulomb From nuclei, etc. kinetic repulsion enersy
& Gives many - body energies and wave functions:
$H \ \mathfrak{L}(\vec{r}, \vec{\sigma}, \vec{r}, \vec{r}, \sigma_{n}, \cdots, \vec{r}_{N}\sigma_{N}) = E \ \mathfrak{L}(\vec{r}, \sigma_{n}, \vec{r}, \sigma_{n}, \cdots, \vec{r}_{N}\sigma_{N})$
Position of Ntotal Position & Placktone
e/el/

栄	Recal more	l also than	thata	this Few	is Clect	i'mpossi' Hons	ble	ъ	Solve	For
€	We the	will mam/	discuss - body	vari' Pr	ous oblem	approx	inc	a fi'ons	to	solving
	-		•							

Constructing the Many-body varefunction
- First step: Choose a basis of single - electron
orbitals
$$Q_i(P)$$

* Assume they are orthonormal and form a complete
set
 $T_i(PT) = \Phi_i(P) \mathcal{D}_i(r)$
the Consider expressing the G.S. many-body unrefunction:
 $T_o(P, \sigma_i, P_s \sigma_s, \dots, P_N \sigma_N) = \Phi_i(P_s^* \sigma_i) \Phi_s(P_s^* \sigma_s) \dots \Psi_N(P_N \sigma_N)$
• Note: Two sets of indices: $\Psi_i(P_s^* \sigma_s) \dots \Psi_N(P_N \sigma_N)$
• Note: Two sets of indices: $\Psi_i(P_s^* \sigma_s) \dots \Psi_N(P_N \sigma_N)$
• Note: Two sets of indices: $\Psi_i(P_s^* \sigma_s) \dots \Psi_N(P_N \sigma_N)$
• Many issues with this including that P does
not have the correct antisymmetric by applying
opperator A :
 $T_o(P_s \sigma_s, \dots, P_N \sigma_N) = A\{F_i(P_s \sigma_i) \Psi_s(P_s \sigma_s) \dots \Psi_N(P_N \sigma_N)\}$
where Ψ_s issues number of possible primatations
 $A = \frac{1}{\sqrt{N_i}} \sum_{i=1}^{N_i} (-1)^{P_i} P_i$
• where P_i is a permute odd number of indicies,
 $(-1)^{P_i} = -1$ if we permute odd number of indicies,
 $(-1)^{P_i} = -1$ if we permute odd number of indicies,
 $(-1)^{P_i} = -1$ if we permute odd number of indicies,
 $(-1)^{P_i} = -1$ if we permute odd number of indicies,
 $(-1)^{P_i} = -1$ if we permute odd number of indicies,
 $(-1)^{P_i} = -1$ if we permute odd number of indicies,
 $(-1)^{P_i} = -1$ if we permute odd number of indicies,
 $(-1)^{P_i} = -1$ if we permute odd number of indicies,
 $(-1)^{P_i} = -1$ if we permute odd number of indicies,
 $(-1)^{P_i} = -1$ if we permute odd number of indicies,
 $(-1)^{P_i} = -1$ if we permute odd number of indicies,
 $(-1)^{P_i} = -1$ if we permute odd number of indicies,
 $(-1)^{P_i} = -1$ if we permute odd number of indicies,
 $(-1)^{P_i} = -1$ if $V = P_i = 0$ is a permute odd number of indicies,
 $(-1)^{P_i} = -1$ if $V = P_i = 0$ is a permute odd number of indicies,
 $(-1)^{P_i} = -1$ if $V = 0$ is a permute odd number of indicies, one
spin up ore spin down

$$\begin{aligned} A \{ \{i, f\}, Y_{4}, \{i, j\} \} &= \frac{1}{\sqrt{2}} \left[\{i, \{i, f\}, Y_{2}, \{i, j\} \} - \{i, \{i, j\}, Y_{2}, \{i, f\} \} \right] \\ (.e., a Singlet Spin State. Permutate electron number \\ & Systematic way of generating antisymmetric combination approximates is slater determinant. Take $\vec{r}_{1} \equiv \vec{r}_{1} \vec{r}_{1}$, three orbitals is slater determinant. Take $\vec{r}_{1} \equiv \vec{r}_{1} \vec{r}_{1}$, three orbitals $(i = 1, 1, 3)$: $\frac{1}{16} \left[\frac{4}{12} (\vec{r}_{1}) + \frac{1}{16} (\vec{r}_{2}) +$$$

