PHY604 Lecture 25

November 18, 2021

Review: Pattern recognition with computers

e Classic problem: Identify pictures of dogs versus cats
e Easy for human, difficult for computer

Review: Nonlinear functions at the basis of
neural networks

* Neural networks are divided into

layers - O XQ O N
* Input layer accepts the input . /957’

L
e Output layer outputs results | X ot
inputs // \ / \\\.: outputs
* Each layer has neurons (or nodes) e OiQéO S
* For input, one node for each input XX I X
variable P
* Every node in the first layer connects to . @i@i@ e
every node in the next layer b b
* Weight associated with the connection |
can be adjusted

* These are the matrix elements

* Operations at neurons given by
nonlinear activation function

Make Your Own Neural Network, Tariq Rashid

Review: Procedure -

‘or doing “Machine

_earning” with neu

ral network

e 1. Choose a nonlinear activation function (in our case, find &)

2. Choose/generate t input/output pairs for training

* 3. Repeat the set from step 2 N times (epochs) to get a training set of

T=Nt pairs

* 4. Run the training set through the neural net at random, performing
the steepest descent minimization for each

* 5. To test the training in step
calculate the residual:

4, run the t examples through and

g(Ax;) — z;
6. Use the neural net on some new data

Residual

A=1]-0.04 042 0.15 —0.23

Applied to training data

0.0004 -

0.0002 -

0.0000 -

—0.0002 A

—0.0004 -

—0.0006 A

—0.0008 -

|

0

2 4 6
Trial data

8

Residual

0.13 0.06 0.19 —0.42 0.48 4.45

0.3 A

0.2

0.1 1

0.0 A1

—0.1

—0.2 A

Applied to new data

Review: Results choosing the 10t number with a NN

0 20

40 60 80
Trial data

100

Today’s lecture:
Neural networks and parallel computing

* Neural network examples
* Interpreting a noisy signal
* |dentifying hand-written characters

* Parallel computing
* OpenMP

Adding additional degrees of freedom

. layer 1 layer 2 layer 3
* In the previous example, the
number of adjustable parameters — O Q 3 —
is constrained by the size of the /5
input and output T outputs
x 1 f;}x) L
8 ,//
* To overcome this limitation, we
. ‘ _T:-;\ A
can add hidden layers to our — O O —t>(>) —
neural net \

NeUrons connections

 Will need an additional matrix
and an additional evaluation of Make Your Own Neural Network, Tarig Rashid
out nonlinear function

Hidden layers

* Take as input a vector x of length n
* Take as output a vector z of length m
* Consider a k x n matrix B and a m x k matrix A

 Construct the output as:
- 1 -
e=g9Br) -5, z=g(AZ)

* Note that we differentiate the applications of g because they may
have different s

e Extra shift of %4 is to recenter the data around O to put it in the
nonlinear range of g

* Key: k is independent of the size of input/output!
e Can train k(m+n) total elements

Implementing the hidden layer

* We still want to minimize our cost function f:

f(A’I"S7 Bzg) — Z(Zr — yr)Q
r=1
* Now we have to do two interrelated steepest descent minimizations:
of of
qu:qu_naquv qu:qu_naqu
* Where:
of ~

A = 20(2p — Yp)2p(1l — 2p) 2 = 0,2

Of A 1 1
oL, — ?ZO'TATpCV (5 + zp> <§ — zp> T

=1

Back propagation
* Note that we are optimizing simultaneously A and B:

of

OA,. = 2a(2p — Yp)2p(1 — 2p)2q = 0p2y
Of A 1 1
— ’I“A’I“ = ~
oy, = e (3 +3) (32

* So, the errors are “backpropagated” through the output and hidden
layers

Example: Signal analysis

* Given a noisy signal expected to be one

of four frequencies 4-

* £={1,2,3,4} Hz

* Noise is significantly larger than the g o]

underlying signal:

s(t) = cos(2m ft) 4+ 5E -2-

e Sare random numbers in [-1,1]

* Can we identify the frequency? —61

N/ NS

20 40 60 80 100

Residual

Signal analysis: Hidden layers size 2

Test on the training set

0 20 40 60
Trial data

80

+
30 -
+ +
+ n 25 -
e e H o+
n w 20
+ o+ £
+ + —FI_ E 15 4
+ + + | 8
+ + + + _ij_'_# +
+ 10 -
+ + 4 g
+ LI
i | 51
+
L L + +

