
PHY604 Lecture 2
August 26, 2021

Note:

• Lecture 1 slides, readings, and example programs posted on website:

https://you.stonybrook.edu/cdreyer/phy604_fall2021/

redirects to:

https://dreyer-research-group.github.io/phy604_fall2021.html

https://you.stonybrook.edu/cdreyer/phy604_fall2021/
https://dreyer-research-group.github.io/phy604_fall2021.html

Review: Real/Floating point numbers are
more complicated
• Infinite real numbers on the number line need to be represented by a finite

number of bits

• Finite memory results in limited size and precision of floating point numbers
• Not all real numbers (even simple ones) can be stored in a finite number of digits in a base-2

representation
• Example: 1/10=0.110 = 0.0001100110011...2 does not have a finite representation in base 2

just as 1/3=0.333333...10 has no finite representation in base 10

• This means that even simple floating point numbers are often approximated with
some small error
• This means that floating point arithmetic is not exact! (on all computers and programming

languages)

• Errors can compound if not treated carefully!

Review: Roundoff error: Another example
• Consider computing exp(-24) via a truncated Taylor series:

• Error in the approximation (i.e., truncation error) is less than:

• But if we compute S(-24) by adding terms until they are less than
machine precision (8 byte):
• S(-24)=3.7814382919759864E-007
• Exp(-24)=3.7751345442790977E-011
• Error is larger than the result (much larger than truncation error)!!
• Looking at terms, we see we are relying on cancellations of terms

<latexit sha1_base64="oCXGyhUs9hxyJ6rMXQLI7MNueSs=">AAACKHicbVDLSgMxFM34rPVVdekmWoSKMMwUUTdqwY3LilYLfZFJ79hgJjMmGWkZ5nPc+CtuRBTp1i8xrVW0eiBw7jn3cnOPF3GmtOP0rYnJqemZ2cxcdn5hcWk5t7J6qcJYUqjQkIey6hEFnAmoaKY5VCMJJPA4XHk3JwP/6g6kYqG40L0IGgG5FsxnlGgjtXLH0OzWFQvgFp8XutuH7k7dl4Qm3TRxN9KvollMk6Ipbdv+lkSaiI20lcs7tjME/kvcEcmjEcqt3HO9HdI4AKEpJ0rVXCfSjYRIzSiHNFuPFUSE3pBrqBkqSACqkQwPTfGWUdrYD6V5QuOh+nMiIYFSvcAznQHRHTXuDcT/vFqs/YNGwkQUaxD0c5Efc6xDPEgNt5kEqnnPEEIlM3/FtENMENpkmzUhuOMn/yWXRdvds3fPdvOlo1EcGbSONlEBuWgfldApKqMKougePaIX9Go9WE/Wm9X/bJ2wRjNr6Bes9w8fkaVs</latexit>

ex ' S(x) = 1 +
x

1!
+

x2

2!
+ ...+

xn

n!

<latexit sha1_base64="4Cju4AUax88SPTG1LOVzp5Mdkbk=">AAACF3icbVDLSsNAFJ3UV62vqEs3o0WoKCWRoq6k4MZlBfuApi2T6aQdOpmEmYm0hPyFG3/FjQtF3OrOv3GaZqGtF4Z7OOdc7tzjhoxKZVnfRm5peWV1Lb9e2Njc2t4xd/caMogEJnUcsEC0XCQJo5zUFVWMtEJBkO8y0nRHN1O9+UCEpAG/V5OQdHw04NSjGClN9cyy4wmEY0d7FBynrRvzUztJ4pJuJ4eJ46OxE9tnpDt2kp5ZtMpWWnAR2BkogqxqPfPL6Qc48glXmCEp27YVqk6MhKKYkaTgRJKECI/QgLQ15MgnshOndyXwWDN96AVCP65gyv6eiJEv5cR3tdNHaijntSn5n9aOlHfViSkPI0U4ni3yIgZVAKchwT4VBCs20QBhQfVfIR4iHZTSURZ0CPb8yYugcV62L8qVu0qxep3FkQcH4AiUgA0uQRXcghqoAwwewTN4BW/Gk/FivBsfM2vOyGb2wZ8yPn8AgLyffA==</latexit>

|x|n+1

(n+ 1)!
max{1, ex}

Review: Truncation errors are different from
roundoff
• Translating continuous mathematical expressions into discrete forms

introduces truncation error

• For example:

• Error:

• Or vs.

