Dynamical aspects of electrons in bands
- What else does the band structure tell us
about how electrons in solids behave?
- Consider first free electron:
eigenfunctions:
$$W(k, k) = \frac{1}{k!} e^{ikx}$$

eigen functions: $W(k, k) = \frac{1}{k!} e^{ikx}$
eigen values : $E(k) = \frac{k^{2}k^{2}}{2M}$
- Plane waves are eigenfunctions of momentum:
 $\hat{P} | W_{k} \rangle = -i\hbar \frac{d}{dx} | W_{k} \rangle = \hbar k | W_{k} \rangle$
- Now consider $e^{-i\hbar}$ in periodic potential
For band $E(k)$, wave function $V_{k}(k) = U_{k}(k)e^{ikx}$
 $(\chi|\hat{P}|\Psi_{k}) = -i\hbar \frac{d}{dx} [e^{ikx} U_{k}(x)] = \pi k \Psi_{k}(x) - i\hbar e^{ikx} \frac{d}{dx} U_{k}(x)$
 $= \hbar k \int e^{ikx} U_{k}(x) = \pi eigen Function cf \hat{p}$
* Even though $\hbar k$ is not true momentum of election,
it is still a use Ful quantity
• $\hbar k \rightarrow Crystal (of quasi) momentum$
Consider the "semiclassical" electron velocity:
 $V(k) = (\Psi_{k}|\Psi_{k})$
• we can relate this to Elec) in the
following way (see next page)

• Start w/ the relation!

$$\langle \Psi_{R} \mid \frac{P^{2}}{2m} + \hat{U} \mid \Psi_{R} \rangle = E_{R}$$

Express in terms of cell - periodic functions u:
 $\langle \Psi_{R} \mid \frac{P^{2}}{2m} \mid \Psi_{R} \rangle = \langle \Psi_{R} \mid \frac{(P+KK)^{2}}{2m} \mid \Psi_{R} \rangle = \langle \Psi_{R} \mid \frac{(P+KK)^{2}}{2m} \mid \Psi_{R} \rangle = \langle \Psi_{R} \mid \hat{U} \mid \Psi_{R} \rangle = \langle \Psi_{R} \mid \hat{U} \mid \Psi_{R} \rangle$
Now take derivative $\frac{d}{dk}$: H_{L} is Hamiltonian for
Now take derivative $\frac{d}{dk}$: H_{L} is Hamiltonian for
 $\frac{dE(R)}{dK} = \frac{d}{dk} \langle \Psi_{R} \mid \frac{(P+KK)^{2}}{2m} + V \mid \Psi_{R} \rangle$
 $= \langle \frac{d\Psi_{R}}{dK} \mid \frac{H}{K} \mid \Psi_{R} \rangle + \langle \Psi_{R} \mid \frac{d}{dK} \mid \frac{(P+KK)^{2}}{2m} \mid \Psi_{R} \rangle$
 $+ \langle \Psi_{R} \mid \frac{H}{K} \mid \frac{d\Psi_{R}}{2m} \rangle = 0$
 $(P + (P = E_{R}) \mid \frac{d}{dK} \langle \Psi_{R} \mid W_{R} \rangle) = 0$
 $(P + (P = E_{R}) \mid \frac{d}{dK} \langle \Psi_{R} \mid W_{R} \rangle) = 0$
 $(P + (P = E_{R}) \mid \frac{d}{dK} \langle \Psi_{R} \mid W_{R} \rangle) = 0$
 $(P + (P = E_{R}) \mid \frac{d}{dK} \langle \Psi_{R} \mid W_{R} \rangle) = 0$
 $(P + (P = E_{R}) \mid \frac{d}{dK} \langle \Psi_{R} \mid W_{R} \rangle) = 0$
 $(P + (P = E_{R}) \mid \frac{d}{dK} \langle \Psi_{R} \mid W_{R} \rangle) = 0$
 $(P + (P = E_{R}) \mid \frac{d}{dK} \langle \Psi_{R} \mid W_{R} \rangle) = 0$
 $(P + (P = E_{R}) \mid \frac{d}{dK} \langle \Psi_{R} \mid W_{R} \rangle) = 0$
 $(P + (P = E_{R}) \mid \frac{d}{dK} \langle \Psi_{R} \mid W_{R} \rangle) = 0$
 $(P + (P = E_{R}) \mid \frac{d}{dK} \langle \Psi_{R} \mid W_{R} \rangle) = 0$
 $(P + (P = E_{R}) \mid \frac{d}{dK} \langle \Psi_{R} \mid W_{R} \rangle) = 0$
 $(P + (P = E_{R}) \mid \frac{d}{dK} \langle \Psi_{R} \mid W_{R} \rangle) = 0$
 $(P + (P = E_{R}) \mid \frac{d}{dK} \mid \frac{d}{dK} \mid W_{R} \rangle) = 0$
 $(P + (P = E_{R}) \mid \frac{d}{dK} \mid \frac{d}{dK} \mid W_{R} \rangle) = 0$
 $(P + (P = E_{R}) \mid \frac{d}{dK} \mid \frac{d}{dK} \mid W_{R} \rangle) = 0$
 $(P + (P = E_{R}) \mid \frac{d}{dK} \mid \frac{d}{dK} \mid W_{R} \rangle) = 0$
 $(P + (P = E_{R}) \mid \frac{d}{dK} \mid \frac{d}{dK} \mid W_{R} \rangle) = 0$
 $(P + (P = E_{R}) \mid \frac{d}{dK} \mid \frac{d}{dK} \mid W_{R} \rangle) = 0$
 $(P + (P = E_{R}) \mid \frac{d}{dK} \mid \frac{d}{dK} \mid W_{R} \rangle) = 0$
 $(P + (P = E_{R}) \mid \frac{d}{dK} \mid \frac{d$

