
PHY604 Lecture 25
November 18, 2021

Review: Pattern recognition with computers
• Classic problem: Identify pictures of dogs versus cats
• Easy for human, difficult for computer

Review: Nonlinear functions at the basis of
neural networks

• Neural networks are divided into
layers
• Input layer accepts the input
• Output layer outputs results

• Each layer has neurons (or nodes)
• For input, one node for each input

variable
• Every node in the first layer connects to

every node in the next layer
• Weight associated with the connection

can be adjusted
• These are the matrix elements

• Operations at neurons given by
nonlinear activation function

You can see the three layers, each with three artificial neurons, or ​nodes​. You can also see
each node connected to every other node in the preceding and next layers.

That’s great! But what part of this cool looking architecture does the learning? What do we
adjust in response to training examples? Is there a parameter that we can refine like the slope
of the linear classifiers we looked at earlier?

The most obvious thing is to adjust the strength of the connections between nodes. Within a
node, we could have adjusted the summation of the inputs, or we could have adjusted the
shape of the sigmoid threshold function, but that’s more complicated than simply adjusting the
strength of the connections between the nodes.

If the simpler approach works, let’s stick with it! The following diagram again shows the
connected nodes, but this time a ​weight​ is shown associated with each connection. A low
weight will de­emphasise a signal, and a high weight will amplify it.

­ 48 ­

Make Your Own Neural Network, Tariq Rashid

Review: Procedure for doing “Machine
Learning” with neural network
• 1. Choose a nonlinear activation function (in our case, find a)
• 2. Choose/generate t input/output pairs for training
• 3. Repeat the set from step 2 N times (epochs) to get a training set of

T=Nt pairs
• 4. Run the training set through the neural net at random, performing

the steepest descent minimization for each
• 5. To test the training in step 4, run the t examples through and

calculate the residual:

• 6. Use the neural net on some new data

g(Axj)� zj
<latexit sha1_base64="TCxSIlUIquIRQfWEs/qZxoyXsBY=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5CRahLixJFXThouLGZQX7gDaEyXTSTjuZhJkbaRuKv+LGhSJu/Q93/o3Tx0KrBy4czrmXe+/xY84U2PaXkVlaXlldy67nNja3tnfM3b2aihJJaJVEPJINHyvKmaBVYMBpI5YUhz6ndb9/M/HrD1QqFol7GMbUDXFHsIARDFryzINOoQV0AH6QXo8HXu/kdOT1PDNvF+0prL/EmZM8mqPimZ+tdkSSkAogHCvVdOwY3BRLYITTca6VKBpj0scd2tRU4JAqN51eP7aOtdK2gkjqEmBN1Z8TKQ6VGoa+7gwxdNWiNxH/85oJBJduykScABVktihIuAWRNYnCajNJCfChJphIpm+1SBdLTEAHltMhOIsv/yW1UtE5K5buzvPlq3kcWXSIjlABOegCldEtqqAqImiEntALejUejWfjzXiftWaM+cw++gXj4xseM5T8</latexit>

Review: Results choosing the 10th number with a NN
Applied to training data Applied to new data

A =
⇥
�0.04 0.42 0.15 �0.23 0.13 0.06 0.19 �0.42 0.48 4.45

⇤
<latexit sha1_base64="09SZcBDAjqU29Msc1cQJVkXGVHA=">AAACVXicbVFLT+MwEHbCY6G8Chz3Ym0F4kKVlLDAAQmWC0dWooDUVJXjTloLx4nsCaKK+ie5IP7JXlbCTSLEayRrvvm+GT8+R5kUBj3vxXHn5hcWfywtN1ZW19Y3mptbNybNNYcuT2Wq7yJmQAoFXRQo4S7TwJJIwm10fzHTbx9AG5Gqa5xk0E/YSIlYcIaWGjRliPCIUVycT0/DCEZCFVHCUIvH6b7X9oJdSr120CmTf7hLLdk5qKoqeb+r6qTU6s7g2KagHRw2QlDDtx0HzZYdKIN+BX4NWqSOq0HzKRymPE9AIZfMmJ7vZdgvmEbBJUwbYW4gY/yejaBnoWIJmH5RujKlO5YZ0jjVdimkJft+omCJMZMksp32fmPzWZuR32m9HOPjfiFUliMoXh0U55JiSmcW06HQwFFOLGBcC3tXysdMM472IxrWBP/zk7+Cm441uN35G7TO/tR2LJGf5BfZIz45ImfkklyRLuHkifxzHMd1np3/7ry7WLW6Tj2zTT6Eu/EKC5CnuA==</latexit>

