• Now consider
$$V(x) \neq 0$$
. Apply H to W_{k} .
Since $V(k) W_{k}(x) = \frac{1}{12} \notin U_{n} e^{i(h_{n}+k)x}$
 $V(x) W_{k}(x) = \frac{1}{12} \notin U_{n} e^{i(h_{n}+k)x}$
 $(x|H|W_{k}) \in \notin V_{k}(x), W_{k+h_{k}}(x), W_$

* Back to question: What does periodicity mean for 4, E?
• 4's are "itinerant"
• 4's labelled by k in filst B2
•
$$4_{k}(k) = 4_{k}(k) e^{ikxn}$$
, $t_{n} = na$ ($n \in \mathbb{Z}$)
• $4_{k}(k+tn) = 4_{k}(k) e^{iktn}$, $t_{n} = na$ ($n \in \mathbb{Z}$)
• At each k we have set of energies F_{m} "latel
• Can plot $E_{m}(k)$ in first $B2 \Rightarrow$ forms a "band"
 \Rightarrow question! is k continuous in $B2$?
* Lets consider "Finite," "macroscopic" crystal:
• $0 \le x \le L = Na$ $N \in \mathbb{Z}$, N large but finite
• If $a \sim A$, $L \sim Cm$, $N \sim 10^{\circ}$
• $4(x + Na) \equiv 4(x) \Rightarrow Bein - 4on Kerman boundary conditions
 \Rightarrow Only acceptable Ks are: $e^{ikNn} = 1$
 $\Rightarrow bn = \frac{2\pi}{Na}n$, $n \in \mathbb{Z}$
Example: empty lattice F
 $V(x) = 0$$