
PHY604 Lecture 2
August 26, 2021



Note:

• Lecture 1 slides, readings, and example programs posted on website:

https://you.stonybrook.edu/cdreyer/phy604_fall2021/

redirects to:

https://dreyer-research-group.github.io/phy604_fall2021.html

https://you.stonybrook.edu/cdreyer/phy604_fall2021/
https://dreyer-research-group.github.io/phy604_fall2021.html


Review: Real/Floating point numbers are 
more complicated
• Infinite real numbers on the number line need to be represented by a finite 

number of bits

• Finite memory results in limited size and precision of floating point numbers
• Not all real numbers (even simple ones) can be stored in a finite number of digits in a base-2 

representation
• Example:   1/10=0.110 = 0.0001100110011...2 does not have a finite representation in base 2 

just as 1/3=0.333333...10 has no finite representation in base 10

• This means that even simple floating point numbers are often approximated with 
some small error
• This means that floating point arithmetic is not exact! (on all computers and programming 

languages)

• Errors can compound if not treated carefully!



Review: Roundoff error: Another example
• Consider computing exp(-24) via a truncated Taylor series:

• Error in the approximation (i.e., truncation error) is less than:

• But if we compute S(-24) by adding terms until they are less than 
machine precision (8 byte):
• S(-24)=3.7814382919759864E-007
• Exp(-24)=3.7751345442790977E-011
• Error is larger than the result (much larger than truncation error)!!
• Looking at terms, we see we are relying on cancellations of terms
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Review: Truncation errors are different from 
roundoff
• Translating continuous mathematical expressions into discrete forms 

introduces truncation error

• For example:

• Error:

• Or vs. 
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Review: Epsilon check for comparing floats

• Take two real numbers a and b
• We take a==b if abs(a-b) < epsilon

• Have to be very careful with this!!! We should think about:
• The choice of epsilon based on the precision we require/expect for a and 
b
• The choice of epsilon based on the magnitude of a and b
• What will happen in special cases (0, NaN, inf)
• …



Today’s lecture:

• Good programming practices:
• Version control

• Testing

• Misc. good practices



Software engineering practices
• Some basic practices that can greatly enhance your ability to write 

maintainable code
• Version control
• Build environments
• Testing procedures
• Automatic code error checking
• Profiling
• Documentation

• There are many tools that will help you write safe code and find bugs 
as they are introduced. These let you focus more on the science.
• Main goal of this lecture is to just show you what kind of tools are out 

there and how they can help your workflow



Coding experiences to try and avoid
• You swear that the code worked perfectly 6 months ago, but today it 

doesn't, and you can't figure out what changed

• Your research group is all working on the same code, and you need to 
sync up with everyone's changes, and make sure no one breaks the code

• Your code always worked fine on machine X, but now you switch to a 
new system/architecture, and you code gives errors, crashes, ...

• Your code ties together lots of code: legacy code from your advisor's 
advisor, new stuff you wrote, all tied together by a driver. The code is 
giving funny behavior sometime—how do you go about debugging such 
a beast?



Version control
• What is it? 
• A system that records changes to a file or set of files over time so that you can 

recall specific versions late

• Why is it important?
• So that if the code stops working, you can go back to specific previous 

versions to see what changes broke it
• Allows you to compare changes over time
• If multiple people are working on a file, see who last modified something that 

might be causing a problem, who introduced an issue and when, etc.



Types of version control: Local 
• Previous versions (or patch sets) stored elsewhere on local machine

• Can be as simple as copying files into a different folder to store them 
before making changes
• Will take up a lot of memory if not done in a smart way

• There are some tools to make this more consistent such as GNU RCS

• Pros: Simplicity
• Cons: Single point of failure



Types of version control: Centralized
• Have a single server that contains all the versioned files, stores history and 

changes

• User communicates with the server to:
• Checkout source
• Commit changes back to the source
• Request a log (history) of a file from the server
• Diff your local version with the version on the server

• Has advantages over local version control:
• Everyone knows what everyone else is doing on a project
• Administrators have control over who can do what 

• Cons: Does not scale well for large projects, single point of failure



Types of version control: Distributed
• Clients fully mirror (i.e., clone) the repository and its history on their 

local machine
• Not just the latest snapshot of the files
• No single point of failure: if any server dies, any client repository can be 

copied back to restore it

• Deals well with multiple different groups simultaneously working on a 
project
• Easy to “fork”

• Common DVCS: Git, Mercurial, Bazaar



Distributed version control

Centralized server or github
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Comments about Git
• Note that with git, every change 

generates a new “hash” that identifies 
the entire collection of source.
• You cannot update just a single sub-

directory—it's all or nothing. 

