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Review: Mean value method

b
* Consider general integration problem: [ = / f(x)dx

* Average value of fin the range between b and a is:

1 f° I
= dr =
=5 [ fade ==
* So, we can get the integral by finding the average of f:

I'=(b—a){f)

* We can estimate the average by measuring f(x) at N points chosen at
random between g and b

N

* Then: N (b—a) |
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Review: Mean value method
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Review: Importance sampling, 1D integral

* Putting everything together:
] — b
rx 5Dy ) s

* Generalization of mean value method, which is where w(x)=1

* w(x) can be any function that we choose
e Can be chosen to remove pathologies in the integrand

 However, now we need to draw from a nonuniform distribution



Review: Monte Carlo simulation

* Any computer simulation that uses random numbers to simulate
physical process

* We saw a few examples already: radioactive decay and Rutherford
scattering

e Used in every branch of physics
e Particularly important in statistical mechanics and many-body physics



Review: Monte Carlo simulation in stat mech

* Fundamental problem in statistical mechanics: Calculate expectation
value of quantity of interest in thermal equilibrium

* Don’t know the exact state of the system, only probability of
occupying state i with energy E;

P(E)=——  Z=) "

* Then average value of observable X:

(X) = ZXiP(Ei)




Review: Importance sampling for MC

* Simple choice: w; = P(E))
* Sums to 1 over all by definition
* Then we have:

1 N
<X>:N;Xk

* Thus, choose N states in proportion to their Boltzmann weights, and
average X over them



Review: Markov chain Monte Carlo

—BE;
e Recall that: P(E;) = € — 7 — Ze—ﬁEi

* Partition function requires a sum over all states that we are trying to
avoid

* Can use a Markov chain to choose states with probability P(E))
without knowing the partition function:
e Start with a state i
* Generate a new state j by making a small change to i

* Choice of new state is determined probabilistically by a set of transition
probabilities T; that give probability for changing from state i to j

* If we chose T;; correctly, probability of visiting any state on a step of
the Markov chain is P(E;)!



Review: Metropolis-Hastings accept/reject

 Still have not worked out what elements of T;are
* Actually, many possible choices

* Most common choice: Metropolis-Hastings algorithm:

* Choose the change between i and j from specified set of possible changes
e Can be, e.g., chosen at random, uniformly

* Accept or reject the new state with acceptance probability:

1 if £, < E,
e PE—E)  if B, > E,

/

P, =«

\

* |.e., definitely accept if energy is lowered (or equal); may still accept if energy
is increased



Today’s lecture:
Monte Carlo simulation simulated annealing

* Example of Monte Carlo simulation:
* The ideal quantum gas
* The Ising model

* Simulated Annealing
* Travelling salesman problem



Steps of Markov chain Monte Carlo:

* 1. Choose random starting state

e 2. Choose a move uniformly at random from set of moves
* 3. Calculate the acceptance probability

* 4. Accept or reject the move

* 5. Measure X in current state, add to sum

* 6. Go back to step 2



Some comments about the Metropolis
algorithm

* Note that many steps will not change the system
* Still need to include in the sum

* The number of possible moves M, must be the same when going from
ftojasjtoi

* Moves must be chosen to get you to every state
* Move set for which all states are accessible is called ergodic

* Will generally take some (unknown) time to equilibrate to Boltzmann
distribution



Example: Ideal gas

* Consider the quantum states of a particle or atom of mass m in cubic
box of length L

. . Quantum numbers from

* Energy of one particle given by: / 1 to infinity.
7T2h2
2m L2

(n2 +n; +n?)

Eng,ny,n,) = ”

* Ideal gas: no interactions between particles
* Energy is sum of individual particles:

N
E=3" B0 .n).nl)
1=1



Move set for ideal gas

* Choose set of all moves of a single atom to one of the six
“neighboring” states where n,, n,, or n, differ by +/-1

* Each Monte Carlo step, choose a random particle, chose a quantum

number, change it by +/- 1

* Change in total energy just the change for single particle since there

are no interactions
* E.g., increase or decrease n, of atom i by one:

T2 h? mh?
AB = - —(n: + 1)* 4+ nZ 4+ n?] — S (n3 +n, +n3)
2 h? 2 h?
_ 5 [(nx -+ 1)2 — ni] — 5 (::27% -+ 1)
2mL 2mL

* Note: Reject moves that try to maken< 1
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Monte Carlo simulation of ideal gas:
Dependenceon T
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Monte Carlo simulation of ideal gas: E vs. T
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Example: The Ising model

* The Ising model is a classic model in statistical physics for describing
magnetic systems

* Describe a magnetic material as classical spins on a lattice
 Spins can only point up or down

* Energy is given by:
E=—-J Z S¢S
(4,)

* Where (7, j) indicate neighboring spins
e Jis the interaction strength

* If J >0 aligned spins are preferred
* If J < 0 antialigned spins are preferred



Monte Carlo simulation: Ising model on square lattice
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Ising model on square lattice versus T
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Antiferromagnetic for J < 0

