PHY604 Lecture 12

September 30, 2021



Review: Multivariate Newton’s method

* We can generalize Newton’s method for equations with several
variables

e Can be used when we no longer have a linear system
e Cast the problem as one of root finding

» Consider the vector function: f(x) = [fi(x) fi(x) ... fn(x)]
* Where the unknowns are: x = |z1 1 ... xn]

« Revised guess from initial guess x©©: x; = x¢ — f(x0)J ' (x0)
e J-1is the inverse of the Jacobian matrix:

Jij(x) = ng(jc)

* To avoid taking the inverse at each step, solve with Gaussian
substitution:
Jox" = —f(x")




Review: Steepest descent

* Used for finding roots, minima, or maxima of functions of several
variables

* Based on the idea of moving downhill with each iteration, i.e.,
opposite to the gradient
* If current position is x,,, next step is:
Tpi1 =Tp —anVf(xy)
* Determine the step size o such that we reach the line minimum in
direction of the gradient:

d

e flari(@n)] = =V (wnss) - V() = 0

* Find root of function of « :
g(a) = V flrpyi(a)] - Vf(z,) =0



Review: Discrete Fourier transform

* Assume function evaluated on equally-spaced points n:

2mnk
Fk— anexp<—z N )

 (dropped the 1/N from pervious slide, matter of convention)
e This is the discrete Fourier transform (DFT)
* Does not require us to know the positions x,, of sample points, or even width L

* We can define an inverse discrete Fourier transform to recover the
initial function: Z i 27mk
ex
k €XP N

* “Exact” (up to rounding errors), even though we used the trapezoid
rule

* see e.g., Newman Sec. 7.2

* (1/N reappears)



Review: What can we do with the DFT? E.g., filtering
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Today’s lecture:
FFTs and curve fitting

* More on Fourier Transforms
e 2D FT

e Cosine transformation
* FFTs

* Curve fitting



Two-dimensional Fourier transforms

» Simply transform with respect to one variable and then the other

e Consider function on M x N grid
e 1. Perform DFT on each of the m rows:

21in
ml_ menexp <_Z N )

e 2. Take Ith coefficient in each of the M rows and DFT:
M—1

21k
Fr = Z F!  exp (—z 7;\4771)

m=0

* Combining these give5°
—1N-1

Fr = > >1 frmmn €XP {—72% (]j\;n - Z;)}

m=0 n=0




Cosine transformation (see Newman sec. 7.3)

(Newman)

Function

* Can also construct Fourier series from using sine and cosine functions instead of
complex exponentials

* Cosine series: Can only represent functions symmetric about the midpoint of the
interval

* Can enforce this for any function by mirroring it, and then repeating the mirrored function

 Different ways of writing it (see Newman):

N mk(n + 1) 1 mk(n + 3)
Fk:;%fncos< N2>’ fn NZFkCOS( N2>




Benefits of the cosine transformation

* Only involves real functions

* Does not assume samples are periodic (i.e., first point and last point
are the same)

* Avoids discontinuities from periodically repeating function over interval
* Often preferable for data that is not intrinsically periodic

e Used for compressing images and other media
* JPEG, MPEG

* Can also define a sine transformation
* Requires that function vanish at either end of its range



Fast Fourier transforms

* DFTs shown before have a double sum, so scale something like N?2
operations

e We can do it in much less

s 2mnk
e Consider the DFT: F} = Z:O fnexp <—z N )

* Take the number of samples to be a power of 2: N = 27

* Break F, into n even and n odd. For the even terms:
iN-1 IN-1

21k (27) 2mkr
F = Z Jor €xp <—Z > Z Jor €xp <—Z N/2 >

e Just another Fourier transform, but with N/2 samples




Fast Fourier transforms continued

 For the odd terms:

A IN-1
2 2mk(2r + 1) _i2nk/N 2mkr _i2m 0
e f2r+1 exp (—Z N > — g 2 k/N 7;) f27~+1 exp <—@ N/2 ) — e 2 k/Nded

* Therefore:
F, = F}gven 4+ 6—i2wk/NF]de

* So full DFT is sum of two DFTs with half as many points

* Now repeat the process until we get down to a single sample where:

0
Fy = aneo = fo
n=0



Procedure for FFT

1. Start with (trivial) FT of single samples:
0
ko = Z fne® = fo
n=0

e 2. Combine them in pairs using:

—i27k /N rpodd
Fk:Flgven‘F@ 127k / FIS

* 3. Continue combining into fours, eights, etc. until the full transform
on the full set of samples is reconstructed



Speed up

* First “round” we have N samples

* Next round we combine these into pairs to make N/2 transforms with
two coefficients each: N coefficients

* Next round we combine these into fours to make N/4 transforms with
four coefficients each: N coefficients

* For 2™ samples we have m = log, N levels, so the number of
coefficients we have to calculate is N log, N

* Way better scaling than N?!



