Yet another picture of $1 D$ solids: Tight -Binding Approximation

- Before, we described solids as electrons and barriers
- In real life we have electrons and nuclei * electrons and nuclei attract each otter!
* Some times "group nuclei with core electrons to form "ions"
* other elections that pardicipate in bonding are called "valence"
- Consider a set of identical atoms
* Far apart \rightarrow no interaction \rightarrow same energy levels
* Closer together \rightarrow interacting \rightarrow energy levels form bands

* N atomic - like potentials at lattice positions $t_{x}=$ na
* ϕ_{a} is or bital of single atom, energy Ea
- Assume nondegenerate and real
* crystal wavefunction using basis: $\phi_{a}\left(x-t_{n}\right)$
* Assume Qa's are orthonormal

$$
\left\langle\phi_{a}^{t_{n}} \mid \phi_{a}^{t_{m}}\right\rangle=\delta_{m n} \quad\left[\text { notation: }\left\langle x \mid \phi_{a}^{t_{n}}\right\rangle=\phi\left(x-t_{n}\right)\right]
$$

* Represent crystal Hamiltonian in basis of atomic Or bitals:

$$
\begin{aligned}
& \left\langle\phi_{a}^{t_{n}}\right| H\left|\phi_{a}^{t_{n}}\right\rangle=E_{0} \leftarrow \text { onsite energy } \\
& \left\langle\phi_{a}^{t_{n}}\right| H\left|\phi_{a}^{t_{n \pm l}}\right\rangle=\gamma \in \begin{array}{r}
\text { nearest neighbor } \\
\text { hopping }(\angle 0)
\end{array}
\end{aligned}
$$

* Let's make a linear combination of ϕ that satisfies Bloch's theorem:
$\Phi(k, x)=\frac{1}{\sqrt{N}} \sum_{n} e^{i k t_{n}} \phi_{a}\left(x-t_{n}\right) \longleftarrow$ Bloch sum (k's cannot mix!)
- check Bloch's theorem:

$$
\begin{aligned}
& \Phi\left(k_{1} x+t_{m}\right)=\frac{1}{\sqrt{N}} \sum_{n}^{i} e^{i k t_{n}} \phi_{a}\left(x+t_{m}-t_{n}\right) \tilde{t}_{n}=t_{n}-t_{m} \\
&=x-t_{n} \\
&=\frac{1}{\sqrt{N}} e^{i k t_{m}} \sum_{n} e^{i k\left(t_{n}-t_{m}\right)} \phi_{a}\left(x+t_{m}-t_{n}\right) \\
&=e^{i k t_{m}} \Phi(k, x) \quad \text { just shifted } \\
& \text { by tm! }
\end{aligned}
$$

* Note: Bloch sums $w /$ different k are orthonormal * Energy dispersion of band: (e.g., see next page)

$$
E(k)=\left\langle\Phi^{k}\right| H\left|\Phi^{k}\right\rangle\left[\text { notation: }\left\langle x \mid \Phi^{k}\right\rangle=\Phi(k, x)\right]
$$

* for nearest neighbor hopping:

$$
E(k)=E_{0}+\partial \gamma \cos (k a)
$$

- Dispersion! $E(k)=E_{0}+2 \gamma \cos (k a)$
* Expand to second order around $k=0$

$$
E(x) \approx E_{0}+2 \gamma-\gamma a^{2} k^{2} \cong E_{0}+2 \gamma-\frac{\hbar^{2} k^{2}}{2 m^{*}}
$$

where "effective mass" $m^{*}=\frac{\hbar^{2}}{2|\gamma| a^{2}}$ lager bopping smaller m^{*}

- Tight -binding Hamiltonian as an operator:

$$
\hat{H}=E_{0} \sum_{n}\left|\phi^{n}\right\rangle\left\langle\phi^{n}\right|+\gamma \sum_{n}\left[\left|\phi^{n}\right\rangle\left\langle\phi^{n+1}\right|+\left|\phi^{n+1}\right\rangle\left\langle\phi^{n}\right|\right]
$$

* Bloch sum is:

$$
\left|\Phi^{k}\right\rangle=\frac{1}{\sqrt{N}} \sum_{m}^{1} e^{i k t_{n}}\left|\phi_{m}\right\rangle
$$

* Can calculate the dispersion:

$$
\begin{aligned}
\hat{H}\left|\Phi^{k}\right\rangle= & \frac{1}{\sqrt{N}} \sum_{m} e^{i k t_{m}}\left[E_{0} \sum_{n}\left|\phi^{n}\right\rangle\left\langle\phi^{n} \mid \phi^{m}\right\rangle\right. \\
& \left.+\gamma \sum_{n}\left(\left|\phi^{n}\right\rangle\left\langle\phi^{n+1} \mid \phi^{m}\right\rangle+\left|\phi^{n+1}\right\rangle\left\langle\phi^{n} \mid \phi^{m}\right\rangle\right)\right] \\
= & \frac{1}{\sqrt{N}} \sum_{m} e^{i k t_{m}}\left[E_{0}\left|\phi^{m}\right\rangle+\gamma\left(\left|\phi^{m-1}\right\rangle+\left|\phi^{m+1}\right\rangle\right)\right] \\
= & E_{0}\left|\Phi^{k}\right\rangle+\gamma\left(e^{-i k a}+e^{i k_{a}}\right\rangle\left|\Phi^{k}\right\rangle \\
= & {\left[E_{0}+2 \gamma \cos (k a)\right]\left|\Phi^{k}\right\rangle }
\end{aligned}
$$

* We can write It as a $N \times N$ matrix (assume γ is real)
$4 \times 4:\left[\begin{array}{cccc}E_{0} & \gamma & 0 & 0 \\ -\gamma & E_{0} & \gamma & 0 \\ 0 & \gamma & E_{0} & \gamma \\ 0 & 0 & \gamma & E_{0}\end{array}\right] t^{\text {"tridiagonal" matrix }}$
- many physics problems expressed as a tridiagonal matrix
- Most general form:

$$
M=\left[\begin{array}{ccccc}
\alpha_{0} & \beta_{1} & 0 & 0 & \cdots \\
\beta_{1} & \alpha_{1} & \beta_{2} & 0 & \cdots \\
0 & \beta_{2} & \alpha_{2} & \beta_{3} & \cdots \\
0 & 0 & \beta_{3} & \alpha_{3} & \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

\leftarrow Assume M is large but finite

* Suppose we would like to determine $\left(\frac{1}{m}\right)_{00}$ sTop left element of inverse of M
(we see why below)
- Can show that (see G and P sec. I.4.2):

$$
\left(\frac{1}{M}\right)_{00}=\frac{1}{a_{0}-\frac{\beta_{1}^{2}}{\alpha_{1}-\frac{\beta_{2}^{2}}{\cdots}}-\underbrace{\alpha_{-1}-\frac{\beta_{0}^{2}}{\alpha_{-1}}}_{\text {"continued fractions" }}} \quad \underbrace{}_{\begin{array}{c}
\text { for } n \text { in } \\
\text { positive or } \\
\text { negative } \\
\text { directions }
\end{array}}
$$