• (onside) element with nonpermuted terms!
(4, 4, ... 4, 1, 6, 1, 4, 4, ... 4, 7, ...,
$$r_{N}$$
, r_{N} , $r_{$

* Coulomb interaction requires two-particle operators:

$$G_{1} = \frac{1}{2} \sum_{i \neq j}^{N} \frac{e^{2}}{1(i_{1}^{2} - i_{j}^{2})} = \frac{1}{2} \sum_{i \neq j}^{N} \frac{e^{2}}{r_{ij}}$$
• What terms of $\langle L_{0} | d_{1} | L_{0} \rangle$ are nonzero?
• Consider e^{2}/r_{12} in our three-orbital example.
nonpermutated case:
 $\langle q_{1}q_{2}q_{3} | \frac{e^{2}}{r_{12}} | q_{1}q_{2}q_{3} \rangle = \frac{1}{r_{12}} \left(\frac{q_{1}}{r_{12}} | q_{1}q_{2}q_{3} \rangle \right)$
• What terms $\langle q_{1}(i_{1}^{2}) q_{2}(i_{2}^{2}) q_{1}(i_{1}^{2}) q_{2}(i_{2}^{2}) q_{1}(i_{2}^{2}) d_{1}\hat{q}$
• Whet about $\langle q_{1}q_{2}q_{3} \rangle = \frac{1}{r_{12}} \left(\frac{q_{1}}{r_{12}} + \frac{q_{2}}{r_{12}} \right)$
• Permutations multily q_{3} will using since $\left[q_{3}^{4}(i_{3}^{2}) + i_{1}^{2}i_{3}^{2} \right] d_{1}^{2} = \delta_{3}$
• In general:
 $\langle L_{0} | G_{2} | Q_{0} \rangle = \frac{1}{2} \sum_{i \neq j} \left[\langle q_{i} | q_{j} | \frac{e^{2}}{r_{12}} + q_{j} \rangle - \langle q_{i} | q_{j} | \frac{e^{2}}{r_{12}} + q_{i} \rangle \right]$
 $\sum_{i \neq k} two electron coordinates so only need r_{12}
What if we have different silater determinants?
• Consider $L_{\mu,m}$ which differes from Lo by replacing the by L_{μ} :
 $L_{0} = deb \Sigma H, Y_{2} \dots Y_{m} \dots Y_{N}$, $L_{\mu,m} = deb \Sigma q_{1} q_{2} \dots q_{m}$ is $2\sigma rD$
be cause $\langle q_{m}| I_{i} \rangle = \delta_{im}$ and $\langle q_{1}| | q_{m} \rangle = \delta_{m}$
 $\leq 0 \langle L_{m}, n | L_{m}| Z_{m} \rangle = \delta_{m}$$

Similarly,

$$\langle \frac{1}{4}_{n,m} | \hat{\alpha}_{2} | \frac{1}{4}_{0} \rangle = \frac{2}{3} [\langle \frac{1}{4}_{n} \frac{1}{4}_{1} \rangle] \frac{e^{2}}{\Gamma_{12}} | \frac{1}{4}_{n} \frac{1}{4}_{1} \rangle] - \langle \frac{1}{4}_{n} \frac{1}{4}_{1} \rangle | \frac{1}{4}_{1} \frac{1}{4}_{1} \frac{1}{4}_{1} \rangle | \frac{1}{4}_{1} \frac{1}{4} \frac{1$$