Today’s lecture:
Neural networks and parallel computing

• Neural network examples
• Interpreting a noisy signal
• Identifying hand-written characters

• Parallel computing
• OpenMP

Adding additional degrees of freedom
• In the previous example, the

number of adjustable parameters
is constrained by the size of the
input and output

• To overcome this limitation, we
can add hidden layers to our
neural net

• Will need an additional matrix
and an additional evaluation of
out nonlinear function

You can see the three layers, each with three artificial neurons, or ​nodes​. You can also see
each node connected to every other node in the preceding and next layers.

That’s great! But what part of this cool looking architecture does the learning? What do we
adjust in response to training examples? Is there a parameter that we can refine like the slope
of the linear classifiers we looked at earlier?

The most obvious thing is to adjust the strength of the connections between nodes. Within a
node, we could have adjusted the summation of the inputs, or we could have adjusted the
shape of the sigmoid threshold function, but that’s more complicated than simply adjusting the
strength of the connections between the nodes.

If the simpler approach works, let’s stick with it! The following diagram again shows the
connected nodes, but this time a ​weight​ is shown associated with each connection. A low
weight will de­emphasise a signal, and a high weight will amplify it.

­ 48 ­

Make Your Own Neural Network, Tariq Rashid

Hidden layers
• Take as input a vector x of length n
• Take as output a vector z of length m
• Consider a k x n matrix B and a m x k matrix A
• Construct the output as:

• Note that we differentiate the applications of g because they may
have different a’s
• Extra shift of ½ is to recenter the data around 0 to put it in the

nonlinear range of g
• Key: k is independent of the size of input/output!
• Can train k(m+n) total elements

ez = g(Bx)� 1

2
, z = eg(Aez)

<latexit sha1_base64="Ru1ryET168z5YV1R6ONvxpeFjyY=">AAACPnicbVDLSgMxFM34tr6qLt0Ei6CgZaYKurDgY+NSwarQKSWTuVODmYfJHbUd5svc+A3uXLpxoYhbl6a1iK8DgcM55ya5x0uk0GjbD9bA4NDwyOjYeGFicmp6pjg7d6LjVHGo8VjG6sxjGqSIoIYCJZwlCljoSTj1Lva7/ukVKC3i6BjbCTRC1opEIDhDIzWLNfda+IBC+pB18mpr2UW4QS/I9vKblTU3UIw7lVXqXl6mzKed6rd4K/8K7+Y/rllpFkt22e6B/iVOn5RIH4fN4r3rxzwNIUIumdZ1x06wkTGFgkvIC26qIWH8grWgbmjEQtCNrLd+TpeM4tMgVuZESHvq94mMhVq3Q88kQ4bn+rfXFf/z6ikGW41MREmKEPHPh4JUUoxpt0vqCwUcZdsQxpUwf6X8nJnK0DReMCU4v1f+S04qZWe9XDnaKO1s9+sYIwtkkSwTh2ySHXJADkmNcHJLHskzebHurCfr1Xr7jA5Y/Zl58gPW+wfBNrCp</latexit>

Implementing the hidden layer
• We still want to minimize our cost function f:

• Now we have to do two interrelated steepest descent minimizations:

• Where:

Apq = Apq � ⌘
@f

@Apq
, Bpq = Bpq � ⌘

@f

@Bpq
<latexit sha1_base64="aALRkoXI5L73Y0Iohv1kyQDSPsQ=">AAACWnicjVHLSgMxFM2M2trWR33s3ASL4ELLTBV0oaB147KCtYVOKXfSTBuaeSUZoQzzk25E8FcE007BR114IeRw7jk3yYkbcSaVZb0Z5srqWqG4XipXNja3tqs7u08yTAShbRLyUHRdkJSzgLYVU5x2I0HBdzntuJO7Wb/zTIVkYfCophHt+zAKmMcIKE0NqvHtII3i7DrfTh2qwPEEkNSJQCgGHHvZF85V2Ql24jiBIW7m5ua/zLkqG1RrVt2aF14G9gLU0KJag+qLMwxJ4tNAEQ5S9mwrUv10NpVwmpWdRNIIyARGtKdhAD6V/XQeTYaPNDPEXij0ChSes98dKfhSTn1XK31QY/m7NyP/6vUS5V32UxZEiaIByQ/yEo5ViGc54yETlCg+1QCIYPqumIxBh6P0b5R1CPbvJy+Dp0bdPqs3Hs5rN1eLONbRATpEx8hGF+gG3aMWaiOCXtGHUTCKxrtpmiWzkktNY+HZQz/K3P8Ejuq3Fg==</latexit>

f(Ars, Bij) =
mX

r=1

(zr � yr)
2

<latexit sha1_base64="I1Ar964gJ6p7kuUrVsVuQyvcMLQ=">AAACEXicbVDLSsNAFJ3UV62vqEs3wSK0oCWpgi4sVN24rGAf0EeYTCft2JkkzEyEGPILbvwVNy4UcevOnX/jtM1CWw9cOJxzL/fe4wSUCGma31pmYXFpeSW7mltb39jc0rd3GsIPOcJ15FOftxwoMCUerksiKW4FHEPmUNx0Rldjv3mPuSC+dyujAHcZHHjEJQhKJdl6wS1c2DEXyeGlHZO7pFjpiJAppWIlPVZ4sPlRZPNir2zrebNkTmDMEysleZCiZutfnb6PQoY9iSgUom2ZgezGkEuCKE5ynVDgAKIRHOC2oh5kWHTjyUeJcaCUvuH6XJUnjYn6eyKGTIiIOaqTQTkUs95Y/M9rh9I968bEC0KJPTRd5IbUkL4xjsfoE46RpJEiEHGibjXQEHKIpAoxp0KwZl+eJ41yyToulW9O8tXzNI4s2AP7oAAscAqq4BrUQB0g8AiewSt40560F+1d+5i2ZrR0Zhf8gfb5AzUsnJg=</latexit>

@f

@Apq
= 2e↵(zp � yp)zp(1� zp)ezq ⌘ �pezq

@f

@Bpq
=

mX

r=1

�rArp↵

✓
1

2
+ ezp

◆✓
1

2
� ezp

◆
xq

<latexit sha1_base64="I0nCBisK7m+T8wO8zft8LvvXGps=">AAAC9XicfVLLbhMxFPUMr5LySGHJxiICJUKJZgJSu6BSgQ3LIpG2Uhwsj8eTWLVnHNvTko78H2xYgBBb/oUdf4MnGYkmrbiS7aN7z336JkpwY6PoTxDeuHnr9p2tu63te/cfPGzvPDoyRakpG9FCFPokIYYJnrOR5VawE6UZkYlgx8npu9p+fMa04UX+0S4Um0gyzXnGKbFehXeC7eco04RWSBFtOREwc//wG1ypuXP7Q3TOU2a5SFmFiFAz4roXWPUXWPX82437/u5dIl04PEdsXvIziAyfSoLVhhUi1Ppf6rdNamRKiSu9H7tPsgml67q0cqtKkGCZ7S4jxcMX61kU0nw6s701Tv96zmc8x+1ONIiWAq+CuAEd0Mghbv9GaUFLyXJLBTFmHEfKTqq6BSqYa6HSMEXoKZmysYc5kcxMquWvOfjMa1KYFdqf3MKl9rJHRaQxC5l4piR2ZjZttfI627i02d6k4rkqLcvpKlFWCmgLWK8ATLlm1IqFB4Rq7muFdEb8bKxflJYfQrzZ8lVwNBzELwfDD686B6+bcWyBJ+Ap6IIY7IID8B4cghGggQ6+BN+C7+F5+DX8Ef5cUcOg8XkM1iT89RckqPQk</latexit>

Back propagation
• Note that we are optimizing simultaneously A and B:

• So, the errors are “backpropagated” through the output and hidden
layers

@f

@Apq
= 2e↵(zp � yp)zp(1� zp)ezq ⌘ �pezq

@f

@Bpq
=

mX

r=1

�rArp↵

✓
1

2
+ ezp

◆✓
1

2
� ezp

◆
xq

<latexit sha1_base64="I0nCBisK7m+T8wO8zft8LvvXGps=">AAAC9XicfVLLbhMxFPUMr5LySGHJxiICJUKJZgJSu6BSgQ3LIpG2Uhwsj8eTWLVnHNvTko78H2xYgBBb/oUdf4MnGYkmrbiS7aN7z336JkpwY6PoTxDeuHnr9p2tu63te/cfPGzvPDoyRakpG9FCFPokIYYJnrOR5VawE6UZkYlgx8npu9p+fMa04UX+0S4Um0gyzXnGKbFehXeC7eco04RWSBFtOREwc//wG1ypuXP7Q3TOU2a5SFmFiFAz4roXWPUXWPX82437/u5dIl04PEdsXvIziAyfSoLVhhUi1Ppf6rdNamRKiSu9H7tPsgml67q0cqtKkGCZ7S4jxcMX61kU0nw6s701Tv96zmc8x+1ONIiWAq+CuAEd0Mghbv9GaUFLyXJLBTFmHEfKTqq6BSqYa6HSMEXoKZmysYc5kcxMquWvOfjMa1KYFdqf3MKl9rJHRaQxC5l4piR2ZjZttfI627i02d6k4rkqLcvpKlFWCmgLWK8ATLlm1IqFB4Rq7muFdEb8bKxflJYfQrzZ8lVwNBzELwfDD686B6+bcWyBJ+Ap6IIY7IID8B4cghGggQ6+BN+C7+F5+DX8Ef5cUcOg8XkM1iT89RckqPQk</latexit>

Example: Signal analysis
• Given a noisy signal expected to be one

of four frequencies
• f ={1,2,3,4} Hz

• Noise is significantly larger than the
underlying signal:

• x are random numbers in [-1,1]

• Can we identify the frequency?

s(t) = cos(2⇡ft) + 5⇠
<latexit sha1_base64="yDCbGAgmi7MN1jChxjScxeMCpkg=">AAACAHicbVDLSgNBEJyNrxhfqx48eBkMQoIQdqOiB4WAF48RzAOyS5idzCZDZh/M9IphycVf8eJBEa9+hjf/xkmyB00saCiquunu8mLBFVjWt5FbWl5ZXcuvFzY2t7Z3zN29pooSSVmDRiKSbY8oJnjIGsBBsHYsGQk8wVre8Gbitx6YVDwK72EUMzcg/ZD7nBLQUtc8UCUoXzs0UqWqE3PsQ/nk3HnkXbNoVawp8CKxM1JEGepd88vpRTQJWAhUEKU6thWDmxIJnAo2LjiJYjGhQ9JnHU1DEjDlptMHxvhYKz3sR1JXCHiq/p5ISaDUKPB0Z0BgoOa9ifif10nAv3RTHsYJsJDOFvmJwBDhSRq4xyWjIEaaECq5vhXTAZGEgs6soEOw519eJM1qxT6tVO/OirWrLI48OkRHqIRsdIFq6BbVUQNRNEbP6BW9GU/Gi/FufMxac0Y2s4/+wPj8AVy2lPQ=</latexit>

Signal analysis: Hidden layers size 2

Test on the training set Test on new data

Signal analysis: Hidden layers size 3

Test on the training set Test on new data

Signal analysis: Hidden layers size 4

Test on the training set Test on new data

Signal analysis: Hidden layers size 8

Test on the training set Test on new data

Can we do the same with an FFT

f = 3 Hz

Another example: Recognizing written
characters
• We’ll try to recognize a digit (0 – 9) from an image of a handwritten

digit.
• MNIST dataset (http://yann.lecun.com/exdb/mnist/)
• Popular dataset for testing out machine learning techniques
• Training set is 60,000 images
• Approximately 250 different writers
• Test set is 10,000 images
• Correct answer is known for both sets so we can test our performance

• Image details:
• 28 × 28 pixels, grayscale (0 – 255 intensity)

• We’ll use a small subset

Another example: Recognizing written
characters

• Input layer: 784 nodes (number of
pixels)
• Output layer will be 10 nodes

• Array with an entry for each possible
digit

• Hidden layer size of 100
• 10 epochs
• We’ll train on the training set, using

1000 images
• Rescale the input to be in [0.01, 1]
• We’ll test on the test set of 1000

images

Another example: Recognizing written
characters

Test on the training set Test on new data

Today’s lecture:
Neural networks and parallel computing

• Neural network examples
• Interpreting a noisy signal
• Identifying hand-written characters

• Parallel computing
• OpenMP

Why do we care about high performance
computing?