Speed up of FFT vs DFT
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Libraries for FF

* FFTW (fastest Fourier transform in the west)
e https://www.fftw.org/
e Csubroutine library
* Open source

* Intel MKL (math kernel library)

* https://software.intel.com/content/www/us/en/develop/tools/oneapi/comp
onents/onemkl.html#gs.bu9rfp

Written in C/C++, fortran

Also involves linear algebra routines

Not open source, but freely available

Often very fast, especially on intel processors



https://www.fftw.org/
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/onemkl.html

Python’s fft

* numpy.fft: https://numpy.org/doc/stable/reference/routines.fft.html

o fft/ifft: 1-d data

* By design, the k=0, ... N/2 data is first, followed by the negative
frequencies. These later are not relevant for a real-valued f{x)

* k's can be obtained from fftfreq(n)
 fftshift(x) shifts the k=0 to the center of the spectrum

o rfft/irfft: for 1-d real-valued functions. Basically the same as fft/ifft,
but doesn't return the negative frequencies

e 2-d and n-d routines analogously defined


https://numpy.org/doc/stable/reference/routines.fft.html

Today’s lecture:
FFTs and curve fitting

e Curve fitting



Fitting data

* We have discussed interpolation, now we’ll talk about fitting

* Interpolation seeks to fill in missing information in some small region of the
whole dataset

 Fitting a function to the data seeks to produce a model (guided by physical
intuition) so you can learn more about the global behavior of your data

* Goal is to understand data by finding a simple function that best
represents the data

* Previous discussion on linear algebra and root finding comes into play

* We will follow Garcia (Sec. 5.1)
* Big topic, we'll just look at the basics



Notation
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General theory of fitting

* We have a dataset of N points (x,y)

* Would like to “fit” this dataset to a function Y(x,{a;})

* {a;} is a set of M adjustable parameters
* Find the value of these parameters that minimizes the distance between data

points and curve: A; =Y (z;, {aj}) —

e Curve-fitting criteria: Minimize the sum of the squares
N-—1

D({a;}) = ZAZ > [Y(xi, {a;}) — wil?

1=0

e “Least squares fit”
* Not the only way, but the most common



General theory of fitting

 Often data points have estimated error bars/confidence intervals o;
* Modify fit criterion to give less weight to points with the most error

x2<{aj}>=Nzl( 3l _y Wn{sh —ul

1=0 1=0 7’

* v? most used fitting function
* Errors have a Gaussian distribution

* We will not discuss “validation” of curve fitted to data
* i.e., probability that the data is described by a given curve



Linear regression

* Now that we have criteria for a good fit, we need to find {a;}

* First consider the simplest example: fitting data with a straight line
Y(ZC@‘, {Cl(), al}) = ag + a1x

* Such that y? is minimized:
N-1

Z CLO‘I‘CLlﬂi’z yz‘]Q

aOa CL1

1=0 Z



Oy? — = a axz
L:Q 5 :()7 Z 0T a1
6&0 O 8&0 _

N —

1=0

Linear regression: Finding coeftficients

* Minimize y? with respect to coefficients:

N—1
ap + a1T; — Y;

Yi

i=0 [ — 7»
e \We can write as:

apS + a1, — Zy = 0, apiy + @122 — ny =0

* Where coefficients are known:

1 N—1 N—1 N—1
1 T; Yi
o DR
g; i=0 g;

=0




Linear regression: Finding coeftficients
* Solving for ayand a;:
NN — NN, 8%, — 5,5,
W= ey ()T MTSY.. (2,2

* Note that if g; is constant, it will cancel out

* Now let’s define an error bar for the curve-fitting parameter g;

N—1 2
da;
2 J 2
Oy, = 5 o;
1=0 Yi Both independent

e See: https://en.wikipedia.org/wiki/Propagation of uncertainy of y,
* For our linear case (after some algebra):

- 5 - S
T TSy — (5,02 ‘e T\ 5D, - (3,)2



https://en.wikipedia.org/wiki/Propagation_of_uncertainty

Linear regression: Errors in coefficients

* If error bars are constant:

(a?) oo [
= T\ @ = @ “alm\/<w2>—<x>2<\

variance

e Where: N-—1 N—1

1 1

1=0

* |If data does not have error bars, we can estimate @, from the sample
variance (https://en.wikipedia.org/wiki/Variance)

Sample std deviation N—1
E 1

_ op =X § =
N-2 since already extracted a0 > N — 9

and al from data 1=0

— (a0 + a17;))°



https://en.wikipedia.org/wiki/Variance

Nonlinear regression (with two variables)

