PHY604 Lecture 12

September 30, 2021

Review: Multivariate Newton’s method

* We can generalize Newton’s method for equations with several
variables

e Can be used when we no longer have a linear system
e Cast the problem as one of root finding

» Consider the vector function: f(x) = [fi(x) fi(x) ... fn(x)]
* Where the unknowns are: x = |z1 1 ... xn]

« Revised guess from initial guess x©©: x; = x¢ — f(x0)J ' (x0)
e J-1is the inverse of the Jacobian matrix:

Jij(x) = ng(jc)

* To avoid taking the inverse at each step, solve with Gaussian
substitution:
Jox" = —f(x")

Review: Steepest descent

* Used for finding roots, minima, or maxima of functions of several
variables

* Based on the idea of moving downhill with each iteration, i.e.,
opposite to the gradient
* If current position is x,,, next step is:
Tpi1 =Tp —anVf(xy)
* Determine the step size o such that we reach the line minimum in
direction of the gradient:

d

e flari(@n)] = =V (wnss) - V() = 0

* Find root of function of « :
g(a) = V flrpyi(a)] - Vf(z,) =0

Review: Discrete Fourier transform

* Assume function evaluated on equally-spaced points n:

2mnk
Fk— anexp<—z N)

 (dropped the 1/N from pervious slide, matter of convention)
e This is the discrete Fourier transform (DFT)
* Does not require us to know the positions x,, of sample points, or even width L

* We can define an inverse discrete Fourier transform to recover the
initial function: Z i 27mk
ex
k €XP N

* “Exact” (up to rounding errors), even though we used the trapezoid
rule

* see e.g., Newman Sec. 7.2

* (1/N reappears)

Review: What can we do with the DFT? E.g., filtering

L] L L] L] L] L] L]
* Sin function with noise: e Error function with noise:
. .
15 —— Sine function with noise 151
—— Sine function 2.0 A
1.0 1.0 A
0.5 0.5 151
= < = —— Erf function with noise
X N3 E X -
= 00 T 00 S1071 Erf function
-0.5 —0.5 054
-1.0 —1.0 A1
0.0
_15 r T T T T _15 L T T T T T T T T T T T T
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
X X X X
. 0 150 1 — Re(F) 150 ~
""" Im(Fk)
| = 100 100 -
—50 -50
50+ _ 50+
-100{ ¢ -1001 z g T
: ! 0 1 W»WM 04 F&"'J\v
-1501 -150{ i g
H -50 1 -50 A
H — Re(Fy) '
—2004 ¢+ e Im(Fy) —200 i —100 —100
0.0 0.5 1.0 15 20 25 3.0 35 4.0 0.0 05 1.0 1.5 20 25 3.0 35 4.0 O.E)O 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Vi Vi k k
1.54 1.0
2.0
1.0 1
0.5 |
1.5
0.5 1
0.0 1 0.0 1 1.0 1
—0.5 A i
05+ 0.5
_10 4
0.0 A
_10 4
_15 1 T
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

X X f(x) f(x)

Today’s lecture:
FFTs and curve fitting

* More on Fourier Transforms
e 2D FT

e Cosine transformation
* FFTs

* Curve fitting

Two-dimensional Fourier transforms

» Simply transform with respect to one variable and then the other

e Consider function on M x N grid
e 1. Perform DFT on each of the m rows:

21in
ml_ menexp <_Z N)

e 2. Take Ith coefficient in each of the M rows and DFT:
M—1

21k
Fr = Z F! exp (—z 7;\4771)

m=0

* Combining these give5°
—1N-1

Fr = > >1 frmmn €XP {—72% (]j\;n - Z;)}

m=0 n=0

Cosine transformation (see Newman sec. 7.3)

(Newman)

Function

* Can also construct Fourier series from using sine and cosine functions instead of
complex exponentials

* Cosine series: Can only represent functions symmetric about the midpoint of the
interval

* Can enforce this for any function by mirroring it, and then repeating the mirrored function

 Different ways of writing it (see Newman):

