PHY604 Lecture 25

November 18, 2021

Review: Pattern recognition with computers

- Classic problem: Identify pictures of dogs versus cats
- Easy for human, difficult for computer

Review: Nonlinear functions at the basis of neural networks

- Neural networks are divided into layers
- Input layer accepts the input
- Output layer outputs results
- Each layer has neurons (or nodes)
- For input, one node for each input variable
- Every node in the first layer connects to every node in the next layer
- Weight associated with the connection can be adjusted
- These are the matrix elements
- Operations at neurons given by nonlinear activation function

Review: Procedure for doing "Machine Learning" with neural network

- 1. Choose a nonlinear activation function (in our case, find α)
- 2. Choose/generate t input/output pairs for training
- 3. Repeat the set from step $2 N$ times (epochs) to get a training set of $T=N t$ pairs
- 4. Run the training set through the neural net at random, performing the steepest descent minimization for each
- 5. To test the training in step 4, run the t examples through and calculate the residual:

$$
g\left(\mathbf{A} x_{j}\right)-z_{j}
$$

-6. Use the neural net on some new data

Review: Results choosing the $10^{\text {th }}$ number with a NN

Applied to training data

Applied to new data

$\mathbf{A}=[-0.04$
$0.42 \quad 0.15$
-0.23
$0.13 \quad 0.06$
$\begin{array}{lll}0.19 & -0.42 & 0.48\end{array}$
4.45

Today's lecture: Neural networks and parallel computing

- Neural network examples
- Interpreting a noisy signal
- Identifying hand-written characters
- Parallel computing
- OpenMP

Adding additional degrees of freedom

- In the previous example, the number of adjustable parameters is constrained by the size of the input and output
layer 1
layer 2
layer 3

- Will need an additional matrix and an additional evaluation of out nonlinear function

[^0]
Hidden layers

- Take as input a vector x of length n
- Take as output a vector z of length m
- Consider a $k \times n$ matrix \mathbf{B} and a $m \times k$ matrix \mathbf{A}
- Construct the output as:

$$
\widetilde{z}=g(\mathbf{B} x)-\frac{1}{2}, \quad z=\widetilde{g}(\mathbf{A} \widetilde{z})
$$

- Note that we differentiate the applications of g because they may have different α 's
- Extra shift of $1 / 2$ is to recenter the data around 0 to put it in the nonlinear range of g
- Key: k is independent of the size of input/output!
- Can train $k(m+n)$ total elements

Implementing the hidden layer

- We still want to minimize our cost function f :

$$
f\left(A_{r s}, B_{i j}\right)=\sum_{r=1}^{m}\left(z_{r}-y_{r}\right)^{2}
$$

- Now we have to do two interrelated steepest descent minimizations:

$$
A_{p q}=A_{p q}-\eta \frac{\partial f}{\partial A_{p q}}, \quad B_{p q}=B_{p q}-\eta \frac{\partial f}{\partial B_{p q}}
$$

- Where:

$$
\begin{aligned}
\frac{\partial f}{\partial A_{p q}} & =2 \widetilde{\alpha}\left(z_{p}-y_{p}\right) z_{p}\left(1-z_{p}\right) \widetilde{z}_{q} \equiv \sigma_{p} \widetilde{z}_{q} \\
\frac{\partial f}{\partial B_{p q}} & =\sum_{r=1}^{m} \sigma_{r} A_{r p} \alpha\left(\frac{1}{2}+\widetilde{z}_{p}\right)\left(\frac{1}{2}-\widetilde{z}_{p}\right) x_{q}
\end{aligned}
$$

Back propagation

- Note that we are optimizing simultaneously \mathbf{A} and \mathbf{B} :

$$
\begin{aligned}
\frac{\partial f}{\partial A_{p q}} & =2 \widetilde{\alpha}\left(z_{p}-y_{p}\right) z_{p}\left(1-z_{p}\right) \widetilde{z}_{q} \equiv \sigma_{p} \widetilde{z}_{q} \\
\frac{\partial f}{\partial B_{p q}} & =\sum_{r=1}^{m} \sigma_{r} A_{r p} \alpha\left(\frac{1}{2}+\widetilde{z}_{p}\right)\left(\frac{1}{2}-\widetilde{z}_{p}\right) x_{q}
\end{aligned}
$$

- So, the errors are "backpropagated" through the output and hidden layers

Example: Signal analysis

- Given a noisy signal expected to be one of four frequencies
- $f=\{1,2,3,4\} \mathrm{Hz}$
- Noise is significantly larger than the underlying signal:

$$
s(t)=\cos (2 \pi f t)+5 \xi
$$

- ξ are random numbers in $[-1,1]$
-Can we identify the frequency?

