Lattice dynamics of crystals (G and P chapter $\mid x$)

- Previously, we have been focused on the electronic system, taking the nucki as fired
- But the nuclei are always dynamic, ever at $0 k$ due to zero-point motion
- To understand the implications of these dynamics we need to understand small vibrations of nuclei, which follow the normal modes of the crystal
- We begin with the simplest case: Dynamics of a 10 monatomic chain:
eq. positions: $(n-2) a$ ($n-11)$ na ($n+11)$ a $(n+2) a$
displacements:
* N atoms of mass M, u_{n} is longitudiral displacement of $n^{\text {th }}$ atom from equilibrium position $t_{n}=n a$
* Ground-state energy with fixed (possibly displaced) nuclei positions $R_{n}=n a+u_{n}$ is $E_{0}\left(\left\{R_{n}\right\}\right)$
- Under the adiabatic approximation (i.e., Born -Oppenheimer approx), $E_{0}\left(\left\{u_{n}\right\}\right)$ is giver by solving the election-nudear system at fixed nuclear configuration
* Assume also that forces on nuclei just depend on u_{n} : $\sqrt{ }{ }^{\text {force }}$ on nucki i

$$
F_{i}=-\frac{\partial E_{0}\left(\left\{u_{n}\right\}\right)}{\partial u_{i}}
$$

* To treat small u_{n}, we expand E_{0} around equilibrium $\left(u_{n}=0\right)$:

$$
\begin{aligned}
E_{0}\left(\left\{u_{n}\right\}\right)=E_{0}(0) & +\left.\frac{1}{2} \sum_{n, n^{\prime}} \frac{\partial^{2} E_{0}}{\partial u_{n} \partial u_{n^{\prime}}}\right|_{0} u_{n} u_{n^{\prime}} \\
& +\left.\frac{1}{3!} \sum_{n, n^{\prime}, n^{\prime \prime}}^{\prime} \frac{\partial^{3} E_{0}}{\partial u_{n} \partial u_{n^{\prime}} \partial u_{n^{\prime \prime}}}\right|_{0} u_{n} u_{n^{\prime}} u_{n^{\prime \prime}}+\cdots
\end{aligned}
$$

- No linear term since $\left.\frac{\partial E_{0}}{\partial u_{n}}\right|_{0}=0$ which is the definition of equilibrium
- We make the "harmonic approximation", truncate at second order derivative:

$$
E_{0}^{\text {harm }}\left(\left\{u_{n}\right\}\right)=E_{0}(0)+\frac{1}{2} \sum_{n n^{\prime}} D_{n n^{\prime}} u_{n} u_{n^{\prime}}, \quad D_{n n^{\prime}}=\left.\frac{\partial^{2} E_{0}}{\partial u_{n} \partial u_{n^{\prime}}}\right|_{0}
$$

proportionality
coff between "force constant matrix"

- $F_{n}=-\frac{\partial E_{0}^{\text {harm }}}{\partial u_{n}}=-\sum_{n^{\prime}} D_{n n^{\prime}} u_{n^{\prime}}$ force and displacement
- Symmetries of D :
$D_{n n^{\prime}}=D_{n^{\prime} n}$ (from partial derivative)
$D_{u n^{\prime}}=D_{m m^{\prime}}$ if $t_{n}-t_{n^{\prime}}=t_{m}-t_{m^{\prime}} \quad$ (translational symmetry)
$\sum_{n^{\prime}}^{1} D_{u n^{\prime}}=0$ (Forces vanish when all atoms are moved rigidly)
- Equation of motion for nuclei n :

$$
m \ddot{u}_{n}^{\sigma}=-\sum_{n^{\prime}}^{\prime} D_{n n^{\prime}} u_{n \prime}
$$

nuclear mass

- we would like to solve the set of N coupled differential equations for $u_{n}(t)$. \downarrow periodic in spare
- Anzatz for solution! $u_{n}(t)=A e^{i(q n a-\omega t)}$ Lperidic in time
- Plug in to Eom:

$$
\begin{aligned}
& -M \omega^{2} A e^{i(q n a-\omega t)}=-\sum_{n^{\prime}} D_{n n^{\prime}} A e^{i\left(q n^{\prime} a-\omega t\right)} \\
& M \omega^{2}=\sum_{n^{\prime}} D_{n n^{\prime}} e^{-i q\left(n a-n^{\prime} a\right)}=D_{1}(q)
\end{aligned}
$$