<latexit sha1_base64="oCXGyhUs9hxyJ6rMXQLI7MNueSs=">AAACKHicbVDLSgMxFM34rPVVdekmWoSKMMwUUTdqwY3LilYLfZFJ79hgJjMmGWkZ5nPc+CtuRBTp1i8xrVW0eiBw7jn3cnOPF3GmtOP0rYnJqemZ2cxcdn5hcWk5t7J6qcJYUqjQkIey6hEFnAmoaKY5VCMJJPA4XHk3JwP/6g6kYqG40L0IGgG5FsxnlGgjtXLH0OzWFQvgFp8XutuH7k7dl4Qm3TRxN9KvollMk6Ipbdv+lkSaiI20lcs7tjME/kvcEcmjEcqt3HO9HdI4AKEpJ0rVXCfSjYRIzSiHNFuPFUSE3pBrqBkqSACqkQwPTfGWUdrYD6V5QuOh+nMiIYFSvcAznQHRHTXuDcT/vFqs/YNGwkQUaxD0c5Efc6xDPEgNt5kEqnnPEEIlM3/FtENMENpkmzUhuOMn/yWXRdvds3fPdvOlo1EcGbSONlEBuWgfldApKqMKougePaIX9Go9WE/Wm9X/bJ2wRjNr6Bes9w8fkaVs</latexit>

ex ' S(x) = 1 +
x

1!
+

x2

2!
+ ...+

xn

n!
<latexit sha1_base64="4Cju4AUax88SPTG1LOVzp5Mdkbk=">AAACF3icbVDLSsNAFJ3UV62vqEs3o0WoKCWRoq6k4MZlBfuApi2T6aQdOpmEmYm0hPyFG3/FjQtF3OrOv3GaZqGtF4Z7OOdc7tzjhoxKZVnfRm5peWV1Lb9e2Njc2t4xd/caMogEJnUcsEC0XCQJo5zUFVWMtEJBkO8y0nRHN1O9+UCEpAG/V5OQdHw04NSjGClN9cyy4wmEY0d7FBynrRvzUztJ4pJuJ4eJ46OxE9tnpDt2kp5ZtMpWWnAR2BkogqxqPfPL6Qc48glXmCEp27YVqk6MhKKYkaTgRJKECI/QgLQ15MgnshOndyXwWDN96AVCP65gyv6eiJEv5cR3tdNHaijntSn5n9aOlHfViSkPI0U4ni3yIgZVAKchwT4VBCs20QBhQfVfIR4iHZTSURZ0CPb8yYugcV62L8qVu0qxep3FkQcH4AiUgA0uQRXcghqoAwwewTN4BW/Gk/FivBsfM2vOyGb2wZ8yPn8AgLyffA==</latexit>

|x|n+1

(n+ 1)!
max{1, ex}

<latexit sha1_base64="5fgg5TIfxaoXstiJ+aJUbLrzq4M=">AAACH3icbVDLSgMxFM3UV62vUZdugkVoEcuMlOpGKbhxWcE+oFNLJs10QpOZIcloyzB/4sZfceNCEXHXvzF9LLT1wOUezrmX5B43YlQqyxobmZXVtfWN7GZua3tnd8/cP2jIMBaY1HHIQtFykSSMBqSuqGKkFQmCuMtI0x3cTPzmIxGShsG9GkWkw1E/oB7FSGmpa1a8BycSlJPCsHjlMMq7ie8I2vcVEiJ8glbqeALhxCsMT/3imW7FNPHTrpm3StYUcJnYc5IHc9S65rfTC3HMSaAwQ1K2bStSnQQJRTEjac6JJYkQHqA+aWsaIE5kJ5nel8ITrfSgFwpdgYJT9fdGgriUI+7qSY6ULxe9ifif146Vd9lJaBDFigR49pAXM6hCOAkL9qggWLGRJggLqv8KsY90HkpHmtMh2IsnL5PGecmulMp35Xz1eh5HFhyBY1AANrgAVXALaqAOMHgGr+AdfBgvxpvxaXzNRjPGfOcQ/IEx/gHOeaLP</latexit>

f 0(x) = lim
h!0

f(x+ h)� f(x)