N mk(n + 1) 1 mk(n + 3)
Fk:;%fncos< N2>’ fn NZFkCOS(N2>

Benefits of the cosine transformation

* Only involves real functions

* Does not assume samples are periodic (i.e., first point and last point
are the same)

* Avoids discontinuities from periodically repeating function over interval
* Often preferable for data that is not intrinsically periodic

e Used for compressing images and other media
* JPEG, MPEG

* Can also define a sine transformation
* Requires that function vanish at either end of its range

Fast Fourier transforms

* DFTs shown before have a double sum, so scale something like N?2
operations

e We can do it in much less

s 2mnk
e Consider the DFT: F} = Z:O fnexp <—z N)

* Take the number of samples to be a power of 2: N = 27

* Break F, into n even and n odd. For the even terms:
iN-1 IN-1

21k (27) 2mkr
F = Z Jor €xp <—Z > Z Jor €xp <—Z N/2 >

e Just another Fourier transform, but with N/2 samples

Fast Fourier transforms continued

 For the odd terms:

A IN-1
2 2mk(2r + 1) _i2nk/N 2mkr _i2m 0
e f2r+1 exp (—Z N > — g 2 k/N 7;) f27~+1 exp <—@ N/2) — e 2 k/Nded

* Therefore:
F, = F}gven 4+ 6—i2wk/NF]de

* So full DFT is sum of two DFTs with half as many points

* Now repeat the process until we get down to a single sample where:

0
Fy = aneo = fo
n=0

Procedure for FFT

1. Start with (trivial) FT of single samples:
0
ko = Z fne® = fo
n=0

e 2. Combine them in pairs using:

—i27k /N rpodd
Fk:Flgven‘F@ 127k / FIS

* 3. Continue combining into fours, eights, etc. until the full transform
on the full set of samples is reconstructed

Speed up

* First “round” we have N samples

* Next round we combine these into pairs to make N/2 transforms with
two coefficients each: N coefficients

* Next round we combine these into fours to make N/4 transforms with
four coefficients each: N coefficients

* For 2™ samples we have m = log, N levels, so the number of
coefficients we have to calculate is N log, N

* Way better scaling than N?!

Speed up of FFT vs DFT

107% 4

107> 5

® DFT :
-
.
-
.
-
-
.
2 -
..... < N
.
.
-
.
-
------ x Nlog,N :
-
“
.
-
.
-
-
.
.
.
-
.
-
.
.
-
.
: o
S .
. .
- .
. *
- -
. L
.
. *
. .
[.
: »>
.
. *
' °.
* e *
. .
. .
. *
. .
* *
. .
- .
. *
. .
* *
. .
. .
- *
.o o
.
. o*
- .
. Pad
* .
- .
. .
o [*
.
. o
-
.
.
.
-
.
.
.
.
.
.
.
.
£y
T L | T T

Number of samples

Libraries for FF

* FFTW (fastest Fourier transform in the west)
e https://www.fftw.org/
e Csubroutine library
* Open source

* Intel MKL (math kernel library)

* https://software.intel.com/content/www/us/en/develop/tools/oneapi/comp
onents/onemkl.html#gs.bu9rfp

Written in C/C++, fortran

Also involves linear algebra routines

Not open source, but freely available

Often very fast, especially on intel processors

https://www.fftw.org/
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/onemkl.html

Python’s fft

* numpy.fft: https://numpy.org/doc/stable/reference/routines.fft.html

o fft/ifft: 1-d data

* By design, the k=0, ... N/2 data is first, followed by the negative
frequencies. These later are not relevant for a real-valued f{x)

* k's can be obtained from fftfreq(n)
 fftshift(x) shifts the k=0 to the center of the spectrum

o rfft/irfft: for 1-d real-valued functions. Basically the same as fft/ifft,
but doesn't return the negative frequencies

e 2-d and n-d routines analogously defined

https://numpy.org/doc/stable/reference/routines.fft.html

Today’s lecture:
FFTs and curve fitting

e Curve fitting

Fitting data

* We have discussed interpolation, now we’ll talk about fitting

* Interpolation seeks to fill in missing information in some small region of the
whole dataset