Note, does not depend on specific value of n because of translational symmetry

- Equation $M \omega^{2}(q)=D(q)$ gives dispersion relation for frequencies ω
- As with electron wavevector, since u_{n} is not affected by chages in q of $2 \pi n$, independent values of q are confined to $-\pi / a<q \leq \frac{\pi}{a}$
- Under Born - vo Karman boundary conditions, discrete q in BZ with values $m(2 \pi / \mathrm{Na})$
* Now consider case of just nearest neighbor interactions:
$D_{n n}=2 C, D_{n n \pm 1}=-C$, all other elements are zero
- Take $E_{0}(0)=0$, then:

$$
\begin{aligned}
E_{0}^{\text {norm }} & =\frac{1}{2} C \sum_{n}\left(2 u_{n}^{2}-u_{n} u_{n+1}-u_{n} u_{n-1}\right) \\
& =\frac{1}{2} C\left[\sum_{n}^{2} u_{n}^{2}+\sum_{n}^{2} u_{n+1}^{2}-\sum_{n}^{1} u_{n} u_{n+1}-\sum_{n}^{1} u_{n+1} u_{n}\right] \\
& =\frac{1}{2} C \sum_{n}^{1}\left(u_{n}-u_{n+1}\right)^{2}
\end{aligned}
$$

- Classical EOM:

$$
m \ddot{u}_{n}=-C\left(2 u_{n}-u_{n+1}-u_{n-1}\right)
$$

look for solutions of the form $A e^{i(q n a-\omega t)}$:

$$
\begin{aligned}
& -M_{\omega^{2}} A e^{i(q n a-\omega t)}=-A C\left[2 e^{i(q n a-\omega t)}-e^{i(q n a+q a-\omega t)}-e^{i(q n a-q a-\omega t)}\right] \\
& \Rightarrow M_{\omega^{2}}=C\left[2-e^{-i q u}-e^{i q a}\right]=C[2-2 \cos (q a)]=2 C[1-\cos (q a)]
\end{aligned}
$$

use half -angle formula: $2 \sin ^{2}\left(\frac{x}{2}\right)=1-\cos (x)$

$$
m w^{2}=4 C \sin ^{2}\left(\frac{q a}{2}\right) \Rightarrow w=\sqrt{\frac{4 C}{m}}\left|\sin \left(\frac{1}{2} q a\right)\right|
$$

Take "long-wavelength limit": $q \rightarrow 0$

- Dispersion:

$\frac{4 C}{m} \leftarrow$ typical cutoff frequencies order los of meV
- Wow consider diatomic ID lattice:

* Still consider just nearest neighbor interactions, "spring" const C
- E OMs:

$$
\begin{aligned}
& M_{1} \ddot{u}_{n}=-C\left(2 u_{n}-v_{n-1}-v_{n}\right) \\
& M_{2} \ddot{v}_{n}=-C\left(2 v_{n}-u_{n}-u_{n+1}\right) \\
& \text { - Ansatz: } \quad u_{n}(t)=A_{1} e^{i(q n a-\omega t)}, v_{n}(t)=A_{2} e^{i(q n a+q a / 2-\omega t)}
\end{aligned}
$$

- Plug into EOM:

$$
\begin{aligned}
& -M_{1} \omega^{2} A_{1}=-C\left[2 A_{1}-A_{2} e^{i(-q a+q a / 2)}-A_{2} e^{i(q a / 2)}\right] \\
& -M_{1} \omega^{2} A_{1}=-C\left[2 A_{1}-A_{2}\left(e^{-i q a / 2}+e^{i q a / 2}\right)\right] \\
& \left(M_{1} \omega^{2}-2 C\right) A_{1}=-2 C A_{2} \cos (q a / 2)
\end{aligned}
$$

similarly:

$$
\begin{aligned}
& -m_{2} \omega^{2} A_{2}=-C\left[2 A_{2}-A_{1}\left(e^{-i q a / 2}+e^{i q a / 2}\right)\right] \\
& \left(m_{2} \omega^{2}-2 C\right) A_{2}=-2 C A_{1} \cos \left(q^{a} / 2\right)
\end{aligned}
$$

