
PHY 604: Computational Methods in Physics and Astrophysics II
Homework #5

Due: Nov. 11, 2021

Programs can be written in any language, In addition to the program, you should have a writeup that
contains the plots requested in the homework questions, answers to any analytical or explanation questions,
and a short description of your code and how to run it. This can be done via, e.g., LATEX, markdown, jupyter
notebooks, etc.

Code and writeup should be submitted using git via github in the repo that was created from the github
classroom link.

1. Relaxation methods for the Poisson equation (based on Garcia)

(a) Write a program that solves the two-dimensional Poisson equation in a square geometry with
the Dirichlet boundary conditions Φ = 0 at the boundaries using one of the relaxation methods
discussed in class (i.e., Jacobi, Gauss-Seidel, or SOR). Map the potential for a single charge at
the center of the system. Compare with the potential for a charge in free space (recall that a
point charge in 2D is equivalent to a line charge in 3D).

(b) Modify your program to use periodic boundary conditions. Compare the result to part (a).

2. Stability analysis (based on Garcia) In class we discussed two methods for assessing the stability of
PDEs, von Neumann stability analysis and matrix stability analysis. In this problem, we will explore
these approaches on a variety of explicit/implicit schemes. Note: Several parts of this problem do
not require writing any programs.

(a) Consider the leapfrog scheme for solving the advection equation introduced in question 3(b)
of Homework 4:
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Use the von Neumann stability analysis to show that the method is stable only if τ ≤ h/|c|.

(b) Consider the Richardson scheme for solving the diffusion equation introduced in question 2(a)
of Homework 4:
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Use the von Neumann stability analysis to show that this scheme is unconditionally unstable.

(c) The Lax scheme for the advection equation with periodic boundary conditions may be written
as

an+1 =

(
1
2

C− cτ

2h
B
)

an ≡ Aan (3)

where

an =


an

0
an

1
an

2
...

an
N−1

 , C =


0 1 0 . . . 0 1
1 0 1 . . . 0 0
0 1 0 . . . 0 0
...

...
...

. . .
...

...
1 0 0 . . . 1 0

 , B =


0 1 0 . . . 0 −1
−1 0 1 . . . 0 0
0 −1 0 . . . 0 0
...

...
...

. . .
...

...
1 0 0 . . . -1 0

 . (4)

Demonstrate that the matrix stability analysis gives by τ ≤ h/|c| by plotting the spectral radius
versus time step of A.
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(d) A stricter condition for matrix stability is that the norm of A is less than or equal to unity. There
are a variety of ways to compute the norm. The easiest is the so-called 1-norm:

||A||1 = max
j=0,...,N−1

{
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}
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which is simply the maximum absolute column sum of the matrix, and the ∞-norm:
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which is the maximum absolute row sum of the matrix. Do the same matrix analysis as you
did in part (c), but plotting these matrix norms instead of the spectral radius.

(e) Recall the diffusion equation
∂

∂t
T(x, t) = κ

∂2

∂x2 T(x, t), (7)

Use von Neumann and matrix analysis to demonstrate that the Crank-Nicolson is uncondi-
tionally stable for this equation (with periodic boundary conditions).

3. Schrödinger equation with the spectral method (Based on Newman exercise 9.9) Consider the time-
dependent Schrödinger equation
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In this problem, we will solve for ψ(x, t) of a particle in a box of length L using spectral methods
similar to those discussed in class for the Poisson equation. Take as basis functions
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Thus we will seek solutions of the form:
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where bk are a set of complex coefficients. Our initial form of the wave function will be the wave
packet discussed in class:
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Use natural units (h̄ = m = 1), L = 100 Bohr, N = 1000, x0 = L/2, σ0 = L/10, and k0 = 0.5.

(a) First write a program that obtains the coefficient bk via a discrete sine transformation of ψ(x, t =
0). Do the transformation separately for the real and imaginary part of ψ(x, t = 0), obtaining
two sets of coefficients ak and ηk such that bk = ak + iηk.

(b) Obtain the real part of ψ(xn, t) on your spatial grid by taking the inverse discrete sine transfor-
mation of Re

[
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.
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(c) Plot ψ(x, t) for several time steps and describe what you see.

Hint: No need to program the discrete sine transformation (or inverse) yourself, e.g., see:

https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.dst.html

and

https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.idst.html.

4. Radioactive decay chain (Based on Newman exercise 10.2) The isotope 213Bi decays to a much more
stable isotope 209Bi via one of two different routes, with probabilities and half-lives shown in Fig. 1.
Starting with a sample consisting of 10,000 atoms of 213Bi, simulate the decay of atoms over 20,000 s
using a time slices of 1 s. Hint: Start from the lower decay processes (209Pb→209 Bi) and work your
way up.

Figure 1: Decay paths from 213Bi to 209Bi
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