h

<latexit sha1_base64="avTjdYliimkMhmIY3v8rT63zFBM=">AAACBXicbVDLSsNAFJ3UV62vqEtdDBahRSyJFHWjFHThsoJ9QBvKZDpphk4mYWYiLSEbN/6KGxeKuPUf3Pk3TtsstHrgcg/n3MvMPW7EqFSW9WXkFhaXllfyq4W19Y3NLXN7pynDWGDSwCELRdtFkjDKSUNRxUg7EgQFLiMtd3g18Vv3REga8js1jogToAGnHsVIaaln7l/3/NKofNH1BMKJVxod+eVj3cpp4qc9s2hVrCngX2JnpAgy1HvmZ7cf4jggXGGGpOzYVqScBAlFMSNpoRtLEiE8RAPS0ZSjgEgnmV6RwkOt9KEXCl1cwan6cyNBgZTjwNWTAVK+nPcm4n9eJ1beuZNQHsWKcDx7yIsZVCGcRAL7VBCs2FgThAXVf4XYRzoPpYMr6BDs+ZP/kuZJxT6tVG+rxdplFkce7IEDUAI2OAM1cAPqoAEweABP4AW8Go/Gs/FmvM9Gc0a2swt+wfj4BnPsl0c=</latexit>

Dh(x) =
f(x+ h)� f(x)

h

Review: Epsilon check for comparing floats

• Take two real numbers a and b
• We take a==b if abs(a-b) < epsilon

• Have to be very careful with this!!! We should think about:
• The choice of epsilon based on the precision we require/expect for a and
b
• The choice of epsilon based on the magnitude of a and b
• What will happen in special cases (0, NaN, inf)
• …

Today’s lecture:

• Good programming practices:
• Version control

• Testing

• Misc. good practices

Software engineering practices
• Some basic practices that can greatly enhance your ability to write

maintainable code
• Version control
• Build environments
• Testing procedures
• Automatic code error checking
• Profiling
• Documentation

• There are many tools that will help you write safe code and find bugs
as they are introduced. These let you focus more on the science.
• Main goal of this lecture is to just show you what kind of tools are out

there and how they can help your workflow

Coding experiences to try and avoid
• You swear that the code worked perfectly 6 months ago, but today it

doesn't, and you can't figure out what changed

• Your research group is all working on the same code, and you need to
sync up with everyone's changes, and make sure no one breaks the code

• Your code always worked fine on machine X, but now you switch to a
new system/architecture, and you code gives errors, crashes, ...

• Your code ties together lots of code: legacy code from your advisor's
advisor, new stuff you wrote, all tied together by a driver. The code is
giving funny behavior sometime—how do you go about debugging such
a beast?

Version control
• What is it?
• A system that records changes to a file or set of files over time so that you can

recall specific versions late

• Why is it important?
• So that if the code stops working, you can go back to specific previous

versions to see what changes broke it
• Allows you to compare changes over time
• If multiple people are working on a file, see who last modified something that

might be causing a problem, who introduced an issue and when, etc.

Types of version control: Local
• Previous versions (or patch sets) stored elsewhere on local machine

• Can be as simple as copying files into a different folder to store them
before making changes
• Will take up a lot of memory if not done in a smart way

• There are some tools to make this more consistent such as GNU RCS

• Pros: Simplicity
• Cons: Single point of failure

Types of version control: Centralized
• Have a single server that contains all the versioned files, stores history and

changes

• User communicates with the server to:
• Checkout source
• Commit changes back to the source
• Request a log (history) of a file from the server
• Diff your local version with the version on the server

• Has advantages over local version control:
• Everyone knows what everyone else is doing on a project
• Administrators have control over who can do what

• Cons: Does not scale well for large projects, single point of failure

Types of version control: Distributed
• Clients fully mirror (i.e., clone) the repository and its history on their

local machine
• Not just the latest snapshot of the files
• No single point of failure: if any server dies, any client repository can be

copied back to restore it

• Deals well with multiple different groups simultaneously working on a
project
• Easy to “fork”

• Common DVCS: Git, Mercurial, Bazaar

Distributed version control

Centralized server or github

Repo

Distributed version control

Centralized server or github

Repo

My computer
clone

Repo

Another user
clone

Repo

Distributed version control

Centralized server of github

Repo

My computer

Repo

Make
changes

Repo

Another user

Repo

Distributed version control

Centralized server of github

Repo

My computer

Make
changes

Repo

Commit
Repo

Another user

Repo

Distributed version control

Centralized server of github

My computer

Repo

Another user

Repo

push

Repo

Distributed version control

Centralized server of github

My computer

Repo

Another user

Repo

Make
changes

Repo

Commit

Repo

Distributed version control

Centralized server of github

My computer

Repo

Another user

Repo

Repo

pull

Distributed version control

Centralized server of github

My computer Another user

push

Repo

Repo

pull

Repo

Distributed version control

Centralized server of github

My computer Another user

Repo

pull RepoRepo

Comments about Git
• Note that with git, every change

generates a new “hash” that identifies
the entire collection of source.
• You cannot update just a single sub-

directory—it's all or nothing.