- After some algebra (see G and P sec. $\mid x .2$):

$$
\omega^{2}=C\left(\frac{1}{m_{1}}+\frac{1}{m_{2}}\right) \pm C \sqrt{\left(\frac{1}{m_{1}}+\frac{1}{m_{2}}\right)^{2}-\frac{4 \sin ^{2}(q a / 2)}{m_{1} m_{2}}}
$$

two branches!
and: $\frac{A_{1}}{A_{2}}=\frac{2 c \cos \left(q^{a} / 2\right)}{2 c-m_{1} \omega^{2}}$

- Let's look at $q \rightarrow 0$ limit:

$$
\begin{aligned}
\omega^{2} & \approx C\left(\frac{1}{m_{1}}+\frac{1}{m_{2}}\right) \pm C \sqrt{\left(\frac{1}{m_{1}}+\frac{1}{m_{2}}\right)^{2}-\frac{q^{2} a^{2}}{m_{1} m_{2}}} \\
& \approx C \frac{m_{1}+m_{2}}{m_{1} m_{2}} \pm C \sqrt{\left(\frac{m_{1}+m_{2}}{m_{1} m_{2}}\right)^{2}-\frac{q^{2} a^{2}}{m_{1} m_{2}}} \sqrt{A-x}=\sqrt{A}-\frac{x}{2 \sqrt{A}}-\cdots \\
& \approx C \frac{m_{1}+m_{2}}{m_{1} m_{2}} \pm C\left[\frac{m_{1}+m_{2}}{m_{1} m_{2}}-\frac{q^{2} a^{2}}{2 m_{1} m_{2}} \frac{m_{1} m_{2}}{m_{1}+m_{2}}\right]
\end{aligned}
$$

So one branch is: (-1 "Acoustic branch"
$\omega^{2}=\frac{c q^{2} a^{2}}{2\left(m_{1}+m_{2}\right)}+\theta\left(q^{4}\right)$ so ω is linear in q like before also: $\frac{A_{1}}{A_{2}} \approx \frac{2 C-\theta\left(q^{2}\right)}{2 C-M_{1} \theta\left(q^{2}\right)} \approx 1$ so $A_{1}=A_{2}$ and both sublattices move together:
Other branch: (t) "Optical branch"
$\omega^{2}=\frac{2 c}{m^{*}}+\theta\left(q^{2}\right), \frac{1}{m^{*}}=\frac{1}{m_{1}}+\frac{1}{m_{2}}$ so ω is constant at $\frac{A_{1}}{A_{2}} \approx \frac{2 C}{2 C\left(1-\frac{m_{1}}{m_{1}}-\frac{m_{1}}{m_{2}}\right)}=-\frac{m_{2}}{m_{1}}$ so $A_{1} m_{1}=-A_{2} m_{2}$ and Sublattices move in opposite directions

- Dispersion:

- Now we will generalize to 3D crystals
* Atomic positions described by translation vector \vec{t}_{r} and basis vectors $\overrightarrow{d_{\nu}}$
- Label atoms by (αv)

C sublattice

* Expansion of ED up to harmonic term:

$$
E_{0}^{\text {harm }}\left(\left\{\vec{u}_{n v^{\prime}}\right\}\right)=E_{0}(0)+\frac{1}{2} \sum_{n \nu \alpha, n^{\prime} \gamma^{\prime} \alpha^{\prime}} \sum_{n \nu \nu, n^{\prime} \cdot v^{\prime} \alpha^{\prime}}^{\alpha=x_{n}} u_{n v \alpha} u_{n^{\prime} v^{\prime} \alpha^{\prime}}
$$ sublattices, directions

- Where: $D_{n v \alpha, u^{\prime} v^{\prime} \alpha^{\prime}}=\left.\frac{\partial^{2} E_{0}}{\partial u_{n \nu \alpha} \partial u_{n^{\prime} v^{\prime} \alpha^{\prime}}}\right|_{0}$
- D is force constant matrix in 3D
- D is real and symmetric
- $D_{n v a, n^{\prime} v^{\prime} \alpha^{\prime}}=D_{m \nu \alpha, m^{\prime} \nu^{\prime} \alpha^{\prime}}$ if $\vec{t}_{n}-\vec{t}_{n^{\prime}}=\vec{t}_{m}-\vec{t}_{m^{\prime}}$
- "Acoustic sum rule": $\sum_{n^{\prime} \nu^{\prime}} D_{n v \alpha, n^{\prime} \nu \alpha^{\prime}}=0$
* Equations of motion:

$$
m_{v} \ddot{u}_{n v a}=-\sum_{n^{\prime} v^{\prime} \alpha^{\prime}} D_{n v a, n^{\prime} \gamma^{\prime} \alpha^{\prime}} u_{n^{\prime} v^{\prime} \alpha^{\prime}}
$$