It What if we consider the interband ase, taking:

$$\frac{d}{d\kappa} \left[\frac{1}{2m} \left(p + hk \right)^{2} + V \right] \left| U_{nK} \right\rangle = \frac{d}{d\kappa} \left[E_{nK} \right] U_{nK} \right\rangle \quad n \to band index$$

$$\stackrel{\Rightarrow}{=} \frac{f}{m} \left[p + kk \right] \left| U_{nK} \right\rangle + H_{K} \left| \frac{d U_{nK}}{d\kappa} \right\rangle = \frac{dE_{nK}}{d\kappa} \left| U_{nK} \right\rangle + E_{nK} \left| \frac{d U_{nK}}{d\kappa} \right\rangle$$
Now multiply on left by $\langle U_{mK} | , m \neq n$:
 $\langle U_{mK} | \frac{f_{m}}{m} \left[p + t_{K} \right] \left| U_{nK} \right\rangle + \langle U_{mK} | H_{K} \right| \frac{d U_{nK}}{d\kappa} > = \langle U_{mK} | \frac{dE_{nK}}{d\kappa} | U_{nK} \right\rangle$

$$+ E_{nK} \langle U_{mK} | \frac{f_{m}}{d\kappa} p \right] U_{nK} \rangle = (E_{nK} - E_{mK}) \langle U_{mK} | \frac{d U_{nK}}{d\kappa} \rangle$$

What does Crystal momentum tik tell us?
• Consider effect of unifolm electric field!

$$H = \frac{p^{2}}{2m} + V + eFK$$
 (Note, breaks privoterity)
• At some initial time to 0, prepare a Black state
• Time evolution will be!

$$\frac{\psi(x, \varepsilon; F) = exp(-\frac{i}{m}Ht) \quad \psi(k_{0}, t) = -initial Black State$$
• Now translate variable $x \Rightarrow xta$:

$$\frac{\psi(xra, \varepsilon; F) = exp(-\frac{i}{m}Ht) exp(-\frac{i}{m}eFat) e^{iKo} \quad \psi(k_{0}, x) = -initial Black State$$
• Now translate variable $x \Rightarrow xta$:

$$\frac{\psi(xra, \varepsilon; F) = exp(-\frac{i}{m}Ht) exp(-\frac{i}{m}eFat) e^{iKo} \quad \psi(k_{0}, x) = -\frac{i}{m}eFt = -\frac{i}{m}eFt + Ko$$
• Time evolved wavefunction is Black - type wilk changing linearly in time:
• Consider a single band. Semiclassical acceleration:

$$\frac{dV(E)}{dt} = \frac{d}{dt} = \frac{1}{dE(E)} = \frac{1}{dt} = \frac{d^{2}E(E)}{dt} = \frac{d^{2}E(E)}{dt^{2}} = -EF$$
• Newton - like expression $F = m^{2}a$, $L = \frac{1}{dt} = \frac{d^{2}E(E)}{dt^{2}}$

* Conductivity in bands

 Consider a completely filled band. What is current I?
 I for spin, more on this later
 I = <u>Charge</u> = 22 - e <u>V(k)</u> = -2e Z <u>JE(k)</u> = 0 time k <u>L</u> = <u>L</u> k <u>d</u> k $\frac{dE(k)}{dk} = 0$ because E(k) = E(-k) (more on this later)

· Remove one electron at state kn: $I_{h} = 2 \sum_{k}^{l} -e \underbrace{V(k)}_{L} - (-e) \underbrace{V(k_{h})}_{L} = +e \underbrace{V(k_{h})}_{L}$ L'effective current of "hole" lootes like positively charged electron!

• We see that only materials w/ partially filled bands conduct electricity

Black oscillations
-What will happen if we continue to apply the
field?
*
$$k(t) = k_0 - \frac{1}{k} eFt$$
, $U(t) = \frac{1}{k} \frac{JE(k)}{dk} \Big|_{k=k(t)}$
in agnitude increases
linearly
Free electron Empty lattice Periodic potential
 $fE = \frac{E}{a} \int_{k=k}^{k=k(t)} \frac{E}{a} \int_{k=k(t)}^{k=k(t)} \frac{E}{a} \int_{k=k(t)}^{k$

- * Instead of V increasing in time (free electron/ empty lattice), electron motion is oscillitory
 - · Bloch Oscillations
 - Time TB, frequency we to complete one oscillation:

$$T_B = \frac{2T_T}{aeF}$$
, $W_B = \frac{2T}{T_B} = \frac{aeF}{T}$

$$V(t) = -\frac{28a}{5} \sin\left[\left(\frac{\pi}{6} - \frac{eFt}{4}\right)a\right] \qquad \text{Spation}$$

so:
$$x(t) = X_0 - \frac{28}{eF} \cos\left[\left(\frac{\pi}{6} - \frac{eFt}{5}\right)a\right] \qquad \text{Spation}$$

*	In realistic situations we have scattering
	• No system has perfect periodicity
	• More on scattering later
	· parame rized by a scattering time T
	· Could only observe Bloch oscillations if:
	WB 2 77 - Many Oscillations before scattering
	 For field of F= 10⁴ V/cm, a= 1 Å ⇒ T_B ~ 10⁻⁹ s
	 Many scattering processes happen on the order of femto or pico seconds
	• In many materials wer >> 1
¥	NOTE: shrictly speaking F breaks translational
	Symmetry, so the band structure should not
	be taken too literally
	· Lecall, this is a semiclassical approach!