Nuclear dynamics and the adiabatic approximation (f and p ch, VIII)
- Up until NAW we have considered the nuclei (or ions if
they include some core electrisms) as a fixed external
potential
- However, they have dynamics like electrons. Also, the
interaction between electrons and nuclei is what
determines the equilibrium position of nuclei
- Let's Start with the full many-body Hamiltonian:
How = Tw + Te + Vee + Ven + Vnn
Kinetic energy of nuclei:
$$-\sum_{n=1}^{n} \frac{m^2 v_{n}^2}{2m_n}$$

* Partition into: How = Tw (P) + Te (r) + V(r+e)
R = SES, all nuclear cooldinates
* Many-body Schrödinger equation is:
[Tw (P) + Te (r) + V(r, P)] I (r, P) = W I (r, P)
without unrefunction / energy of combined
electron/ we have been using.
* Tw = m_r, Te = m_r, so we expect Tw <
"static lattice" approximation we have been using.
* Electronic "adiabatic" Hamiltonian:
He (r; P) = Te + V(r, P) \rightarrow He (r; P) The (r; P) for (P) (r; P)
parametric dependence on P, i.e., P is a parameter, not
a variable

* Now take the expectation value of the with
$$4 \text{ trial}^{1}$$

 $\left(\left(2, 4 \text{ m} \mid T_{N} + \text{He} \mid 2, 4 \text{ m}\right)\right)$ where $\left(\left(4 \mid 0 \right)^{2} = \int 4^{2} \left(r; e\right) \varphi(r; e) dr de \left(4 \mid 0 \right)^{2} = \int 4^{2} \left(r; e\right) \varphi(r; e) dr dr dr dr dr de expectation of R = \left(2, 4 \mid 0 \right)^{2} + \left(2, 4 \mid 0 \right)^{2} + \left(2, 4 \mid 0 \mid 1 \right)^{2} + \left(2, 4 \mid 1 \right)^{2} + \left(2, 4 \mid 0 \mid 1 \right)^{2} + \left(2, 4 \mid 1 \right)^{$