
Lattice dynamics of Crystals (G and & Chapter (x)
- Previously, we have been focused on the electronic

system, taking the nuclei as fixed

- But the nuclei are always dynamic, ever at 0 K

due to zero-point motion

- To understand the implications of these dynamics
we need to understand small vibrations of nuclei,
which follow the normal modes of the crystal

- We begin with the simplest case: Dynamics of a

In monatomic chain:

eg. positions:(nuela (hella Na (n+1) a (n+2) a

- m m m m m m m -

- -> -> - -

displacements: Un-2 Un-1 Un Unt UnX1

* N atoms of mass M, an is longitudinal displacement
of wth atom from equilibrium position tn= na

*Ground-state energy with fixed (possibly displaced) nuclei positions
Rn =

na +Un is Eo19Ru3)
· Under the adiabatic approximation (i.e., Born-Oppenheimer
approx), Eolauns) is given by solving the electron-nuclear

system at fixed nuclear configuration
*Assume also that forces on nuclei just depend on uni

*
Force on nuclei i

Fi = -/Suss)
*To treat small Un, we expand to around equilibrium (Uno):

Eo(Sun3)=Eolo) o tStrEunlo UnUn'

+t1G.. EAndTal,UnUnUn+.. .



· No linear term since tool to which is the definition

of equilibrium
· We make the "harmonic approximation" truncate at second

order derivative:

Erarm (513) = Fo (0) + EE, DunsUnUn' Duns=
EEr I.JUnEUn'

a
proportionality

-

"Force constant matrix"
coeff between

· Fn = - GEharm-dDan'Uni force and displacent is

· Symmetries of Di

Dun: Dan (from partial derivative

Dun= Dmms if th-th=tm-tml (translational symmetry)

EDun = 0 (forces vanish when all atoms are moved

rigidly
· Equation of motion for nuclei n:

-second time derivative, i.e., acceleration
Min= -GDun' Uns
↑

nuclear mass

·we would like to solve the set of N coupled
differential equations for Un1t.

~ periodic
in space

W

i lana-wt)
· Anzatz for solution:UuIt) = Ae Eperiodic in time

·Plug in to EOM:

-Mot Ae "lana-wtl=-Dun Aeiqua-wel
⑦ Fourier transform of Dun'

MW* = 5Dun eialna-ria)=Dla)↓

Note, does not depend on specific value of m
because of translational symmetry



· Equation MW-(9)= D19) gives dispersion relation for

frequencies w

·As with election wavevestor, since Un is not

affected by changes in 9 of 2Th, independent values of
I are confined to - Fa 291I

·under Born-von Karman boundary conditions, discrete

9 in B2 with values metINa)

*Now consider case of just nearest neighbor interactions:

Dun = 2C, Dun1 =-C, all other elements are zero

· Take Eo10) = 0, then

Enarm: ECG 1240 -UnUnx-UnUn-1)
1 I A I

·tcgune+SUnti-EnnUnts-Ennxun]
=Ee5(un-Un1)

· Classical EOM:

Min =-c /2u -Un+1-Un-)

look for solutions of the form Adilana-cot):

- Me" Heilqua-wal =-A3 zelana -wt1-eilqua-ga-rotl_cilqua-ga-wal
+ Mu==c[2-evisa-9992] = c2-2 cosln)]:2011 - cos1qal]
use half-angle formula:sin" ()=1-c0s1x

Muc:43 sine =>w = Isinital
Take "long-wavelength limit": 9-0

waytaa=Eag=Usgelinerisund velocity "



· Dispersion ·

~real

petypical cutoff frequencies

a
i

order 10s of mev

M

L
linear in near 9=0

- Now consider diatomic ID lattice:

M. Me R: na &= (n+1/2) a

... m m m m m m m -

-
~S

Eara Un

A still consider just nearest heighbor interactions, "spring" cost?

· EOMs:

M. m = - 3/2Un -Un-1 - 0n)

Main =-2/20n-Un-Un+1)
· Ansatc: Uult) = A eilqua-wel, Un(H= An eilqua + 9912-we

· plug into EOM:

- M. WEA =
- c [2A)-A2 e11-9a +9rK). Az e91991277

- m, WTA= - 2(2A) - An le+i99l2 +e19912)]

(M, w2-2PA1 =-2CA2 cos 5012)

similarly.