• Branches in a repo allow you to work on
changes in a separate are from the main
source.
• You can perfect them, then merge back to

the main branch, and then push back to the
remote.

• Overall, very light weight!!

• LOTS of resources on the web (see
readings)
• Best way to learn is to practice.
• There is more than one way to do most

things

Example: “Local” version control with Git

• You can use Git to do local version control on your computer:

• git init to create a new git repository
• git add to add file contents to the index
• git commit to record changes to the repository
• git log to show previous commits
• …

Branching with git

• One of the killer apps of git is lightweight “branching”
• Creates a different line of development which can be merged back into the

main one
• Does not require making multiple copies of source code, etc.

• Allows you to work in different directions and later merge together as
you wish

• Git will help if there are conflicting changes

Example: Simple remote on group server
• We'll look at the example of having people work with a shared

remote repository—this is common with groups.
• Each developer will have their own clone that they interact with, develop in,

branch for experimentation, etc.
• You can push and pull to/from the remote repo to stay in sync with others
• You probably want to put everyone in the same UNIX group on the server

• Creating a master bare repo:
git init --bare --shared myproject.git
chgrp -R groupname myproject.git
(to set permissions)

• This repo is empty, and bare—it will only contain the git files, not the actual
source files you want to work on
• Each user should clone it

• In some other directory. User A does:
• git clone /path/to/myproject.git

• Now you can operate on it
• Create a file (README)
• Add it to your repo: git add README
• Commit it to your repo: git commit README
• Push it back to the bare repo: git push

• Note that for each commit you will be prompted to add a log message
detailing the change

Example: Simple remote on group server

Example: Simple remote on group server

• Now user B comes along and wants to play too:
• In some other directory. User B does:
• git clone /path/to/myrepo.git

• Note that they already have the README file
• Edit README
• Commit you changes locally: git commit README
• Push it back to the bare repo: git push

• Now user A can get this changes by doing: git pull
• In general, you can push to a bare repo, but you can pull from anyone

Using github

• Don't want to use your own server? Use github or bitbucket
• Free for public (open source) projects
• Pay for private projects

• How to contribute to someone else's project?
• Since you are not a member of that project, you cannot push back to it

• You don't have write access
• Use pull requests:

• Fork the project into your own account
• Push back to your fork
• Issue a pull-request asking for your changes to be incorporated

Common Git commands available using
git --help

Some last comments about git and github

• If you put the remote repository on a different server, then you always
have a backup of your project
• Since git is distributed, if your remote server dies, each clone is a backup of the

entire repo, so you are safe both ways.

• Free (for open source), online, web-based hosting sites exist (e.g. Github)
• Best with Linux or Mac OS (in terminal).

• Windows? Try: https://git-for-windows.github.io/

• Github provides tools to share your code broadly and engage with your
community
• Pull requests, issue tracking, etc.

• We'll use git to hand in our homework assignments (more on this later)

https://git-for-windows.github.io/

Today’s lecture:

• Good programming practices:
• Version control

• Testing

• Misc. good practices

Testing
• Testing is obviously a crucial part of writing programs

• When programs get complicated, testing is not so straight forward:
• How do I know that a change to one part didn’t break another part?
• How do I know what I did will work on different architectures?
• My code crashes after running for 78 hours, where did the error originate from?

• Testing involves running the program or part of the program with some
inputs and determining if the outputs are those that are expected (or at
least consistent)

• Many types of testing. We will discuss unit testing and regression testing

Unit testing

• Unit testing is the practice in which each smallest, self-contained unit
of the code is tested independently of the others

• There are unit testing frameworks out there that help automate the
procedure for different codes
• E.g., unittest for python

Another simple example: Matrix inversion

• Say your code has a matrix inversion routine that computes A-1

• A unit test for this routine can be:
• Pick a vector x
• Compute b = A x
• Compute x = A-1 b
• Does the x you get match (to machine tol) the original x?

