Probing crystals via scattering (G and P ch. X)

- In order to probe the structure and properties of crystals, many experiments involve scattering of electrons, photons, or neutrons
- Schematic setup for scattering measurements:

* Monochromator: selects particles with momentum $K \vec{k}_{i}$ and energy ε_{i}
* Detector selects particles wI $\hbar \vec{k}_{f}, \varepsilon_{f}$
* Information is derived from $\Delta \vec{k}=\vec{k}_{F}-\vec{k}_{i}, \Delta \varepsilon=\varepsilon_{f}-\varepsilon_{i}$
- Scattering particles:
- For $\hbar \omega \sim 10-50 \mathrm{keV}, \lambda \sim$ interatomic spacing
- Interaction via electric field, amplitude of scattering related to 2
* Neutrons: $E=\frac{\hbar^{2} k^{2}}{2 M_{n}}=\frac{\hbar^{2} 4 \pi^{2}}{2 M_{n} \lambda^{2}} \Rightarrow \lambda=\frac{0.2862}{\sqrt{E}}$
- For $\lambda \sim \AA, E \sim 80 \mathrm{meV}$ (similar to $k_{B} T$)
- Elastic interaction for atoms, amplitude related to mass
- Can also interact via magnetic interactions
* Elections: $E=\frac{\hbar^{2} k^{2}}{2 m}=\frac{\hbar^{2} 4 \pi^{2}}{2 m x^{2}} \Rightarrow \lambda=\frac{12.264}{\sqrt{E}}$
- To get $A \sim A, E \sim 150 \mathrm{cV}$
- Interact via coulomb interactions w/ atoms
- Key distinction: Elastic versus inelastic scattering
* Elastic: Conserve every and momenta in a scattering event
- $\varepsilon_{i}=\varepsilon_{f}, \quad\left|\vec{k}_{i}\right|=\left|\vec{k}_{f}\right|$
* Inelastic: Energy and momenta lost to excitations in the crystal (e.g., phonons, magnons, electronic excitations)
- $\Delta \varepsilon=\varepsilon_{f}-\varepsilon_{i}$ and $|\Delta \vec{k}|=\left|\vec{k}_{f}\right|-\left|\vec{k}_{i}\right|$ representative of excitation
- Elastic scattering of x-rays
* Consider incident radiation beam frequency w_{1}, propagation vector \vec{k}_{i}, polarization \vec{e}_{i}, amplitude \hat{E}_{0}

$$
\vec{E}(\vec{r}, t)=\vec{e}_{i} E_{0} e^{i\left(\vec{k}_{i} \cdot \vec{r}-\omega t\right)}
$$

* Electron at \vec{r} accelerated by field like

$$
m \ddot{\vec{u}}=-e \vec{E}(\vec{r}, t)=-e \vec{e}_{i} E_{0} e^{i\left(\vec{k}_{i} \cdot \vec{r}-\omega t\right)}
$$

- Election oscillates in the field, radiates electromagnetic waves at same freq. w
- Long distance $R \gg=2 \pi / k$ from radiating center:

$$
\begin{aligned}
& \vec{E}_{S}(\vec{R}, t)=\vec{e}_{f} \frac{(-e)}{c^{2} R} \ddot{\vec{u}}\left(t-\frac{R}{c}\right) \cdot \vec{e}_{f} \\
&=\vec{e}_{f} \frac{1}{|R|} \frac{e^{2}}{m c^{2}} E_{0} e^{i \vec{k}_{i} \cdot \vec{r}} e^{-i \omega(t-R / c)} \sin \psi \\
&=\vec{e}_{f} \frac{1}{|R|} \frac{e^{2}}{m c^{2}} E_{0} e^{i \vec{k}_{i} \cdot \vec{r}^{\text {angle between }} e^{i\left(\vec{k}_{f} \cdot \vec{R}\right)} e^{-i \omega t} \sin \psi} \vec{e}_{i} \\
& \vec{e}_{i} p \text { elastic scattering } \\
& \vec{k}_{i}
\end{aligned}
$$

- Take modulus squared to get intensity of scattered field:

$$
I_{s}(\vec{R})=I_{\uparrow} \frac{1}{R^{2}}\left(\frac{e^{2}}{m_{k} c^{2}}\right)^{2} \sin ^{2} \psi
$$

- Now consider scattering from two elections, ore at $\vec{r}=0$, other at $\vec{r} \neq 0$:

$$
\begin{aligned}
& \vec{r}=0: \vec{E}_{S}\left(\vec{R}_{1}, t\right)=\vec{e}_{f} \frac{1}{\left|R_{1}\right|} \frac{e^{2}}{m c^{2}} E_{0} e^{i\left(\vec{k}_{f} \cdot \vec{R}_{1}-\omega t\right)} \sin \psi \\
& \vec{r} \neq 0: \vec{E}_{s}\left(\vec{R}_{2}, t\right)=\vec{e}_{f} \frac{1}{\left|R_{2}\right|} \frac{e^{2}}{m c^{2}} E_{0} e^{i \vec{k}_{i} \cdot \vec{r}} e^{i\left(\vec{k}_{f} \cdot \vec{R}_{2}-\omega t\right)} \sin \psi
\end{aligned}
$$