 Fitting a function to the data seeks to produce a model (guided by physical
intuition) so you can learn more about the global behavior of your data

* Goal is to understand data by finding a simple function that best
represents the data

* Previous discussion on linear algebra and root finding comes into play

* We will follow Garcia (Sec. 5.1)
* Big topic, we'll just look at the basics

Notation

14 ~

12 -

10 A

o N H o (00)
1 1 1 1 1

) Ay
| T +H f
Yixdap), AT §
/ +(Xiryi)
gl
L

00 25 50 7.5 100 125 15.0 17.5 20.0

General theory of fitting

* We have a dataset of N points (x,y)

* Would like to “fit” this dataset to a function Y(x,{a;})

* {a;} is a set of M adjustable parameters
* Find the value of these parameters that minimizes the distance between data

points and curve: A; =Y (z;, {aj}) —

e Curve-fitting criteria: Minimize the sum of the squares
N-—1

D({a;}) = ZAZ > [Y(xi, {a;}) — wil?

1=0

e “Least squares fit”
* Not the only way, but the most common

General theory of fitting

 Often data points have estimated error bars/confidence intervals o;
* Modify fit criterion to give less weight to points with the most error

x2<{aj}>=Nzl(3l _y Wn{sh —ul

1=0 1=0 7’

* v? most used fitting function
* Errors have a Gaussian distribution

* We will not discuss “validation” of curve fitted to data
* i.e., probability that the data is described by a given curve

Linear regression

* Now that we have criteria for a good fit, we need to find {a;}

* First consider the simplest example: fitting data with a straight line
Y(ZC@‘, {Cl(), al}) = ag + a1x

* Such that y? is minimized:
N-1

Z CLO‘I‘CLlﬂi’z yz‘]Q

aOa CL1

1=0 Z

Oy? — = a axz
L:Q 5 :()7 Z 0T a1
6&0 O 8&0 _

N —

1=0

Linear regression: Finding coeftficients

* Minimize y? with respect to coefficients:

N—1
ap + a1T; — Y;

Yi

i=0 [— 7»
e \We can write as:

apS + a1, — Zy = 0, apiy + @122 — ny =0

* Where coefficients are known:

1 N—1 N—1 N—1
1 T; Yi
o DR
g; i=0 g;

=0

Linear regression: Finding coeftficients
* Solving for ayand a;:
NN — NN, 8%, — 5,5,
W= ey ()T MTSY.. (2,2

* Note that if g; is constant, it will cancel out

* Now let’s define an error bar for the curve-fitting parameter g;

N—1 2
da;
2 J 2
Oy, = 5 o;
1=0 Yi Both independent

e See: https://en.wikipedia.org/wiki/Propagation of uncertainy of y,
* For our linear case (after some algebra):

- 5 - S
T TSy — (5,02 ‘e T\ 5D, - (3,)2

https://en.wikipedia.org/wiki/Propagation_of_uncertainty

Linear regression: Errors in coefficients

* If error bars are constant:

(a?) oo [
= T\ @ = @ “alm\/<w2>—<x>2<\

variance

e Where: N-—1 N—1

1 1

1=0

* |If data does not have error bars, we can estimate @, from the sample
variance (https://en.wikipedia.org/wiki/Variance)

Sample std deviation N—1
E 1

_ op =X § =
N-2 since already extracted a0 > N — 9

and al from data 1=0

— (a0 + a17;))°

https://en.wikipedia.org/wiki/Variance

Nonlinear regression (with two variables)

* We have been discussing fitting a linear function, but many nonlinear
curve-fitting problems can be transformed into linear problems

* Examples: Z(z,{c, B}) = ae’®

* Rewritewith: InZ =Y, Ina=ag, B=a

e Result: Y =a¢9+ a1

General least squares fit

* No analytic solution to general least squares problem, but can solve
numerically

e Generalize to functions of the form:
Y(z4,{a;}) = aoYo(z) + a1 Yi(z) + -+ ap—1Yr—1(2) = a;Yj(x)

N—-1 M —1]

— arYr(x;) —vy;| =0
a;t Haj} = o7 ,;) Hr)