0 1 2 3 4
Residual

Residual

Test on new data

+

+4 4 A +—F|'+_#_

g

+ 1
+
ot
4+
-H

+ + 5
+# +
+T

o

+
-|-_L_|+ +

T o+

|
|

+ +
|-|-_|_ ++

++
Fh ey

+
+

+
ik

+

0 20

40 60
Trial data

100

Data points

30 A

25 1

N
o
1

=
[6,]
1

10 A

0 1 2 3 4
Residual

Residual

3.0 1

2.5 1

2.0 1

1.5

1.0 A

0.5 A

0.0 1

Signal analysis: Hidden layers size 3

Test on the training set

+
+
80 A
+
+ 60 -
+ 8
£
N + g
+ s
+ 840_
o
+ o+ -
+ _‘ﬁ_ + + + 20
+ + + °
n + + H + + —|:'_+
T - i gt
T T T T T T O'
0 20 40 60 80 100 0

Trial data

2
Residual

Residual

Test on new data

4
4
+ 0
1+ £
o
¥ ¢# F
-+ T | &
4+
4+
T +
H++ +4+ + +
+ + H +
T+ 4+ 4+ LT
+ +
THE+ 4+ Bt
4I0 6I0 8I0 l(I)O 0 1 2 3 4
Trial data Residual

0.7 1

0.6 1

0.5 1

Residual

0.3 1

0.2 1

0.1 1

0.0 1

Signal analysis: Hidden layers size 4

Test on the training set

0.4 1

+ 100 A
80 A
£ 60-
g
g
40
te + 4+
T # 5) 201
g 1< S AT,
BT U R

40 60 80 100 0
Trial data

2
Residual

Residual

Test on new data

+ -|- _|_
T+ 4y

Lot

+ + + i + +
HH

i +

+
TR T e
0 20 40 60 80 100
Trial data

Data points

0 1 2
Residual

Signal analysis: Hidden layers size 8

Residual

Test on the training set Test on new data
100 A
+ 6 - + 35 A
+
80 51 301
T+ 4+ L+
+ * 25 -
4 + +
2 60 — + 2
. § é N + * 4 '§20—
; g+ T+ Rt s
a} 40 - —+ 0 154
2—##4_"'_'_ S R

T Lo+ | 207

+] T+ + T

N N 20 e + + +
+ ++ + 4 5

o + +, 4 T

P +
: W@%ﬁ% 0 + 4+ et W §
T T T T T T O' T T T T T T T T T 0'
0 20 40 60 80 100 0 1 2 3 4 0 20 40 60 80 100 0 1 2 3 4

Trial data Residual Trial data Residual

Can we do the same with an FFT

f=3Hz

60

_—

40 A

N
o o
1 1

FFT of Signal

I
N
(@

_40 -

20

30

40

50

Another example: Recognizing written
characters

* We’ll try to recognize a digit (0 —9) from an image of a handwritten
digit.
* MNIST dataset (http://yann.lecun.com/exdb/mnist/)
* Popular dataset for testing out machine learning techniques
* Training set is 60,000 images
* Approximately 250 different writers
* Test set is 10,000 images
* Correct answer is known for both sets so we can test our performance

* Image details:
e 28 x 28 pixels, grayscale (0 — 255 intensity)

e We'll use a small subset

Another example: Recognizing written

characters

Input layer: 784 nodes (number of
pixels)

Output layer will be 10 nodes
* Array with an entry for each possible

digit
Hidden layer size of 100
10 epochs

We'll train on the training set, using
1000 images

Rescale the input to be in [0.01, 1]

We’'ll test on the test set of 1000
Images

10 A

15

20 A

25 4

10

15 A

20 1

25 4

0

5

10 15 20 25

4

0

5

10 15 20 25

104

154

20 A

25 1

10 A

154

20 A

25 1

0 5 10 15 20 25

0 5 10 15 20 25

Residual

Another example: Recognizing written
characters

Test on the training set

500 A

400 1

+
+
s
Data points
w
o
o

200 A

100 A

0 200

T T T T 0-
400 600 800 1000 0 2

Trial data

Residual

10 1

Test on new data

300 ~

250 1

Data points
= N
w o
o o

100 A

50 1

T T T T 0 =
400 600 800 1000 0
Trial data

Today’s lecture:
Neural networks and parallel computing

* Parallel computing
* OpenMP

Why do we care about high performance
computing?