- We see that $\vec{k}_{f} \cdot \vec{R}_{2}=\vec{k}_{f} \cdot \vec{R}_{1}-\vec{k}_{f} \cdot \vec{r}$

$$
\vec{E}_{S}\left(\vec{R}_{2}, t\right)=\vec{e}_{f} \frac{1}{\left|R_{2}\right|} \frac{e^{2}}{m c^{2}} E_{0} e^{i\left(\vec{k}_{i}-\vec{k}_{f}\right) \cdot \vec{r}} e^{i\left(\vec{k}_{f} \cdot \vec{R}_{1}-\omega t\right)} \sin \psi
$$

- If we tate large $\left|R_{1}\right|,\left|R_{2}\right|, \frac{1}{\left|R_{1}\right|} \approx \frac{1}{\left|R_{2}\right|} \approx \frac{1}{R} \int_{\substack{\text { average } \\ \text { distance to } \\ \text { detector }}}^{\text {- }}$
so $\quad \vec{E}_{S}\left(\vec{R}_{2}, t\right)=\vec{E}_{S}\left(\vec{R}_{1}, t\right) e^{-i \Delta \vec{k}} \cdot r$

$$
\Delta \vec{k}^{\hat{k}}=\vec{k}_{f}-\vec{k}_{i}
$$

- Sum of intensity from both:

$$
I_{s}(R, \psi)=I_{0} \frac{1}{R^{2}}\left(\frac{e^{2}}{m c^{2}}\right)^{2}\left(1+e^{-i \Delta \vec{k} \cdot \vec{r}}\right)^{2} \sin \psi
$$

- Instead discrete point charges, if we had a continuous charge distribution,

$$
I_{s}(R, \psi)=I_{0} \frac{1}{R^{2}}\left(\frac{e^{2}}{m c^{2}}\right)^{2}[\underbrace{\int n_{e 1}(\vec{r}) e^{-i \Delta \vec{k} \cdot \vec{r}} d \vec{r}}]^{2} \sin \psi
$$

Fourier transform of electronic density!

* We have seen that scattering probes the fourier transform of the election density. What if $n_{e l}(\vec{r})$ is periodic as in a crystal?
- Fourier coefficients $F(\Delta k)=\int n_{e l}|\vec{r}| e^{-i \Delta \vec{k} \cdot r} d \vec{r}$ only nonzero if $\Delta \vec{k}=\vec{G}$ where \vec{G}_{T} is a reciprocal lattice vector
\Rightarrow peaks in x-ray scattering give reciprocal lattice vectors!!
* Another way to see this: Bragg condition
- Consider scattering off of lattice planes spaced by d :

- Extra distance from scattering off of plane 2 is $2 d \sin \phi$. So for constructive interference we need wavelength of incident light to be

$$
n \lambda=2 d \sin \phi, \quad n \in \mathbb{Z}
$$

- Now consider $\Delta \vec{k}=\vec{k}_{f}-\vec{k}_{i}$

$$
\sin \phi=\frac{\frac{|\Delta \vec{k}|}{2}}{\left|\vec{k}_{f}\right|} \Rightarrow|\Delta \vec{k}|=2\left|k_{f}\right| \sin \phi
$$

Since we are considering elastic scattering,

$$
\left|\vec{k}_{i}\right|=\left|\vec{k}_{f}\right|=\frac{\omega}{c}=\frac{2 \pi}{2} \Rightarrow|\Delta \vec{k}|=\frac{4 \pi}{2} \sin \phi=\frac{2 \pi}{d} n
$$

- So $\Delta \vec{r}$ is perpendicular to lattice planes and has magnitude $\frac{2 \pi}{d} n$

$$
\Rightarrow \Delta \vec{k}=\vec{G}!!!
$$

- Thus by measuring diffraction peaks obtained by varying $\Delta \vec{R}$, can map out ${\overrightarrow{F_{n}}}_{n}$ and this \vec{E}_{m} * To map this out we can
- Shire light of various wavelengths (Laue method)
- Shine monochromatic light, but rotate the sample (Bragg method)
- Use a "polycrystalline" sample with many crystallites with different orientations (powder method)
- So far we have just discussed where the peaces are, but information also is in relative intensities of peaks
* Consider $n_{e l}(\vec{r})$ as made up of spherically symmetric contributions at each atomic site:

$$
n_{e 1}(\vec{r})=\sum_{\vec{t}_{r}} \sum_{\overrightarrow{d \nu}} n_{\text {av }}\left(\vec{r}-\vec{t}_{r}-\vec{d}_{\nu}\right)
$$