• Branches in a repo allow you to work on 
changes in a separate are from the main 
source. 
• You can perfect them, then merge back to 

the main branch, and then push back to the 
remote.

• Overall, very light weight!!

• LOTS of resources on the web (see 
readings)
• Best way to learn is to practice.
• There is more than one way to do most 

things



Example: “Local” version control with Git

• You can use Git to do local version control on your computer:

• git init to create a new git repository
• git add to add file contents to the index
• git commit to record changes to the repository
• git log to show previous commits
• …



Branching with git

• One of the killer apps of git is lightweight “branching”
• Creates a different line of development which can be merged back into the 

main one
• Does not require making multiple copies of source code, etc.

• Allows you to work in different directions and later merge together as 
you wish 

• Git will help if there are conflicting changes



Example: Simple remote on group server
• We'll look at the example of having people work with a shared 

remote repository—this is common with groups.
• Each developer will have their own clone that they interact with, develop in, 

branch for experimentation, etc.
• You can push and pull to/from the remote repo to stay in sync with others
• You probably want to put everyone in the same UNIX group on the server

• Creating a master bare repo:
git init --bare --shared myproject.git
chgrp -R groupname myproject.git
(to set permissions) 



• This repo is empty, and bare—it will only contain the git files, not the actual 
source files you want to work on
• Each user should clone it

• In some other directory. User A does:
• git clone /path/to/myproject.git

• Now you can operate on it
• Create a file (README)
• Add it to your repo: git add README
• Commit it to your repo: git commit README
• Push it back to the bare repo: git push

• Note that for each commit you will be prompted to add a log message 
detailing the change

Example: Simple remote on group server



Example: Simple remote on group server

• Now user B comes along and wants to play too:
• In some other directory. User B does:
• git clone /path/to/myrepo.git

• Note that they already have the README file
• Edit README
• Commit you changes locally: git commit README
• Push it back to the bare repo: git push

• Now user A can get this changes by doing: git pull
• In general, you can push to a bare repo, but you can pull from anyone



Using github

• Don't want to use your own server? Use github or bitbucket
• Free for public (open source) projects
• Pay for private projects

• How to contribute to someone else's project?
• Since you are not a member of that project, you cannot push back to it

• You don't have write access
• Use pull requests:

• Fork the project into your own account
• Push back to your fork
• Issue a pull-request asking for your changes to be incorporated



Common Git commands available using 
git --help



Some last comments about git and github

• If you put the remote repository on a different server, then you always 
have a backup of your project
• Since git is distributed, if your remote server dies, each clone is a backup of the 

entire repo, so you are safe both ways.

• Free (for open source), online, web-based hosting sites exist (e.g. Github)
• Best with Linux or Mac OS (in terminal).

• Windows? Try: https://git-for-windows.github.io/

• Github provides tools to share your code broadly and engage with your 
community
• Pull requests, issue tracking, etc.

• We'll use git to hand in our homework assignments (more on this later)

https://git-for-windows.github.io/


Today’s lecture:

• Good programming practices:
• Version control

• Testing

• Misc. good practices



Testing
• Testing is obviously a crucial part of writing programs

• When programs get complicated, testing is not so straight forward:
• How do I know that a change to one part didn’t break another part?
• How do I know what I did will work on different architectures?
• My code crashes after running for 78 hours, where did the error originate from?

• Testing involves running the program or part of the program with some 
inputs and determining if the outputs are those that are expected (or at 
least consistent)

• Many types of testing. We will discuss unit testing and regression testing



Unit testing

• Unit testing is the practice in which each smallest, self-contained unit 
of the code is tested independently of the others

• There are unit testing frameworks out there that help automate the 
procedure for different codes
• E.g., unittest for python



Another simple example: Matrix inversion

• Say your code has a matrix inversion routine that computes A-1

• A unit test for this routine can be:
• Pick a vector x
• Compute b = A x
• Compute x = A-1 b
• Does the x you get match (to machine tol) the original x?