* Now minimize y?:

A —1 -

o)
— 5) Z apYr(z;) —yi| =0
i=0 t Lk=0

General least-squares fit

* From previous slide, we have:

—1 M— 1 N —
S‘ S‘ CIJZ Yk; CIZZ Z
1=0 k=0 1=0 7’

 Set of j equations known as normal equations of the least-squares
problem (Y’s may be nonlinear, but linear in a’s)

* Define design matrix with elements A; = Y{x;)/ o;:
_YO (:130) Yl (leo)

00 00
A — Yo(z1) Yi(z1)
T 01 01

* Only depends on independent variables (not y;)

General least-squares fit

N—-1M-1 N —

. . . . ~ Y (x;)Y
* With design matrix, we can rewrite: ¢
8 >) Z
i=0 k=0 z i=0
—1M-1
* As: > N A Apar = Z Aij Y — (ATA)a=ATb
1=0 k=0

* Where b=y,/c:
*Thus: a=(ATA)"'A'D

* Or, we can solve for a via Gaussian elimination

Goodness of fit

e Usually, we have N >> M, the number of data points is much greater
than the number of fitting variables

* Given the error bars, how likely is it that the curve actually describes
the data?

* Rule of thumb: If the fit is good, on average the difference should be
approximately equal to the error bars

yi — Y (x;)| = o
* Plugging in gives »? equal to N. Since we know we can have a perfect
fit for M=N, we postulate:

Y ~N-—-M
 If X2 > N — M, probably not an appropriate function (or too small
error bars

 If x2 < N — M, fitis too good, error bars may be too large

Least squares fitting example:

Linear regression, linear function Polynomial regression (order 2), quadratic function

Comments on general least squares

* In the example, we used polynomials as our functions, but can use
linear combinations of any functions we would like

* We choose functions strategically to get the best least squares fit

* Often choosing orthogonal basis functions in the range of the fit will produce
better fits

* The matrix ATA is notoriously ill conditioned especially for increased
number of basis functions

e Gaussian substitution will have problems solving (numpy solve uses singular-
value decomposition)

* Procedure can be generalized if we also have errors in x

Nonlinear least-squares fitting

* Even in the polynomial case, we were using linear combinations of functions
* We can also directly fit a function whose parameters enter nonlinearly

* Consider the function: f(ag,a1) = age®*”

N
* Want to minimize: () = Z(yz — aoea’lxi)2

i=1
* Take derivatives: 8@0 Z “E(ape™™ —y;) =0,

N
0
Ji= (‘9—221 =)z (ape™ —y;) = 0

Nonlinear least-squares fitting

* Produces a nonlinear system—we can use the multivariate root-
finding techniques we learned earlier:

* Compute the Jacobian

e Take an initial guess for unknown coefficients

* Use Newton-Raphson techniques to compute the correction:
a] — dg — J_lf

* |[terate

* Can be very difficult to converge, and highly dependent on the initial
guess

Fitting packages

* Fitting is a very sensitive procedure—especially for nonlinear cases

* Lots of minimization packages exist that offer robust fitting
procedures

* MINUIT2: the standard package in high-energy physics (Python
version: PyMinuit and Iminuit)

 MINPACK: Fortran library for solving least squares problems—this is
what is used under the hood for the built in SciPy least squares

routine
e http://www.netlib.org/minpack/

* SciPy optimize:
https://docs.scipy.org/doc/scipy/reference/optimize.html

http://www.netlib.org/minpack/
https://docs.scipy.org/doc/scipy/reference/optimize.html

After class tasks

* Homework 2 due today
* Homework 3 will be posted today or tomorrow

* Readings
* FFTs:
e Newman Ch. 7
* https://en.wikipedia.org/wiki/Discrete Fourier transform

* Linear regression:
* Wikipedia page on varience

 Wikipedia page on propagation of errors
* (Garcia Sec.5.1

https://en.wikipedia.org/wiki/Discrete_Fourier_transform
https://en.wikipedia.org/wiki/Variance
https://en.wikipedia.org/wiki/Propagation_of_uncertainty