\longrightarrow works well core election contribution, or crystals without significant covalent bonding

* Then, we have:

$$
\begin{aligned}
& F(\Delta \vec{k})=\sum_{t_{r}}^{1} \sum_{d \vec{\nu}}^{\vec{~}} \int e^{-i \Delta \vec{k} \cdot r} \operatorname{nav}\left(\vec{r}-\vec{t}_{r}-\overrightarrow{d \nu}\right) d \vec{r} \\
& =\sum_{t_{2}} \sum_{\overrightarrow{d v}}^{v} \int e^{-i \Delta \vec{k} \cdot \vec{r}} e^{-i \Delta \vec{k} \cdot\left(\vec{t}_{r}+d v\right)} e^{i \Delta \vec{k} \cdot\left(\overrightarrow{t r}_{r}+d v\right)} \operatorname{nav}\left(\vec{r}-\vec{t}_{r}-\overrightarrow{d v}\right) d \vec{r} \\
& =\sum_{\vec{E}_{r}} \sum_{d v} \int e^{-i \Delta \vec{k} \cdot\left(\vec{r}-\vec{t}_{r}-\overrightarrow{d v}\right)} e^{-i \Delta k \cdot\left(\vec{t}_{r}+\overrightarrow{d v}\right)} n_{a v}\left(\vec{r}-\vec{t}_{r}-\overrightarrow{d v}\right) d \vec{r} \\
& =\sum_{\vec{t} r}^{2} e^{-i \overrightarrow{\Delta k} \cdot \overrightarrow{t_{r}}} \sum_{d \vec{v}}^{2} e^{-i \Delta \vec{k} \cdot d \vec{v}} \underbrace{\int e^{-i \Delta \vec{k} \cdot \vec{r}} \operatorname{nav}(\vec{r}) d \vec{r}}_{f_{a v}(\Delta \vec{k}) \rightarrow \text { "atomic }} \\
& f_{a v}(\Delta \vec{k}) \rightarrow \text { "atomic form factors" }
\end{aligned}
$$

- Still have Laue condition for fay to be nonzero only if $\Delta \vec{k}=\vec{G}$
- Once Lave condition is satisfied, get crystal "Structure factors":

$$
F(\vec{G})=N \sum_{d \vec{v}} e^{-i \vec{G} \cdot \overrightarrow{d v}} f_{a \nu}(\vec{G})
$$

- If all atoms are the same, we can factor f out from the sum:
$F(\vec{G})=N f_{a}(\vec{G}) \underbrace{\sum_{\overrightarrow{d v}} e^{-i \vec{G}_{G} \cdot \overrightarrow{d v}}}$ 良eometrical structure factor
* Take as an example diamond structure
- $F C C$ with basis $\vec{d}_{1}=0, \vec{d}_{2}=a / 4(1,1,1)$
- $\vec{g}_{1}=\frac{2 \pi}{a}(-1,1,1) \quad \vec{g}_{2}=\frac{2 \pi}{a}(1,-1,1) \quad \vec{g}_{3}=\frac{2 \pi}{a}(1,1,-1)$
- general $G_{m}=m_{1} \vec{g}_{1}+m_{2} \vec{g}_{2}+m_{3} \vec{g}_{3}$. Note that $G_{m}=\frac{2 \pi}{a}\left(h_{1}, h_{2}, h_{3}\right)$ where h_{1}, h_{2}, h_{3} are all even or all odd

$$
\begin{aligned}
& \text { - } S(\vec{G})=e^{-i \vec{G} \cdot \vec{d}_{1}}+e^{-\vec{G}_{7} \cdot \vec{d}_{2}}=1+e^{-i \pi\left(h_{1}+h_{2}+h_{3}\right) / 2} \\
& S(\vec{G})=\left\{\begin{array}{cl}
1-i & \text { if } h_{1}, h_{2}, h_{3} \text { are odd and } h_{1}+h_{2}+h_{3}=4_{n}+1 \\
1+i & \text { if } h_{1}, h_{2}, h_{3} \text { are odd and } h_{1}+h_{2}+h_{3}=4_{n}+3 \\
2 & \text { if } h_{1}, h_{2}, h_{3} \text { are even and } h_{1}+h_{2}+h_{3}=4_{n} \\
0 & \text { if } h_{1}, h_{2}, h_{3} \text { are even and } h_{1}+h_{2}+h_{3}=4 n+2
\end{array}\right.
\end{aligned}
$$

- So reciprocal lattice vectors with h_{1}, h_{2}, h_{3} odd have the same $|S(G)|^{2}$
- even h_{1}, h_{2}, h_{3} with $h_{1}+h_{1}+h_{3}=4_{n}+2$ are "forbidden", ie., will be very weak in diffraction experiments
* In reality, densities associated with atoms are not spherically symmetric, so these rules are approximate.