Ferromagnetic for J > 0O,

— — — — — — - - — — —
— — — — — — — — —
— — — — — —_ - - — — —_
— —_ — — — —_ — —_ —
—_ —_ —_ — —_ —_ - - — —_ —_
—_ —_ —_ —_ —_ —_ —_ —_ —_
—_ —_ —_ —_— — —_ —_ - —_ —_ —_
—_ —_ —_ —_ —_ —_ —_ —_ —_
—_ —_ —_ —_ —_ —_ —_ - —_ —_ —_
—_ —_ —_ —_— —_ —_ —_ —_ —_
—_— —_ —_ —_ —_— —_ - —> —_ —_— —_
—_ —_ —_ —_ —_— —_— —_ —_ —_—
—_ —_ —_ —_ —_ —_ —_ —_ —_— —_
—_ —_ —_ —_ —_ —_ —_ — —_ —_
—_ —_ —_ —_ —_ —_ —_ - —_ —_ —_
—_ —_ —_ —_ —_ —_ —_ - -
— — — — — — — — — —
—_ —_ —_ —_ —_— — —_ - —_ —_—
— — —- —- —- — —- — —- — —
— —_ —_ —_ —_ — — —_ —_
1 1 1 1 1 1 1 1
o) o 7o) o o) o o) o
~ N N o ~ Te) N o
— — — —
““““““““““““““
“““““““““““““
—_ = = = = = = = = = = = = —_ = = = = = =
—_ = = = = = = = = = = = = = = = = = = =
—_ = = = = = = = = = = = = = = = = = = =
—_ = = = = = = = = = = = = = = = = = = —>
— — — — — — — — — — — — — — — — — — — —
— — — — — — — — — — — — — — — — — — — —
— — — — — —- — — — — — — — — — — — — — —-
— — — — — —- — — — — — — —- — — — — — — —
— — — —- — —- — — — — — — —- — — — — — — —-
— — — —- —- —- — — — — — — —- — — — — — — —-
—- — — —- — —- — — — — — — —- — — — — — — —-
—- — — —- —- —- — — — — — — —- — — — — — — —-
— — — —- —- —- — — — — — — —- — — — — — — —-
—- — — —- —- —- — — — — — — —- — — — — — — —-
— — — —- — —- — — — — — — —- — — — — — — —-
— — — —- —- —- — — — — — — —- — — — — — — —-
—_ = = = = = = = = = = = = = = = = = = =
—_ e = = = = = = = = = = = = = = = = = =
1 1 1 1 1 1 1 1
o) o 7o) o o) o o) o
~ o) N o ~ o) N o
— — — —

10.0 125 15.0 17.5

25 50 75

0.0

10.0 125 15.0 17.5

25 50 75

0.0



Today’s lecture:
Monte Carlo simulation simulated annealing

* Simulated Annealing
* Travelling salesman problem



Simulated annealing

* Monte Carlo methods can also be used for numerical optimization
* Optimization methods discussed so far only give local minima
* Global optimization problems are very challenging

* Simulated annealing borrows ideas from statistical physics to tackle
this problem



Statistical mechanics for optimization

* Recall the Boltzmann probability:
—BE;
€
D\ — __ —BE;
P(E;) = A Z—E.e

* Assume we have single, unigue ground state

* Choose energy scale so that the ground state configuration is O
energy

* If we cool the system to T =0, then the probability distribution is:
(
1 if F; =0
P(E;) = < ,
0 it E; >0

\

* By cooling the system, we can find the ground state



Statistical mechanics for optimization

* We can use the same strategy (cooling the system) for finding the
minimum of a function

* Take the value of the function to be the “energy”
* Take the values of independent variables to define a state of the system

* But how can we avoid getting trapped in a local minima?

* Energy of all nearby states are higher in energy, will not accept moves for low
T

 Solution: “Anneal” by cooling slowly so system can find its way to the
global minimum

* Guaranteed to converge to global minimum if we cool slowly enough (often
not possible)



Simulated annealing approach

* Choose kgT to be significantly greater than the typical energy change
from a singe Monte Carlo move

* Then:
BE; —F)<1l = PFP,~1

* Most moves accepted, state of the system rapidly randomized

* Make a cooling “schedule,” e.g.:

T = Toe V7

* Choice of rrequire some trial and error, slower cooling is more likely
to find ground state, but simulation takes longer



Example: Travelling salesman problem

* Find the shortest route that visits a given set of locations on a map
* One of the most famous optimization problems (NP hard)

* We will assume the salesman can travel between the N points on the
map in straight lines (i.e., the world is flat)

* N cities are chosen at random in a 2D square of unit length

 Want to minimize total distance travelled over the tour:

N—1
D — Z |I'Z'_|_1 — I'7;|
1=0



Markov chain Monte Carlo for traveling
salesman N-1
D=3 |ri1—r
1=0

* Minimize D over set of all possible tours

* First set up an initial tour

* Then choose from set of moves: Swap pairs of cities

* Accept if swap shortens the tour
* |f it lengthens the tour, accept with Boltzmann probability, energy replaced by
distance D



Simulated annealing for traveling salesman

0 20000 40000 60000 80000
Time step



Simulated annealing for traveling salesman:

Different starting temperatures
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Simulated annealing for traveling salesman:
Different cooling rates temperatures
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After class tasks and the rest of the semester

* Homework 5 is posted, due Nov. 11, 2021
* There will be no homework 6

* Final projects: Send topics by Nov. 11
* First draft of first two sections of writeup due Nov. 18

* Readings:
* Newman Sec. 10.3, 10.4