<u>Hartree-Fock Equations</u>

- Idea: Describe the ground state of system with W interacting clectrons as a single slater determinante of optimized orbitals * Note: Exact solution is generally made up of many slater determinants * We will optimize the orbital part of the Wavefunction for a given fixed spin configuration. * Evergy for given Slater beterminant to is direction Exchange $E_0 = \langle \Psi_0 | H | \Psi_0 7 = \sum \langle \Psi_i | h | \Psi_i \rangle + 1 \sum \langle \Psi_i | \Psi_i | \frac{e^2}{r_{12}} | \Psi_i \Psi_i | \frac{e^2}{r_{12}} | \Psi_i | \Psi_i | \Psi_i | \frac{e^2}{r_{12}} | \Psi_i | \Psi_i | \Psi_i | \frac{e^2}{r_{12}} | \Psi_i | \Psi_i$ • We will sary the N contributing Spin orbitals {4.3 to minimize Eo • Add constraint that $\langle \Psi_i | \Psi_j \rangle = S_{ij}$: $\tau(\xi \Psi_i \xi) = S' \langle \Psi_i | h | \Psi_i \rangle = S_{ij}$ $G(\{\xi_{4},\xi\}) = \sum_{i} \langle \Psi_{i} | h | \Psi_{i} \rangle + \sum_{j} \sum_{ij} \langle \Psi_{i} | \Psi_{j} | \frac{e^{2}}{\Gamma_{12}} | \Psi_{i} | \Psi_{j} | \frac{e^{2}}{\Gamma_{12}} | \Psi_{j} | \Psi_{i} \rangle - \langle \Psi_{i} | \Psi_{j} | \frac{e^{2}}{\Gamma_{12}} | \Psi_{j} | \Psi_{i} \rangle - \sum_{ij} \langle \Psi_{i} | \Psi_{j} \rangle - \sum_{ij} \langle \Psi_{i} | \Psi_{j} \rangle - \sum_{ij} \langle \Psi_{i} | \Psi_{i} \rangle - \sum_{ij$ · Consider just the variation in Ψ_i^k :
$$\begin{split} & \delta G = \frac{2}{i} \left\langle \delta \Psi_{i} | h | \Psi_{i} \right\rangle + \frac{2}{2} \left\{ \left\langle \delta \Psi_{i} | \Psi_{i} | \frac{e^{2}}{\Gamma_{12}} \right| \Psi_{i} | \Psi_{i} \right\rangle - \left\langle \delta \Psi_{i} | \Psi_{j} \right| \frac{e^{2}}{\Gamma_{12}} \left| \Psi_{j} | \Psi_{i} | \Psi_{j} \right\rangle - \left\langle \delta \Psi_{i} | \Psi_{j} | \Psi_{i} | \Psi_{j} \right\rangle \\ & + \frac{2}{i} \left\{ \frac{1}{i} \left\{ \frac{e^{2}}{I} \right\} \left| \Psi_{i} | \Psi_{i} | \Psi_{i} \right\rangle - \left\{ \frac{e^{2}}{I} \left\{ \frac{1}{I} + \frac{1}{I} \right\} \right\} \right\} \\ & - \frac{2}{i} \left\{ \frac{1}{i} \left\{ \frac{1}{I} + \frac{1}{I} + \frac{1}{I} \right\} \right\} \\ & + \frac{2}{i} \left\{ \frac{1}{I} + \frac{1$$
Since this needs to be true for any $\delta \Psi_{i}^{*}$, we have that $\sum_{i}^{2} h | \Psi_{i} \rangle + \sum_{i}^{2} [\langle \Psi_{i} | \frac{e^{2}}{\Gamma_{12}} | \Psi_{i} \Psi_{j} \rangle - \langle \Psi_{j} | \frac{e^{2}}{\Gamma_{12}} | \Psi_{j} \Psi_{i} \gamma] = \sum_{i}^{2} \mathcal{E}_{ij} | \Psi_{j} \gamma$ So for each 4'i we can write: $\begin{bmatrix}
P^{2} + Vext + Vcoulomb + Vexchange \\
J m & Vext + Vcoulomb + Vexchange \\
\end{bmatrix}$ $\begin{bmatrix}
P^{2} + Vext + Vcoulomb + Vexchange \\
P^{2} + Vext + Vcoulomb + Vexchange \\
P^{2} + Vext + Vcoulomb + Vexchange \\
\end{bmatrix}$ $\begin{bmatrix}
P^{2} + Vext + Vcoulomb + Vexchange \\
P^{2} + Vext + Vext + Vcoulomb + Vexchange \\
P^{2} + Vext + Vext + Vexchange \\
P^{2} + Vext + Vext + Vext + Vexchange \\
P^{2} + Vext +$

