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November 18, 2021



Review: Pattern recognition with computers

e Classic problem: Identify pictures of dogs versus cats
e Easy for human, difficult for computer




Review: Nonlinear functions at the basis of
neural networks

* Neural networks are divided into

layers - O XQ O N
* Input layer accepts the input . /957’

L
e Output layer outputs results | X ot
inputs // \ / \\\.: outputs
* Each layer has neurons (or nodes) e OiQéO S
* For input, one node for each input XX I X
variable P
* Every node in the first layer connects to . @i@i@ e
every node in the next layer b b
* Weight associated with the connection |
can be adjusted

* These are the matrix elements

* Operations at neurons given by
nonlinear activation function

Make Your Own Neural Network, Tariq Rashid



Review: Procedure -

‘or doing “Machine

_earning” with neu

ral network

e 1. Choose a nonlinear activation function (in our case, find &)

2. Choose/generate t input/output pairs for training

* 3. Repeat the set from step 2 N times (epochs) to get a training set of

T=Nt pairs

* 4. Run the training set through the neural net at random, performing
the steepest descent minimization for each

* 5. To test the training in step
calculate the residual:

4, run the t examples through and

g(Ax;) — z;
6. Use the neural net on some new data
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Today’s lecture:
Neural networks and parallel computing

* Neural network examples
* Interpreting a noisy signal
* |dentifying hand-written characters

* Parallel computing
* OpenMP



Adding additional degrees of freedom

. layer 1 layer 2 layer 3
* In the previous example, the
number of adjustable parameters — O Q 3 —
is constrained by the size of the /5
input and output T outputs
x 1 f;}x ) L
8 ,//
* To overcome this limitation, we
. ‘ _T:-;\ A
can add hidden layers to our — O O —t>(>) —
neural net \

NeUrons connections

 Will need an additional matrix
and an additional evaluation of Make Your Own Neural Network, Tarig Rashid
out nonlinear function



Hidden layers

* Take as input a vector x of length n
* Take as output a vector z of length m
* Consider a k x n matrix B and a m x k matrix A

 Construct the output as:
- 1 -
e=g9Br) -5, z=g(AZ)

* Note that we differentiate the applications of g because they may
have different s

e Extra shift of %4 is to recenter the data around O to put it in the
nonlinear range of g

* Key: k is independent of the size of input/output!
e Can train k(m+n) total elements



Implementing the hidden layer

* We still want to minimize our cost function f:

f(A’I"S7 Bzg) — Z(Zr — yr)Q
r=1
* Now we have to do two interrelated steepest descent minimizations:
of of
qu:qu_naquv qu:qu_naqu
* Where:
of ~

A = 20(2p — Yp)2p(1l — 2p) 2 = 0,2

Of A 1 1
oL, — ?ZO'TATpCV (5 + zp> <§ — zp> T

=1




Back propagation
* Note that we are optimizing simultaneously A and B:

of

OA,. = 2a(2p — Yp)2p(1 — 2p)2q = 0p2y
Of A 1 1
— ’I“A’I“ = ~
oy, = e (3 +3) (32

* So, the errors are “backpropagated” through the output and hidden
layers




Example: Signal analysis

* Given a noisy signal expected to be one

of four frequencies 4-

* £={1,2,3,4} Hz

* Noise is significantly larger than the g o]

underlying signal:

s(t) = cos(2m ft) 4+ 5E -2-

e Sare random numbers in [-1,1]

* Can we identify the frequency? —61

N/ NS
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Residual

Signal analysis: Hidden layers size 2

Test on the training set
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Residual

3.0 1

2.5 1

2.0 1

1.5

1.0 A

0.5 A

0.0 1

Signal analysis: Hidden layers size 3

Test on the training set

+
+
80 A
+
+ 60 -
+ 8
£
N + g
+ s
+ 840_
o
+ o+ -
+ _‘ﬁ_ + + + 20
+ + + °
n + + H + + —|:'_+
T - i gt
T T T T T T O'
0 20 40 60 80 100 0

Trial data

2
Residual

Residual

Test on new data

4
4
+ 0
1+ £
o
¥ ¢# F
-+ T | &
4+
4+
T +
H++ +4+ + +
+ + H +
T+ 4+ 4+ LT
+ +
THE+ 4+ Bt
4I0 6I0 8I0 l(I)O 0 1 2 3 4
Trial data Residual



0.7 1

0.6 1

0.5 1

Residual

0.3 1

0.2 1

0.1 1

0.0 1

Signal analysis: Hidden layers size 4

Test on the training set
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Signal analysis: Hidden layers size 8