Regression Testing
• Imagine you've “perfected” your program (simulation tool, 

analysis tool, etc.)
• You are confident that the answer it gives is “right”
• You want to make sure that any changes you do in the future do not change 

the output
• Regression testing tests whether changes to the code change the solution

• Regression testing:
• Store a copy of the current output (a benchmark)
• Make some changes to the code
• Compare the new solution to the previous solution
• If the answers differ, either:

• You've introduced a bug → fix it
• You've fixed a bug → update your benchmark



Regression testing

• Simplest requirements:
• You just need a tool to compare the current output to benchmark
• You can build up a more complex system from here with simple scripting

• Big codes need a bunch of tests to exercise all possible options for the 
code
• If you spend a lot of time hunting down a bug, once you fix it, put a test case 

in your suite to check that case

• If someone implements a new functionality, ask them to submit a test

• You'll never have complete coverage, but your number of tests will grow with 
time, experience, and code complexity



Today’s lecture:

• Good programming practices:
• Version control

• Testing

• Misc. good practices



Comments and Documentation
• Many in computer science will say that “good code documents itself”

• Do not believe it.
• Remember, we are often writing code for programming novices (both the developers and 

users)
• The better people can understand your code, the more productive science will be done with 

it

• No hard-and-fast rules. Comments should explain the basic idea of what a block 
of code does
• Only comment “single lines” if there is something special or unusual about them
• Keep comments up to date with the code
• Think about what information will be useful for you in the future, and other developers of 

your code

• Can often use tools to turn comments in the source into external documentation
• Robodoc: https://rfsber.home.xs4all.nl/Robo/
• FORD: http://fortranwiki.org/fortran/show/FORD
• Pydoc: https://docs.python.org/3/library/pydoc.html
• Others for python: https://wiki.python.org/moin/DocumentationTools

https://rfsber.home.xs4all.nl/Robo/
http://fortranwiki.org/fortran/show/FORD
https://docs.python.org/3/library/pydoc.html
https://wiki.python.org/moin/DocumentationTools


Debugging tools
• Simplest debugging: print out information at intermediate points in code execution 

• Running with appropriate compiler glags (e.g., -g for gnu compilers) can provide 
debugging information
• Can make code run slower, but useful for test purposes

• Interactive debuggers let you step through your code line-by-line, inspect the values of 
variables as they are set, etc.
• gdb is the version that works with the GNU compilers. Some graphical frontends exist.
• Lots of examples online
• Not very useful for parallel code.

• Particularly difficult errors to find often involve memory management
• Valgrind is an automated tool for finding memory leaks. No source code modifications are 

necessary.



Building your code with, e.g., Makefiles

• It is good style to separate your subroutines/functions into files, 
grouped together by purpose
• Makes a project easier to manage (for you and version control)
• Reduces compiler memory needs (although, can prevent inlining across files)
• Reduces compile time—you only need to recompile the code that changed 

(and anything that might depend on it)

• Makefiles automate the process of building your code
• No ambiguity of whether your executable is up-to-date with your changes
• Only recompiles the code that changed (looks at dates)
• Very flexible: lots of rules allow you to customize how to build, etc.
• Written to take into account dependencies 



We have not really discussed general coding style 
• Depends very much on the language, and is often a matter of opinion 

(google it)
• Some general rules:
• 1. Use a consistent programming style
• 2. Use brief but descriptive variable and function names
• 3. Avoid “magic numbers” 

• Name your constants, specify your flags
• 4. Use functions and/or subroutines for repetitive tasks
• 5. Check return values for errors before proceeding
• 6. Share information effectively (e.g., using modules or namespaces)
• 7. Limit the scope of your variables, methods, etc.
• 8. Think carefully about the most effective way to input and output data
• 9. Be careful about memory, i.e., allocating and deallocating
• 10. Make your code readable and portable, you will thank yourself (or your 

collaborators will thank you) later.



After class tasks
• No office hours today (8/26/21)

• If you do not already have one, make an account on github: 
https://github.com/

• Readings:
• Wikipedia artical on makefiles
• Pro Git online book
• Fortran best practices
• Good Enough Practices in Scientific Computing

https://github.com/
https://en.wikipedia.org/wiki/Make_(software)
https://git-scm.com/book/en/v2
https://www.fortran90.org/src/best-practices.html
https://arxiv.org/pdf/1609.00037.pdf