- MewAz = - c [2A2-Ale-i9al +e9212))
(McW2-2DAz =- 23A, cos 1912)



· After some algebra (see G and P Sec. 1x.21:

w" =</m "tofEelockis
[ two branches!

and: F: Gcoslackis

·Let's look at 940 limit:

we & I'm inofthe race

-satm ohn"gacftSER...INF

-T~ a tie tm zaz mimeas
so one branch is: 1) "Acoustic branch"

~= = t9cae + 019") so w is linear in a like before

also: I= -ofelal-I so Al-Ac and

-> ->

both sublattices more together ! m m

other branch: 1H "Optical branch"

wh
·t +0 194, her "tohe so w is constant at

small g

#A=
- ma so A, M, =- AzMz and

-> I

sublattices more in opposite directions m m



· Dispersion · vem*
wal

·free
optical bornin

acoustic branch

im

Now we will generalize to D crystals
-

*Atomic positions described by translation rector tr
and basis vectors In

·Label atoms by Integritcel
*sublattice

*Expansion of Eo up to harmonic term:

a = X, Y, 2

charm (Shm3) = E010) + 1 & Puranva Mura Univ
2 nua, 'r's

=sum runs over unit cells,
sublattices, directions

82 Eo
· Where: Durau'r'"Shtuu'ric I.

·D is force constant matrix in 3D

·D is real and symmetric

· Duva,us's: Puramira' if E-E = Em -Em

· "Acoustic sum rule": [Duva, n've =O
nigh

*Equations of motion:

Mulinua
- Dura, n'via Un'va'



• Look for solutions of the form :

Ñnvltl = AT / & ,w)ei(ÉÉn
- wt)

↳ " polarization vectors
"

• Plug in to equations of motion :

- Mvw ' Ava = - E Dnva.n.ua , e-
iÉ .lt?-En'IA

,
,
,

n'V12'

n'
Dwa

, niu.ge
e-

'
' É . /É-Én , )

• Dynamical matrix : Duane, (E) = E

• Solve secular equations to get Ñ and w :

det / Duan 's (E) - Mvw - San ' Svu ' / = 0
* Some comments about vibrational modes in 3D crystals :

• DIE) is 3hr ✗ 3hr matrix
,
so there are 3. no modes

at each § turnher of atoms in unit cell

• Since there are N (number of unit cells in crystal )
of points , there are nvN normal modes

• Consider a polarization vector Ñrlq→,n)

→ Mode is transverse if Ñtq→ Ñm Ñhn Mm
I

→ mode is longitudinal if it 1197 MAS Mas Attn

• Dispersions have optical modes if they have a

basis
.
Always have 3 acoustic modes in 3D .

sinpie.wlattice-ga.me 3hr -3

÷:
modes

modes
""
""

}""acoustic



- what are the physical implications of vibrational modes ?

* In the homework
, you show that the quantum

theory gives quantized virbrational modes called phonons

H=Ekwlq1[aiiaqttjf
q

• phonons are vibrational
"

quasiparticles
"

with

quantized energy rhwlq)

• These particles act as bosons

• Average vibrational energy in a crystal

Uuib (T) = §p[kwl9IÉ"+ lzñwfq:p)]expfhwlq.pl/kBt] - I
ijs in first

→

↑# ✓
BZ "

Zero point
"

branches of Bose-Einstein

phonon dispersion occupations vibrations

• Note : chemical potential is zero since phonons can be

created with zero energy !

• Recall that lattice heat capacity at constant volume :

dE-kwlq-ipscjit.lt) =

djhfI-J-q-spexpfhwlg.TN/kBT] - I

* Phonon scattering :

• Phonons can scatter electrons to different states :

• Allows for energy exchange between"

¥¥; lattice and electrons

K



Nuclear dynamics: What have we learned?

- Under the adiabatic Born-Oppenheimer approximation:
electronic energies at fixed nuclear configuration
make potential energy surface for nuclei

*Classical:MI=Gest(23
*Quantum: &Le + Eelese (3R3)] ((R) = WAIR)

-Lattice dynamics: Normal vibrational modes of

crystal described by phonon band structure

· vibrational frequencies as a function of wavereator

9

· Dacoustic modes (D:#dimensions), linear in a for
small a and short-ranged force constants

· Natom-D (Natom=# atoms in unit sell) optical
modes, finite wo at giv