Residual
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Can we do the same with an FFT

f=3Hz
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Another example: Recognizing written
characters

* We’ll try to recognize a digit (0 —9) from an image of a handwritten
digit.
* MNIST dataset (http://yann.lecun.com/exdb/mnist/)
* Popular dataset for testing out machine learning techniques
* Training set is 60,000 images
* Approximately 250 different writers
* Test set is 10,000 images
* Correct answer is known for both sets so we can test our performance

* Image details:
e 28 x 28 pixels, grayscale (0 — 255 intensity)

e We'll use a small subset



Another example: Recognizing written

characters

Input layer: 784 nodes (number of
pixels)

Output layer will be 10 nodes
* Array with an entry for each possible

digit
Hidden layer size of 100
10 epochs

We'll train on the training set, using
1000 images

Rescale the input to be in [0.01, 1]

We’'ll test on the test set of 1000
Images
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Residual

Another example: Recognizing written
characters

Test on the training set
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Today’s lecture:
Neural networks and parallel computing

* Parallel computing
* OpenMP



Why do we care about high performance
computing?

* The more you can compute, the more interesting physics problems
you can address

* Algorithmic advances allow us to do more with the same resources
* This is what we have discussed over the course of the semester

* Another important aspect: Effectively taking advantage of more
powerful computing hardware, e.g., supercomputers, GPUs



Performance of CPUs
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How can we do better? Superconducting
electronics

IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 1, NO. 1, MARCH 1991

RSFQ Logic/Memory Family: A New
Josephson-Junction Technology for
Sub-Terahertz-Clock-Frequency
Digital Systems

K. K. Likharev and V. K. Semenov

Invited Paper

* Record for clock speed: 100-300 GHz
* Normal CPUs 3-5 GHz



How can we do better? Parallel computing

Rank

System

Supercomputer Fugaku - Supercomputer Fugaku, A64FX
48C 2.2GHz, Tofu interconnect D, Fujitsu

RIKEN Center for Computational Science

Japan

Summit - IBM Power System AC922, IBM POWER9 22C
3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR
Infiniband, IBM

DOE/SC/0ak Ridge National Laboratory

United States

Sierra - IBM Power System AC922, IBM POWER9 22C
3.1GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR
Infiniband, IBM / NVIDIA / Mellanox
DOE/NNSA/LLNL

United States

Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C
1.45GHz, Sunway, NRCPC

National Supercomputing Center in Wuxi
China

Cores

7,630,848

2,414,592

1,572,480

10,649,600

Rmax
(TFlop/s)

442,010.0

148,600.0

94,640.0

93,014.6

Rpeak
(TFlop/s)

937,212.0

200,794.9

125,712.0

125,435.9

Power
(kW)

29,899

10,096

7,438

15,371



How do we write parallel programs?

e Determine what parts of the program are limiting
* Profilers can help

* Determine the type of hardware you will be running your program on
* Decide how to parallelize limiting parts

 Test the scaling of your program with number of parallel processes



How parallel does the program need to be?

* The speedup depends on what
portion of the program is parallel

* Often, certain algorithms or parts of
algorithms are not easy to parallelize

* Not very useful if parallel parts are not
the limiting parts

* Amdahl's law: speedup attained from
increasing the number of processors,
N, given the fraction of the code that
is parallel, P :

1
g

(1= P)+ (P/N)

100 101 102 103

Number of processors

104

10°



Types of parallelism: Flynn’s taxonomy: (wikipedia)

Classification based on how the CPU receives
instructions and data

Single instruction stream, single data stream (SISD)
* No parallelism, instructions and data accessed serially

Single instruction stream, multiple data streams
(SIMD)

* Single instruction applied to multiple data streams
e Structure of old vector processors, modern GPUs

Multiple instruction streams, single data stream
(MISD)

* Multiple instructions applied to one data stream
* Not very common

Multiple instruction streams, multiple data streams
(MIMD)

* Multiple processors simultaneously executing different
instructions on different data

* This is what we normally consider parallel computing

SISD Instruction pool
)
8,
& ————|PU |+
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o
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————[PU |
S [————|PU |
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& [————[PU|
———|pul-
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PU[— =[PU|—
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Data pool

PU|— —|PU|

PU[~ L-|pU|-



https://en.wikipedia.org/wiki/Flynn%27s_taxonomy

MIMD versus SPMD versus SIMD

* Normally, we do a specific type of MIMD:
e Run a single program on multiple pieces of data (SPMD)