- Look for solutions of the form:

$$
\vec{u}_{n v}(t)=\vec{A}_{y}(\vec{q}, \omega) e^{i\left(\vec{q} \cdot \vec{t}_{n}-\omega t\right)}
$$

\rightarrow "polarization vectors"

- Plug in to equations of motion:

$$
-m_{\nu} \omega^{2} A_{\nu \alpha}=-\sum_{n^{\prime} \nu^{\prime}} D_{n \nu \alpha, n^{\prime} v^{\prime} \alpha^{\prime}} e^{-i \vec{q} \cdot\left(\vec{t}_{r}-\vec{t}_{n^{\prime}}\right)} A_{v^{\prime} \alpha}
$$

- Dynamical matrix: $D_{\nu \alpha_{1} y^{\prime} \alpha}(\vec{q})=\sum_{n^{\prime}}^{\prime} D_{n y \alpha, n^{\prime} v^{\prime} \alpha^{\prime}} e^{-i \vec{q} \cdot\left(\vec{t}_{n}-\vec{t}_{n^{\prime}}\right)}$
- Solve secular equations to get \vec{A} and w :

$$
\operatorname{det}\left|D_{v \alpha, v_{\alpha}}(\vec{q})-M_{v} \omega^{2} \delta_{\alpha \alpha^{\prime}} \delta_{v v^{\prime}}\right|=0
$$

* Some comments about vibrational modes in 30 crystals:
- D($\vec{q})$ is $3 n_{v} \times 3 n_{v}$ matrix, so there are $3 n_{v}$ modes at each \vec{q} Lumber of atoms in unit cell
- Since there are N (number of unit cells in crystal) \vec{q} points, there are $n_{v} N$ normal modes
- Consider a polarization vector $\vec{A}_{y}(\vec{q}, n)$
\rightarrow Mode is transverse if $\vec{A} \perp \vec{q}$
\rightarrow mode is longitudinal if $\vec{A} \| \vec{q}$
- Dispersions have optical modes if they have a basis. Always have 3 acoustic modes in 3D.
simple lattice

lattice with basis:
ans
- What are the physical implications of vibrational modes?
* In the homework, you show that the quantum theory gives quantized visbrational modes called phonons

$$
H=\sum_{q}^{1} \hbar \omega(q)\left[a_{q}^{+} a_{q}+\frac{1}{2}\right]
$$

- phonons are vibrational "quasiparticles" with quantized energy $\hbar \omega(q)$
- These particles act as bosons
- Average vibrational energy in a crystal
- Note: chemical potential is zero since phonons can be created with zero energy!
- Recall that lattice heat capacity at constant volume:

$$
C_{v}^{v i b}(T)=\frac{\partial u_{\text {Nib }}}{\partial T}=\frac{\partial}{\partial T} \sum_{\vec{q} p} \frac{\hbar \omega(\vec{q}, p)}{\exp \left[\hbar \omega(\vec{q}, p) / k_{B} T\right]-1}
$$

* Phonon scattering:
- Phonons can scatter electrons to different states:

- Allows for energy exchange between lattice and electrons

Nuclear dynamics: What have we learned?

- Under the adiabatic Born-Oppenheimer approximation: electronic energies at fixed nuckar configuration make potential energy surface for nuclei
* Classical : $m \ddot{R}_{I}=\frac{\partial E_{\text {elect }}(\{R\})}{\partial R_{I}}$
* Quantum: $\left[-\frac{\hbar^{2}}{2 m}+E_{\text {elect }}(\{R\})\right] \chi(R)=\omega \chi(R)$
- Lattice dynamics: Normal vibrational modes of crystal described by phonon baud structure
- Vibrational frequencies as a function of waverector q
- D acoustic modes ($D=$ \# dimensions), linear ir q for small q and short-ranged force constants
- $N_{\text {atom }}-D$ LNatom $=\#$ atoms in unit cell) optical modes, finite w at $q=0$