 $\langle \vec{r}_{i} | V_{exchange} | \Psi_{i} \rangle = - \hat{\mathcal{Z}} \Psi_{j} (\vec{r}_{i} \sigma_{i}) \int \Psi_{j}^{*} (\vec{r}_{1} \sigma_{2}) \frac{e^{2}}{|\vec{r}_{1} - \vec{r}_{2}|} \Psi_{i} | \vec{r}_{2} \sigma_{j} \rangle d| \vec{r}_{2} \sigma_{j} \rangle$

* Excitation every:

$$\Delta E = \langle \Psi_{\mu,m} | H | \Psi_{\mu,m} \rangle - \langle \Psi_{n} | H | \Psi_{n} \rangle$$

$$= \langle \Psi_{\mu} | h | \Psi_{\mu} \rangle - \langle \Psi_{m} | h | \Psi_{m} \rangle$$

$$= \langle \Psi_{\mu} | h | \Psi_{\mu} \rangle - \langle \Psi_{\mu} | \Psi_{j} | \frac{e^{2}}{f_{12}} | \Psi_{j} | \Psi_{n} \rangle = Extra term
from occupying Ψ_{μ}

$$= [\langle \Psi_{\mu} \Psi_{m} | \frac{e^{2}}{f_{12}} | \Psi_{\mu} \Psi_{n} \rangle - \langle \Psi_{\mu} \Psi_{m} | \frac{e^{2}}{f_{12}} | \Psi_{\mu} \Psi_{n} \rangle = Extra term between$$

$$= [\langle \Psi_{\mu} \Psi_{m} | \frac{e^{2}}{f_{12}} | \Psi_{\mu} \Psi_{n} \rangle - \langle \Psi_{\mu} \Psi_{m} | \frac{e^{2}}{f_{12}} | \Psi_{\mu} \Psi_{n} \rangle = Extra term between$$

$$= \mathcal{E}_{\mu} - \mathcal{E}_{m} - [\langle \Psi_{\mu} \Psi_{m} | \frac{e^{2}}{f_{12}} | \Psi_{\mu} \Psi_{m} \rangle - \langle \Psi_{j} \Psi_{m} \rangle = \langle \Psi_{\mu} \Psi_{m} | \frac{e^{2}}{f_{12}} | \Psi_{\mu} \Psi_{m} \rangle = \langle \Psi_{\mu} \Psi_{m} \rangle = Extra terms$$

$$= \mathcal{E}_{\mu} - \mathcal{E}_{m} - [\langle \Psi_{\mu} \Psi_{m} | \frac{e^{2}}{f_{12}} | \Psi_{\mu} \Psi_{m} \rangle - \langle \Psi_{\mu} \Psi_{m} \rangle = \langle \Psi_{\mu} \Psi_{m} | \frac{e^{2}}{f_{12}} | \Psi_{\mu} \Psi_{m} \rangle = Extra terms$$

$$= \mathcal{E}_{\mu} - \mathcal{E}_{m} - [\langle \Psi_{\mu} \Psi_{m} | \frac{e^{2}}{f_{12}} | \Psi_{\mu} \Psi_{m} \rangle - \langle \Psi_{\mu} \Psi_{m} \rangle = \langle \Psi_{\mu} \Psi_{m} | \frac{e^{2}}{f_{12}} | \Psi_{\mu} \Psi_{m} \rangle = Extra terms$$