Regression Testing
• Imagine you've “perfected” your program (simulation tool,

analysis tool, etc.)
• You are confident that the answer it gives is “right”
• You want to make sure that any changes you do in the future do not change

the output
• Regression testing tests whether changes to the code change the solution

• Regression testing:
• Store a copy of the current output (a benchmark)
• Make some changes to the code
• Compare the new solution to the previous solution
• If the answers differ, either:

• You've introduced a bug → fix it
• You've fixed a bug → update your benchmark

Regression testing

• Simplest requirements:
• You just need a tool to compare the current output to benchmark
• You can build up a more complex system from here with simple scripting

• Big codes need a bunch of tests to exercise all possible options for the
code
• If you spend a lot of time hunting down a bug, once you fix it, put a test case

in your suite to check that case

• If someone implements a new functionality, ask them to submit a test

• You'll never have complete coverage, but your number of tests will grow with
time, experience, and code complexity

Today’s lecture:

• Good programming practices:
• Version control

• Testing

• Misc. good practices

Comments and Documentation
• Many in computer science will say that “good code documents itself”

• Do not believe it.
• Remember, we are often writing code for programming novices (both the developers and

users)
• The better people can understand your code, the more productive science will be done with

it

• No hard-and-fast rules. Comments should explain the basic idea of what a block
of code does
• Only comment “single lines” if there is something special or unusual about them
• Keep comments up to date with the code
• Think about what information will be useful for you in the future, and other developers of

your code

• Can often use tools to turn comments in the source into external documentation
• Robodoc: https://rfsber.home.xs4all.nl/Robo/
• FORD: http://fortranwiki.org/fortran/show/FORD
• Pydoc: https://docs.python.org/3/library/pydoc.html
• Others for python: https://wiki.python.org/moin/DocumentationTools

https://rfsber.home.xs4all.nl/Robo/
http://fortranwiki.org/fortran/show/FORD
https://docs.python.org/3/library/pydoc.html
https://wiki.python.org/moin/DocumentationTools

Debugging tools
• Simplest debugging: print out information at intermediate points in code execution

• Running with appropriate compiler glags (e.g., -g for gnu compilers) can provide
debugging information
• Can make code run slower, but useful for test purposes

• Interactive debuggers let you step through your code line-by-line, inspect the values of
variables as they are set, etc.
• gdb is the version that works with the GNU compilers. Some graphical frontends exist.
• Lots of examples online
• Not very useful for parallel code.

• Particularly difficult errors to find often involve memory management
• Valgrind is an automated tool for finding memory leaks. No source code modifications are

necessary.

Building your code with, e.g., Makefiles

• It is good style to separate your subroutines/functions into files,
grouped together by purpose
• Makes a project easier to manage (for you and version control)
• Reduces compiler memory needs (although, can prevent inlining across files)
• Reduces compile time—you only need to recompile the code that changed

(and anything that might depend on it)

• Makefiles automate the process of building your code
• No ambiguity of whether your executable is up-to-date with your changes
• Only recompiles the code that changed (looks at dates)
• Very flexible: lots of rules allow you to customize how to build, etc.
• Written to take into account dependencies

We have not really discussed general coding style
• Depends very much on the language, and is often a matter of opinion

(google it)
• Some general rules:
• 1. Use a consistent programming style
• 2. Use brief but descriptive variable and function names
• 3. Avoid “magic numbers”

• Name your constants, specify your flags
• 4. Use functions and/or subroutines for repetitive tasks
• 5. Check return values for errors before proceeding
• 6. Share information effectively (e.g., using modules or namespaces)
• 7. Limit the scope of your variables, methods, etc.
• 8. Think carefully about the most effective way to input and output data
• 9. Be careful about memory, i.e., allocating and deallocating
• 10. Make your code readable and portable, you will thank yourself (or your

collaborators will thank you) later.

After class tasks
• No office hours today (8/26/21)

• If you do not already have one, make an account on github:
https://github.com/

• Readings:
• Wikipedia artical on makefiles
• Pro Git online book
• Fortran best practices
• Good Enough Practices in Scientific Computing

https://github.com/
https://en.wikipedia.org/wiki/Make_(software)
https://git-scm.com/book/en/v2
https://www.fortran90.org/src/best-practices.html
https://arxiv.org/pdf/1609.00037.pdf