* We have been discussing fitting a linear function, but many nonlinear
curve-fitting problems can be transformed into linear problems

* Examples: Z(z,{c, B}) = ae’®

* Rewritewith: InZ =Y, Ina=ag, B=a

e Result: Y =a¢9+ a1



General least squares fit

* No analytic solution to general least squares problem, but can solve
numerically

e Generalize to functions of the form:
Y(z4,{a;}) = aoYo(z) + a1 Yi(z) + -+ ap—1Yr—1(2) = a;Yj(x)

N—-1 M —1 ]

— arYr(x;) —vy;| =0
a;t  Haj} = o7 ,;) Hr)

* Now minimize y?:

A —1 -

o)
— 5 ) Z apYr(z;) —yi| =0
i=0 t Lk=0




General least-squares fit

* From previous slide, we have:

—1 M— 1 N —
S‘ S‘ CIJZ Yk; CIZZ Z
1=0 k=0 1=0 7’

 Set of j equations known as normal equations of the least-squares
problem (Y’s may be nonlinear, but linear in a’s)

* Define design matrix with elements A; = Y{x;)/ o;:
_YO (:130) Yl (leo)

00 00
A — Yo(z1) Yi(z1)
T 01 01

* Only depends on independent variables (not y;)



General least-squares fit

N—-1M-1 N —

. . . . ~ Y (x; )Y
* With design matrix, we can rewrite: ¢
8 > ) Z
i=0 k=0 z i=0
—1M-1
* As: > N A Apar = Z Aij Y — (ATA)a=ATb
1=0 k=0

* Where b=y,/c:
*Thus: a=(ATA)"'A'D

* Or, we can solve for a via Gaussian elimination




Goodness of fit

e Usually, we have N >> M, the number of data points is much greater
than the number of fitting variables

* Given the error bars, how likely is it that the curve actually describes
the data?

* Rule of thumb: If the fit is good, on average the difference should be
approximately equal to the error bars

yi — Y (x;)| = o
* Plugging in gives »? equal to N. Since we know we can have a perfect
fit for M=N, we postulate:

Y ~N-—-M
 If X2 > N — M, probably not an appropriate function (or too small
error bars

 If x2 < N — M, fitis too good, error bars may be too large



Least squares fitting example:

Linear regression, linear function Polynomial regression (order 2), quadratic function




Comments on general least squares

* In the example, we used polynomials as our functions, but can use
linear combinations of any functions we would like

* We choose functions strategically to get the best least squares fit

* Often choosing orthogonal basis functions in the range of the fit will produce
better fits

* The matrix ATA is notoriously ill conditioned especially for increased
number of basis functions

e Gaussian substitution will have problems solving (numpy solve uses singular-
value decomposition)

* Procedure can be generalized if we also have errors in x



Nonlinear least-squares fitting

* Even in the polynomial case, we were using linear combinations of functions
* We can also directly fit a function whose parameters enter nonlinearly

* Consider the function: f(ag,a1) = age®*”

N
* Want to minimize: () = Z(yz — aoea’lxi)2

i=1
* Take derivatives: 8@0 Z “E(ape™™ —y;) =0,

N
0
Ji= (‘9—221 =)z (ape™ —y;) = 0



Nonlinear least-squares fitting

* Produces a nonlinear system—we can use the multivariate root-
finding techniques we learned earlier:

* Compute the Jacobian

e Take an initial guess for unknown coefficients

* Use Newton-Raphson techniques to compute the correction:
a] — dg — J_lf

* |[terate

* Can be very difficult to converge, and highly dependent on the initial
guess



Fitting packages

* Fitting is a very sensitive procedure—especially for nonlinear cases

* Lots of minimization packages exist that offer robust fitting
procedures

* MINUIT2: the standard package in high-energy physics (Python
version: PyMinuit and Iminuit)

 MINPACK: Fortran library for solving least squares problems—this is
what is used under the hood for the built in SciPy least squares

routine
e http://www.netlib.org/minpack/

* SciPy optimize:
https://docs.scipy.org/doc/scipy/reference/optimize.html



http://www.netlib.org/minpack/
https://docs.scipy.org/doc/scipy/reference/optimize.html

After class tasks

* Homework 2 due today
* Homework 3 will be posted today or tomorrow

* Readings
* FFTs:
e Newman Ch. 7
* https://en.wikipedia.org/wiki/Discrete Fourier transform

* Linear regression:
* Wikipedia page on varience

 Wikipedia page on propagation of errors
* (Garcia Sec.5.1



https://en.wikipedia.org/wiki/Discrete_Fourier_transform
https://en.wikipedia.org/wiki/Variance
https://en.wikipedia.org/wiki/Propagation_of_uncertainty