$$= \mathcal{E}_{\mu} - \mathcal{E}_{\mu} - [\langle \Psi_{\mu} \Psi_{m} | \frac{e^{2}}{f_{12}} | \Psi_{\mu} \Psi_{m} \rangle = \langle \Psi_{\mu} \Psi_{m} | \frac{e^{2}}{f_{12}} | \Psi_{\mu} \Psi_{m} \rangle = Extra terms$$

$$= \mathcal{E}_{\mu} - \mathcal{E}_{\mu} \Psi_{m} | \frac{e^{2}}{f_{12}} | \Psi_{\mu} \Psi_{m} \rangle = \frac{1}{2} | \Psi_{\mu} \Psi_{\mu} \rangle = \frac{1}{2} | \Psi_{\mu} \Psi_{\mu} \rangle = \frac{1}{2} | \Psi_{$$$$

	Density	<u>Functional</u>	theory	(DFT)
--	---------	-------------------	--------	-------

- By for the most popular way of describing the electronic structure of solids
- A different philosophy than Hartree-Fock
 - * Hf: approximate the ground-state wavefunction
 - * DFT: Focus on the ground-state density
 - * Why? Many body wavefunction $\Psi(\vec{r}_1, \vec{r}_2, ..., \vec{r}_N)$ Function of 3N election coordinates. The density n(\vec{r}) is a function of 3 coordinates!
- Does the density contain less information than the Wave function?
 - * Hohenberg Kohn theorem says no!
 - * Write many-body H as H= Hint + Vext where:
 - $H_{int} = T + Vee = \sum_{i} \frac{P_{i}^{2}}{2m} + \sum_{i \neq j} \frac{e^{2}}{|\vec{r}_{i} \vec{r}_{j}|} \frac{drop nucle_{i} nucle_{i}}{i n teraction for now}$
 - Vext = 2 Zre² i.I. Iri-RI = NOTE: Vext defines the system you are considering; operator Hint is always the same.
 - · Assure ground state wavefunction IG is non degenerate
 - One body ground state density is: $n(\vec{r}) = \langle \Psi_G | \stackrel{2}{=} \delta(\vec{r} - \vec{r}_i) | \Psi_G \rangle$
 - Since Vext is a local potential, Vext = & Svext(r) S(r-r) d'r So: (44 | Vext | 49>= (n(r) vext (r) d'r
 - Therefore, if we know Lg and given Vext (r), we can determine n(r)

- Question: Can we invert this equation to get Vext (P) = G[n(P)]? Cadifferent functional
 - " It we can, that means there is a one-one mapping between ground-state density and external potential
 - =) A system (e.g., crystalline solid) is defined by Vext, so this would imply that all properties of system can be defined in terms of n(P)

Consider two Hamiltonians with different external Potentials:

Now we write!

$$\left\langle \underline{\Psi}_{q} \left| \underline{H} \right| \underline{\Psi}_{q} \right\rangle = \left\langle \underline{\Psi}_{q} \right| \underbrace{Hint}_{t$$

since the true ground-state energy of H must be lower than $\langle \underline{\mathcal{I}}_{c_1}|\underline{\mathcal{H}}|\underline{\mathcal{V}}_{c_1}\rangle$: $E_G \langle \overline{E}_{c_1} + \int \overline{n}[\overline{\mathcal{I}}] [Vext(\overline{r}) - \overline{Vext}[\overline{r}]] d^3r$