* The more you can compute, the more interesting physics problems
you can address

* Algorithmic advances allow us to do more with the same resources
* This is what we have discussed over the course of the semester

* Another important aspect: Effectively taking advantage of more
powerful computing hardware, e.g., supercomputers, GPUs

Performance of CPUs

Single-Threaded Integer Performance
Base 1 adjus SP t 2sul

per year

m |ntel Xeon

¢ |ntel Core
Intel Pentium

4 Intel Itanium

= Intel Celeron
AMD FX

u AMD Opteron
AMD Phenom

* AMD Athion
IBM POWER

* PowerPC
Fujitsu SPARC
Sun SPARC
DEC Alpha

: MIPS

* HP PA-RISC

+52%

per year

https://preshing.com/20120208/a-look-back-at-single-threaded-cpu-performance/

42 Years of Microprocessor Trend Data

! l T T yy
107 | -
A sa 4
6 : p AAA A
10 _ ... A ,,,,,,,,,,,,,,,,,,,,,,,,,, —
, asfes
0 A T —— e & T S — - ®®
] .] @
: : @
10" F AiAé *ﬂ “‘ L 1
| P AA AL *‘
103 | i Aa Al ‘.cz‘ﬂlt] 1
i : ° i
5 L4, e v vl o¥
10° ; g TRCRR AR A LM L A
: e :
) B R4 2 LT T 2« DN
10 P — - ¥ R B
=~ - 4 v 'viv vy % “‘
100 _,‘,,,, rrrrrrrrrrrr X. rrrrrrrr » IR L R R R L hesssansanssassnsonsanons -
i] ! L
1970 1980 1990 2000 2010

Year

Transistors
(thousands)

Single-Thread
Performance 5
(SpecINT x 10%)

Frequency (MHz)

Typical Power

41 (Watts)

Number of
Logical Cores

2020

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2017 by K. Rupp

How can we do better? Superconducting
electronics

IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 1, NO. 1, MARCH 1991

RSFQ Logic/Memory Family: A New
Josephson-Junction Technology for
Sub-Terahertz-Clock-Frequency
Digital Systems

K. K. Likharev and V. K. Semenov

Invited Paper

* Record for clock speed: 100-300 GHz
* Normal CPUs 3-5 GHz

How can we do better? Parallel computing

Rank

System

Supercomputer Fugaku - Supercomputer Fugaku, A64FX
48C 2.2GHz, Tofu interconnect D, Fujitsu

RIKEN Center for Computational Science

Japan

Summit - IBM Power System AC922, IBM POWER9 22C
3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR
Infiniband, IBM

DOE/SC/0ak Ridge National Laboratory

United States

Sierra - IBM Power System AC922, IBM POWER9 22C
3.1GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR
Infiniband, IBM / NVIDIA / Mellanox
DOE/NNSA/LLNL

United States

Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C
1.45GHz, Sunway, NRCPC

National Supercomputing Center in Wuxi
China

Cores

7,630,848

2,414,592

1,572,480

10,649,600

Rmax
(TFlop/s)

442,010.0

148,600.0

94,640.0

93,014.6

Rpeak
(TFlop/s)

937,212.0

200,794.9

125,712.0

125,435.9

Power
(kW)

29,899

10,096

7,438

15,371

How do we write parallel programs?

e Determine what parts of the program are limiting
* Profilers can help

* Determine the type of hardware you will be running your program on
* Decide how to parallelize limiting parts

 Test the scaling of your program with number of parallel processes

How parallel does the program need to be?

* The speedup depends on what
portion of the program is parallel

* Often, certain algorithms or parts of
algorithms are not easy to parallelize

* Not very useful if parallel parts are not
the limiting parts

* Amdahl's law: speedup attained from
increasing the number of processors,
N, given the fraction of the code that
is parallel, P :

1
g

(1= P)+ (P/N)

100 101 102 103

Number of processors

104

10°

Types of parallelism: Flynn’s taxonomy: (wikipedia)

Classification based on how the CPU receives
instructions and data

Single instruction stream, single data stream (SISD)
* No parallelism, instructions and data accessed serially

Single instruction stream, multiple data streams
(SIMD)

* Single instruction applied to multiple data streams
e Structure of old vector processors, modern GPUs

Multiple instruction streams, single data stream
(MISD)

* Multiple instructions applied to one data stream
* Not very common

Multiple instruction streams, multiple data streams
(MIMD)

* Multiple processors simultaneously executing different
instructions on different data

* This is what we normally consider parallel computing

SISD Instruction pool
)
8,
& ————|PU |+
-~
o
A
SIMD Instruction pool
————[PU |
S [————|PU |
(%
5
& [————[PU|
———|pul-

MISD

Data pool

MIMD

Instruction pool

Lpgld Lol

Instruction pool

PU[— =[PU|—

PU|— =|PU|—

Data pool

PU|— —|PU|

PU[~ L-|pU|-

https://en.wikipedia.org/wiki/Flynn%27s_taxonomy

MIMD versus SPMD versus SIMD

* Normally, we do a specific type of MIMD:
e Run a single program on multiple pieces of data (SPMD)