• The more you can compute, the more interesting physics problems
you can address

• Algorithmic advances allow us to do more with the same resources
• This is what we have discussed over the course of the semester

• Another important aspect: Effectively taking advantage of more
powerful computing hardware, e.g., supercomputers, GPUs

Performance of CPUs

https://preshing.com/20120208/a-look-back-at-single-threaded-cpu-performance/

How can we do better? Superconducting
electronics

IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. I, NO. I, MARCH 1991

RSFQ Logic/Memory Family: A New
Josephson-Junction Technology for

Sub-Terahertz-Clock-Frequency
Digital Systems

K. K. Likharev and V. K. Semenov

Invited Paper

Abstract-Recent developments of the rapid single-flux-quantum
(RSFQ) circuit family are reviewed. Elementary cells of the family can
generate, pass, memorize, and reproduce picosecond voltage pulses V(t)
with nominally quantized area J V(t) dt = corresponding to trans-
fer of a single magnetic flux quantum = h /2e across a Josephson
junction. Functionally, each cell can be viewed as a combination of a
logic gate and an output latch (register) controlled by clock pulses,
which are physically similar to the signal pulses. Hand-shaking style of
local exchange by the clock pulses enables one to increase complexity of
the LSI RSFQ systems without loss of operating speed. The simplest
components of the RSFQ circuitry have been experimentally tested at
clock frequencies exceeding 100 GHz, and an increase of the speed
beyond 300 GHz is expected as a result of using an up-to-date fabrica-
tion technology. The review includes a discussion of possible future
developments and applications of this novel, ultrafast digital technol-
ogy.

I. INTRODUCTION

SEMICONDUCTOR microelectronics continues its victorious
march, despite repeated claims of finding new physical prin-

ciples that would allow one to process the digital information
more effectively (faster, cheaper, etc.) than one could with the
semiconductor-transistor-based integrated circuits. Most of these
claims are justly criticized for their insufficient account of
requirements imposed by the computer architectures and LSI
fabrication technologies.

Even the most ardent proponents of the semiconductor digital
technologies agree, however, that quite a serious challenge for
them has come from the superconductor integrated circuits based
on the Josephson effect. (For an excellent introduction to the
effect, as well as to the superconductor electronics as a whole,
see [1].)

The basic common features of all Josephson-junction tech-
nologies, favorable for their digital applications, are as follows:

i) Effective impedance Ref of a Josephson junction as a
waveform generator can be readily adjusted to that (p) of the
superconducting microstrip line (typically p = 10 Q). Such
lines, with their very low attenuation and dispersion, allow one
to pass picosecond waveforms for distances well exceeding the
typical chip size [2], with a low crosstalk. As a consequence,

Manuscript received August 31, 1990; revised November 7, 1990. This
work was supported by the Soviet Scientific Council on the High-Tc Super-
conductivity Problem under Grant 42.

The authors are with the Department of Physics, Moscow State Univer-
sity, Moscow, 119899 GSP, USSR.

IEEE Log Number 9042305.

ultrafast digital signals can be passed along the chips ballistically
(rather than diffusively) with a propagation speed c approaching
that of light. (It is a pity that so many advertisers of the
optoelectronics forget that one does not need to have light for
having the speed of light!)

ii) The signal voltage amplitude V in the Josephson junction
circuits does not exceed the value 2.<:i(O) / e established by the
energy gap .<:i(T) and equals - 3 m V for the traditional low-Tc
superconductors (we will discuss prospects arising from the
discovery of the high-Tc superconductivity in Appendix III). As
a result, the power P = V 2 /Ref dissipated by a Josephson
junction even in its "open" (resistive) state is typically below
one microwatt. Hence the problem of the heat removal from
VLSI circuits is either trivial or at least quite solvable. This fact
leads to the possibility of the close packaging of the supercon-
ductor-circuit chips, with the corresponding decrease of time
delays for the interchip communication.

iii) Intrinsic switching speed of the Josephson junction is also
very high, typically few picoseconds (switching delays as low as
l.5 ps have been demonstrated recently [3]).

iv) Lastly, the Josephson junction fabrication technologies are
considerably simpler than those of the present-day semiconduc-
tor (both Si and GaAs) transistors with similar design rules.
Physical limits of the junction size (a > 0.1 µm) are also close
to those of the semiconductor transistors and can hardly be
regarded as a serious problem at the present-day patterning
techniques.