But we can obtain a similar version by considering

$$(\underline{x}_{G}|\overline{H}|\underline{x}_{G})$$
:
 $\overline{E}_{G} \leq E_{G} + \int n(\vec{r}) [\overline{v}_{ext}(\vec{r}) - v_{ext}(\vec{r})] d^{3}r$
 $\overline{E}_{G} \leq E_{G} - \int n(\vec{r}) [\underline{v}_{ext}(\vec{r}) - \overline{v}_{ext}(\vec{r})] d^{3}r$
 $\Rightarrow E_{G} \geq E_{G} + \int n(\vec{r}) [\underline{v}_{ext}(\vec{r}) - \overline{v}_{ext}(\vec{r})] d^{3}r$
 $\Rightarrow E_{G} \geq E_{G} + \int n(\vec{r}) [\underline{v}_{ext}(\vec{r}) - \overline{v}_{ext}(\vec{r})] d^{3}r$
 $\Rightarrow C_{G} \geq E_{G} + \int n(\vec{r}) [\underline{v}_{ext}(\vec{r}) - \overline{v}_{ext}(\vec{r})] d^{3}r$
 $\Rightarrow Coround state density$
 $\overline{n}(\vec{r}) \neq n(\vec{r})$!
 $*$ Schemadic:
 $v_{ext}(\vec{r}) = v_{ext}(\vec{r}) = v_{ext}(\vec{r}) = v_{ext}(\vec{r})$
 $v_{ext}(\vec{r}) = v_{ext}(\vec{r}) = v_{ext}(\vec{r})$
 $\Rightarrow Coround state density$
 $v_{ext}(\vec{r}) = v_{ext}(\vec{r}) = v_{ext}(\vec{r})$
 $\Rightarrow Coround state density$
 $v_{ext}(\vec{r}) = v_{ext}(\vec{r}) = v_{ext}(\vec{r})$
 $\Rightarrow Coround state density$
 $v_{ext}(\vec{r}) = v_{ext}(\vec{r})$
 $\Rightarrow Coround state density and every$
 $\Rightarrow Vistim in another form: every so that:$
 $E[n(\vec{r})], v_{ext}(\vec{r})] = T[n(\vec{r})] + v_{ex}[n(\vec{r})] + \int v_{ex}(\vec{r}) n(\vec{r}) d^{3}r$
 $v_{ex}[n(\vec{r})] = T[n(\vec{r})] + v_{ex}[n(\vec{r})] + \int v_{ex}(\vec{r}) n(\vec{r}) d^{3}r$
 $v_{ex}[n(\vec{r})] = T[n(\vec{r})] + v_{ex}[n(\vec{r})] + \int v_{ex}(\vec{r}) n(\vec{r}) d^{3}r$
 $v_{ex}[n] potential
 $v_{ex}[n] = v_{ex}[n], v_{ex}[n]$$

Kohn - Sham equations

- We need to figure out an expression for energy
functionals
- We also need to obtain the density
OF course we can get n via:
$$n = \langle \Psi \mid \frac{\pi}{2} \delta | \vec{p} \cdot \vec{p} \rangle | \Psi \rangle$$

but then we would need to know Ψ and would
have solved the problem anyway
- kohn-Sham approach to theses two problems:
Write $n(P)$ as sum over some set of
or thonormal orbitals:
single-particle of bitals, only
bornd on 3 coordinates (P vot 3N (\vec{p}, \dots, \vec{p}))
Note: We could construct an approximate GS
many-body wavefunction like: $\Psi = det \xi \phi, \dots \phi h \delta$
but it would not correspond to a true wany-body
GS in any rigorous sense
Now we write down some contributions to E[n]
that we know:
Classical Coulomb, i.e., Hartree evergy:
 $E_{\Psi}[n] = \frac{1}{2} (n(\vec{r})) \frac{e^2}{|\vec{r} - \vec{r}|} (n(P)) dP dP = \frac{1}{2} \frac{\delta}{\delta} \langle \phi_i \phi_i | \frac{e^2}{|\vec{r}_i|} \phi_i \phi_i >$
(note that in general, Eve [n] = $E_{\Psi}[n]$
 $ro [n] = \frac{\delta}{\delta} \langle \psi_i | \frac{P^2}{2m} | \phi_i >$
(note, in general T[n] = $T_0[n]$