» Different than SIMD since it does not require specialized hardware and does
not require the processes to be in sync

* Two approaches to SPMD:

e Distributed memory:
* Machine has separate nodes which are essentially their own computer

* Data (messages) are passed between nodes with interconnects, including commands to
synchronize

* Usually use MPI standard message passing interface (next time)

e Shared memory:
e Several CPUs have access to the same memory
* Messages sent via the shared memory

* Program starts executing on one processor, execution splits in a parallel region, then
resynchronized

* This is done via OpenMP (today)

OpenMP and multithreading

 Start process on a master thread

* Each time a piece of code is reached
that is parallelized, the master
thread forks subthreads to run the
task

* After the parallel task is completed,
threads join back to the master

Parallel Task | Parallel Task Il Parallel Task Il

-

Master Thread
Parallel Task | Parallel Task Il Parallel Task Il
Master Thread - 7- I
‘_, & , ,/\/ }
Wikipedia

Examples of OpenMP

* To use OpenMP, we modify our program with directives or pragmas
* Look like comments, but tells the compiler how it should process the input

* We also need to compile with flags for OpenMP
* E.g., gfortran —fopenmp

* Finally, environment variables can also set properties
* OMP_NUM THREADS sets the number of threads

e Simplest example:

program hello

ISOMP parallel
print *, "Hello world"
!SOMP end parallel

end program hello

OMP functions

* OMP provides some functions to get the number of threads, current

thread, etc.:

program hello

!integer, external :: omp get num threads, omp get thread num

use omp lib

write(*,*) "outside of parallel region, num threads
1SOMP parallel

write(*,*) "Hello world", omp get thread num()

!SOMP end parallel

end program hello

, omp get num threads()

How can we get a speedup from threading?

* In the last example, we just did the same thing multiple times
e Simplest code to nontrivially parallelize are loops:

!Somp parallel private(i, J)
!Somp do
do j = 1,N

do i =1,N

a(i,3j)=0.

end do
end do
!Somp end do
!Somp end parallel

Parallel calculations with OpenMP

* Can set the number of threads available with OMP NUM THREADS

* Your code will most likely still run if you ask for more threads than cores, but
you will not get a speedup!

* There is some overhead for spawning the threads

* As discussed before, best to parallelize limiting parts of the program
first

Private versus shared data

* Inside the parallel tasks, can specify if each thread has it’s own copy
(private) or not (shared)

* Shared is the default for variables declared outside of the parallel task
e Be careful modifying shared data!

* Consider the two pieces of code:

k=0 k=0

!Somp parallel shared(k) !Somp parallel private(k)
k=omp get thread num() k=omp get thread num()
!Somp end parallel !Somp end parallel
write(*,*) 'k=",k write(*,*) 'k=",k

* The first one shares k over the nodes, the second makes private
copies on all nodes

Combining data with reduction

* We can combine the results from all threads automatically via
reduction:

k=0

!Somp parallel reduction(+:k)
k=omp get thread num()

!Somp end parallel

write(*,*) 'k=',k

e Will add the results of each thread

Controlling ordering an synchronization of
threads

* As we saw before the threads will proceed in some unknown order
* We may want to have more control than this

* Some useful directives:

e !Somp critical: Make sure only one thread at a time can changes things
in critical sections
* Creates a “thread safe” section of code
* Important when, e.g., incrementing shared variables

 !Somp barrier: Stops processes from proceeding until all processes catch
up

Some comments on OpenMP

* We just covered some basics, OpenMP has quite a bit of functionality

* Have to make sure that your program is threadsafe:
* Don’t inadvertently overwrite data
* Don’t have issues because of the order or synchronization of processes
e Always good unit test in serial and parallel to make sure the results are the same

 Fairly straightforward to parallelize your code piece by piece
* Because directives look like comments, it is easy to run with and without
parallelization (just change compiler flags)
 Works well for fortran, C, C++

* Will NOT work for pure python

* “Global interpreter lock” that means only one thread can talk to the interpreter at
any one time

e Can use OpenMP with, e.g., Cython

After class tasks

* First draft of first two sections of writeup due today
* Tuesday Nov 23 will be our last normal class

* Presentations Tues Nov. 30 and Thurs. Dec 2
* Chosen at random, so please be prepared on Tuesday!

* Readings:
 Computational Methods for Physics, Joel Franklin, Chapter 14
* Make Your Own Neural Network, Tariq Rashid
* http://playground.tensorflow.org