Small wonder, then, that the famous project of the IBM
Corporation aimed at creation of a prototype Josephson-junction
computer attracted so much attention in the 1970's and early
1980's (for a detailed description of the project the reader is
referred to the special issue of IBM J. Res. Devel. [4]; several
important results have been reported later [5], [6]; see also [7]).
When the attempt was eventually dropped in late 1983, the news
produced a major sensation in the electronics world.

Now, after a few years we believe to have a basically clear
view of the main reasons for this failure. Most important, a need
in liquid-helium cooling of the whole system was not the main
reason. In fact, modern refrigeration techniques do justify com-
mercial production even of instruments like SQUID's [8] and
reflectometers [9] which use very simple superconductor IC
chips with just a few Josephson junctions. For possible LSI /VLSI
circuits the refrigeration costs would be far from being the major
concern.

The first real drawback of the IBM project was utilization of

1051-8223/9110003-0003$01.00 © 1991 IEEE

• Record for clock speed: 100-300 GHz
• Normal CPUs 3-5 GHz

How can we do better? Parallel computing

How do we write parallel programs?
• Determine what parts of the program are limiting
• Profilers can help

• Determine the type of hardware you will be running your program on

• Decide how to parallelize limiting parts

• Test the scaling of your program with number of parallel processes

How parallel does the program need to be?
• The speedup depends on what

portion of the program is parallel
• Often, certain algorithms or parts of

algorithms are not easy to parallelize
• Not very useful if parallel parts are not

the limiting parts

• Amdahl's law: speedup attained from
increasing the number of processors,
N, given the fraction of the code that
is parallel, P :

S =
1

(1� P) + (P/N)
<latexit sha1_base64="td+FSmb2Uc/NWP9DiW4aqX1yi0I=">AAACAHicbVDLSsNAFJ3UV62vqAsXbgaL0CLWpAq6UCi4cSUR7QPaUCbTSTt0MgkzE6GEbPwVNy4UcetnuPNvnLZZaOuBC4dz7uXee7yIUaks69vILSwuLa/kVwtr6xubW+b2TkOGscCkjkMWipaHJGGUk7qiipFWJAgKPEaa3vB67DcfiZA05A9qFBE3QH1OfYqR0lLX3Lu/6vgC4cROk5J97JSPSs7JbTntmkWrYk0A54mdkSLI4HTNr04vxHFAuMIMSdm2rUi5CRKKYkbSQieWJEJ4iPqkrSlHAZFuMnkghYda6UE/FLq4ghP190SCAilHgac7A6QGctYbi/957Vj5F25CeRQrwvF0kR8zqEI4TgP2qCBYsZEmCAuqb4V4gHQeSmdW0CHYsy/Pk0a1Yp9WqndnxdplFkce7IMDUAI2OAc1cAMcUAcYpOAZvII348l4Md6Nj2lrzshmdsEfGJ8/rr6UgA==</latexit>

Types of parallelism: Flynn’s taxonomy: (wikipedia)
• Classification based on how the CPU receives

instructions and data

• Single instruction stream, single data stream (SISD)
• No parallelism, instructions and data accessed serially

• Single instruction stream, multiple data streams
(SIMD)
• Single instruction applied to multiple data streams
• Structure of old vector processors, modern GPUs

• Multiple instruction streams, single data stream
(MISD)
• Multiple instructions applied to one data stream
• Not very common

• Multiple instruction streams, multiple data streams
(MIMD)
• Multiple processors simultaneously executing different

instructions on different data
• This is what we normally consider parallel computing

https://en.wikipedia.org/wiki/Flynn%27s_taxonomy

MIMD versus SPMD versus SIMD
• Normally, we do a specific type of MIMD:
• Run a single program on multiple pieces of data (SPMD)
• Different than SIMD since it does not require specialized hardware and does

not require the processes to be in sync

• Two approaches to SPMD:
• Distributed memory:

• Machine has separate nodes which are essentially their own computer
• Data (messages) are passed between nodes with interconnects, including commands to

synchronize
• Usually use MPI standard message passing interface (next time)

• Shared memory:
• Several CPUs have access to the same memory
• Messages sent via the shared memory
• Program starts executing on one processor, execution splits in a parallel region, then

resynchronized
• This is done via OpenMP (today)

OpenMP and multithreading

• Start process on a master thread

• Each time a piece of code is reached
that is parallelized, the master
thread forks subthreads to run the
task

• After the parallel task is completed,
threads join back to the master Wikipedia

Examples of OpenMP
• To use OpenMP, we modify our program with directives or pragmas
• Look like comments, but tells the compiler how it should process the input

• We also need to compile with flags for OpenMP
• E.g., gfortran –fopenmp

• Finally, environment variables can also set properties
• OMP_NUM_THREADS sets the number of threads

• Simplest example:
program hello

!$OMP parallel
print *, "Hello world"
!$OMP end parallel

end program hello

OMP functions

• OMP provides some functions to get the number of threads, current
thread, etc.:

program hello

!integer, external :: omp_get_num_threads, omp_get_thread_num
use omp_lib

write(*,*) "outside of parallel region, num threads = ", omp_get_num_threads()

!$OMP parallel
write(*,*) "Hello world", omp_get_thread_num()
!$OMP end parallel

end program hello

How can we get a speedup from threading?
• In the last example, we just did the same thing multiple times
• Simplest code to nontrivially parallelize are loops:

!$omp parallel private(i, j)
!$omp do
do j = 1,N

do i = 1,N
a(i,j)=0.

end do
end do
!$omp end do
!$omp end parallel

Parallel calculations with OpenMP

• Can set the number of threads available with OMP_NUM_THREADS
• Your code will most likely still run if you ask for more threads than cores, but

you will not get a speedup!

• There is some overhead for spawning the threads

• As discussed before, best to parallelize limiting parts of the program
first

Private versus shared data
• Inside the parallel tasks, can specify if each thread has it’s own copy

(private) or not (shared)
• Shared is the default for variables declared outside of the parallel task
• Be careful modifying shared data!

• Consider the two pieces of code:

• The first one shares k over the nodes, the second makes private
copies on all nodes

k=0
!$omp parallel shared(k)
k=omp_get_thread_num()
!$omp end parallel
write(*,*) 'k=',k

k=0
!$omp parallel private(k)
k=omp_get_thread_num()
!$omp end parallel
write(*,*) 'k=',k

Combining data with reduction

• We can combine the results from all threads automatically via
reduction:

• Will add the results of each thread

k=0
!$omp parallel reduction(+:k)
k=omp_get_thread_num()
!$omp end parallel
write(*,*) 'k=',k

Controlling ordering an synchronization of
threads
• As we saw before the threads will proceed in some unknown order

• We may want to have more control than this

• Some useful directives:
• !$omp critical: Make sure only one thread at a time can changes things

in critical sections
• Creates a “thread safe” section of code
• Important when, e.g., incrementing shared variables

• !$omp barrier: Stops processes from proceeding until all processes catch
up

Some comments on OpenMP
• We just covered some basics, OpenMP has quite a bit of functionality
• Have to make sure that your program is threadsafe:

• Don’t inadvertently overwrite data
• Don’t have issues because of the order or synchronization of processes
• Always good unit test in serial and parallel to make sure the results are the same

• Fairly straightforward to parallelize your code piece by piece
• Because directives look like comments, it is easy to run with and without

parallelization (just change compiler flags)

• Works well for fortran, C, C++
• Will NOT work for pure python

• “Global interpreter lock” that means only one thread can talk to the interpreter at
any one time

• Can use OpenMP with, e.g., Cython

After class tasks

• First draft of first two sections of writeup due today

• Tuesday Nov 23 will be our last normal class

• Presentations Tues Nov. 30 and Thurs. Dec 2
• Chosen at random, so please be prepared on Tuesday!

• Readings:
• Computational Methods for Physics, Joel Franklin, Chapter 14
• Make Your Own Neural Network, Tariq Rashid
• http://playground.tensorflow.org