Now we write the energy functional as:

$$E[n, vext] = T_0[n] + E_{H}[n] + [vext(t^{2}) n(t^{2})d^{3}r + Exc[n]$$

or:
 $E[n, vext] = \frac{2}{5} \langle \varphi_{cl} | \frac{p^{2}}{2m} + vext[\varphi_{cl} \gamma + \frac{1}{2} \frac{2}{5} \langle \varphi_{c} \varphi_{l} | \frac{e^{2}}{162} | \varphi_{c} \varphi_{l} \gamma + Exc[n]$
where $Exc[n] = T[n] - T_0[n] + Eve [n] - E_{H}[n]$
• Exc is call "exchange - correlation" functional
• Basically all of the Stuff we don't know
Now we minimize E wRT φ_{cl}^{i} as we did for
Harthee - Fock to get an equation for φ_{cl}^{i} .
 $\left[\frac{p^{2}}{2m} + Vext + Vcouloub + Vxc\right] | \varphi_{cl}^{i} \gamma = \mathcal{E}(\frac{1}{4}) \gamma$
• Vcoulomb is Hothere Coulonb interaction potential, size as HF
• Vxc is defined as:
 $SE_{xc}[n] = \int Vxc(t^{2}) Sn(t^{2}) d^{3}r = \int Vxc(t^{2}) S\frac{2}{5} \frac{\varphi_{c}^{i}(t^{2}) \varphi_{cl}(t^{2}) d^{3}r}{Sn(t^{2})}$
• Similar to HF , exact GS energy is:
 $E_{ols} = \frac{2}{5} \frac{\mathcal{E}_{cl} - \frac{1}{2} \frac{\mathcal{E}}{5} \langle \varphi_{cl} \varphi_{cl} | \frac{e^{2}}{T_{12}} | \varphi_{cl} \varphi_{cl} + Exc[n] - \int Vxc(t^{2}) N(t^{2}) d^{3}r}{Vext(t^{2}) etertion}$
• Weate: No koopmans' theorem for DFT φ_{cl}^{i} and \mathcal{E}_{cl} .

Rigorously they have no physical meaning, but are often associated with the band structure

- We still have not really made any projess since
we don't know Exc!
- kohn and Sham did propose an approximate Exc:
Local Density Approximation (LDA)
Consider a solid as a "nonuniform electron gas"
Density a position
$$\vec{r}$$

has density $n(\vec{r}) = n_0$
map to
uniform electron
gas w(density no
 $\vec{r} = \vec{r} = \vec{r}$
 $\vec{r} = \vec{r} =$

Beyond One-election apploximation Summary
- We had been neglecting explicit election-election
Coulomb interactions
- Discussed two ways of including applodimate
interactions (Note: there are many more)
Unitime - Fock: Apploximate the many-body wave function
with a single - Particle or bitals which are Solutions
to:

$$\begin{bmatrix} 1^{2} + Vece + Vcoulomb + Vecchange] 19:7 = E: 14:7$$
- HF often used in chemistry for molecules
* Density functional theory: From Hohenberg - Kohn, we
know that the many-body density contains all information
about a system with a given Vext.
• To get density, solve auxiliary single - particle
problem:

$$\begin{bmatrix} P^{1} + Vece + Vcoulomb + Vxcl] 19:7 = E: 14:7$$
• Were many-body density contains all information
about a system with a given Vext.
• To get density, solve auxiliary single - particle
problem:

$$\begin{bmatrix} P^{1} + Vece + Vcoulomb + Vxcl] 19:7 = E: 14:7$$
• Were many-body density is $n(E) = \frac{2}{c} 0^{2}(E) \Phi_{1}(E)$
• Where many-body density is $n(E) = \frac{2}{c} 0^{2}(E) \Phi_{1}(E)$
• Mil approximations reside in exchange - correlation
potential, LDA is one approximation to XC
• DFT is the most popular way of describing
the electronic structure of solids!