» Different than SIMD since it does not require specialized hardware and does
not require the processes to be in sync

* Two approaches to SPMD:

e Distributed memory:
* Machine has separate nodes which are essentially their own computer

* Data (messages) are passed between nodes with interconnects, including commands to
synchronize

* Usually use MPI standard message passing interface (next time)

e Shared memory:
e Several CPUs have access to the same memory
* Messages sent via the shared memory

* Program starts executing on one processor, execution splits in a parallel region, then
resynchronized

* This is done via OpenMP (today)



OpenMP and multithreading

 Start process on a master thread

* Each time a piece of code is reached
that is parallelized, the master
thread forks subthreads to run the
task

* After the parallel task is completed,
threads join back to the master

Parallel Task | Parallel Task Il Parallel Task Il

-

Master Thread
Parallel Task | Parallel Task Il Parallel Task Il
Master Thread - 7- I
‘_, & , ,/\/ }
Wikipedia



Examples of OpenMP

* To use OpenMP, we modify our program with directives or pragmas
* Look like comments, but tells the compiler how it should process the input

* We also need to compile with flags for OpenMP
* E.g., gfortran —fopenmp

* Finally, environment variables can also set properties
* OMP_NUM THREADS sets the number of threads

e Simplest example:

program hello

ISOMP parallel
print *, "Hello world"
!SOMP end parallel

end program hello




OMP functions

* OMP provides some functions to get the number of threads, current

thread, etc.:

program hello

!integer, external :: omp get num threads, omp get thread num

use omp lib

write(*,*) "outside of parallel region, num threads
1SOMP parallel

write(*,*) "Hello world", omp get thread num()

!SOMP end parallel

end program hello

, omp get num threads()




How can we get a speedup from threading?

* In the last example, we just did the same thing multiple times
e Simplest code to nontrivially parallelize are loops:

!Somp parallel private(i, J)
!Somp do
do j = 1,N

do i =1,N

a(i,3j)=0.

end do
end do
!Somp end do
!Somp end parallel




Parallel calculations with OpenMP

* Can set the number of threads available with OMP NUM THREADS

* Your code will most likely still run if you ask for more threads than cores, but
you will not get a speedup!

* There is some overhead for spawning the threads

* As discussed before, best to parallelize limiting parts of the program
first



Private versus shared data

* Inside the parallel tasks, can specify if each thread has it’s own copy
(private) or not (shared)

* Shared is the default for variables declared outside of the parallel task
e Be careful modifying shared data!

* Consider the two pieces of code:

k=0 k=0

!Somp parallel shared(k) !Somp parallel private(k)
k=omp get thread num() k=omp get thread num()
!Somp end parallel !Somp end parallel
write(*,*) 'k=",k write(*,*) 'k=",k

* The first one shares k over the nodes, the second makes private
copies on all nodes



Combining data with reduction

* We can combine the results from all threads automatically via
reduction:

k=0

!Somp parallel reduction(+:k)
k=omp get thread num()

!Somp end parallel

write(*,*) 'k=',k

e Will add the results of each thread



Controlling ordering an synchronization of
threads

* As we saw before the threads will proceed in some unknown order
* We may want to have more control than this

* Some useful directives:

e !Somp critical: Make sure only one thread at a time can changes things
in critical sections
* Creates a “thread safe” section of code
* Important when, e.g., incrementing shared variables

 !Somp barrier: Stops processes from proceeding until all processes catch
up



Some comments on OpenMP

* We just covered some basics, OpenMP has quite a bit of functionality

* Have to make sure that your program is threadsafe:
* Don’t inadvertently overwrite data
* Don’t have issues because of the order or synchronization of processes
e Always good unit test in serial and parallel to make sure the results are the same

 Fairly straightforward to parallelize your code piece by piece
* Because directives look like comments, it is easy to run with and without
parallelization (just change compiler flags)
 Works well for fortran, C, C++

* Will NOT work for pure python

* “Global interpreter lock” that means only one thread can talk to the interpreter at
any one time

e Can use OpenMP with, e.g., Cython



After class tasks

* First draft of first two sections of writeup due today
* Tuesday Nov 23 will be our last normal class

* Presentations Tues Nov. 30 and Thurs. Dec 2
* Chosen at random, so please be prepared on Tuesday!

* Readings:
 Computational Methods for Physics, Joel Franklin, Chapter 14
* Make Your Own Neural Network, Tariq Rashid
* http://playground.tensorflow.org