Signal analysis: Hidden layers size 2

Test on the training set

Signal analysis: Hidden layers size 3

Test on the training set

Signal analysis: Hidden layers size 4

Test on the training set

Signal analysis: Hidden layers size 8

Test on the training set

Can we do the same with an FFT

Another example: Recognizing written characters

- We'll try to recognize a digit ($0-9$) from an image of a handwritten digit.
- MNIST dataset (http://yann.lecun.com/exdb/mnist/)
- Popular dataset for testing out machine learning techniques
- Training set is 60,000 images
- Approximately 250 different writers
- Test set is 10,000 images
- Correct answer is known for both sets so we can test our performance
- Image details:
- 28×28 pixels, grayscale (0 - 255 intensity)
- We'll use a small subset

Another example: Recognizing written characters

- Input layer: 784 nodes (number of pixels)
- Output layer will be 10 nodes
- Array with an entry for each possible digit
- Hidden layer size of 100
- 10 epochs
-We'll train on the training set, using 1000 images
- Rescale the input to be in $[0.01,1]$
- We'll test on the test set of 1000 images

Another example: Recognizing written characters

Test on the training set

Today's lecture:
 Neural networks and parallel computing

- Neural network examples
- Interpreting a noisy signal
- Identifying hand-written characters
- Parallel computing
- OpenMP

Why do we care about high performance computing?

- The more you can compute, the more interesting physics problems you can address
- Algorithmic advances allow us to do more with the same resources
- This is what we have discussed over the course of the semester
- Another important aspect: Effectively taking advantage of more powerful computing hardware, e.g., supercomputers, GPUs

Performance of CPUs

Single-Threaded Integer Performance

https://preshing.com/20120208/a-look-back-at-single-threaded-cpu-performance/

42 Years of Microprocessor Trend Data

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten New plot and data collected for 2010-2017 by K. Rupp

How can we do better? Superconducting electronics

RSFQ Logic/Memory Family: A New Josephson-Junction Technology for Sub-Terahertz-Clock-Frequency
Digital Systems
K. K. Likharev and V. K. Semenov
Invited Paper

- Record for clock speed: $100-300 \mathrm{GHz}$
- Normal CPUs 3-5 GHz

How can we do better? Parallel computing

Rank	System	Cores	Rmax (TFlop/s)	Rpeak (TFlop/s)	Power (kW)
1	Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48 C 2.2 GHz , Tofu interconnect D, Fujitsu RIKEN Center for Computational Science Japan	7,630,848	442,010.0	537,212.0	29,899
2	Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM DOE/SC/Oak Ridge National Laboratory United States	2,414,592	148,600.0	200,794.9	10,096
3	Sierra - IBM Power System AC922, IBM POWER9 22C 3.1GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM / NVIDIA / Mellanox DOE/NNSA/LLNL United States	1,572,480	94,640.0	125,712.0	7,438
4	Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.45 GHz , Sunway, NRCPC National Supercomputing Center in Wuxi China	10,649,600	93,014.6	125,435.9	15,371

How do we write parallel programs?

- Determine what parts of the program are limiting
- Profilers can help
- Determine the type of hardware you will be running your program on
- Decide how to parallelize limiting parts
- Test the scaling of your program with number of parallel processes

How parallel does the program need to be?

- The speedup depends on what portion of the program is parallel
- Often, certain algorithms or parts of algorithms are not easy to parallelize
- Not very useful if parallel parts are not the limiting parts
- Amdahl's law: speedup attained from increasing the number of processors, N, given the fraction of the code that is parallel, P :

$$
S=\frac{1}{(1-P)+(P / N)}
$$

Types of parallelism: Flynn's taxonomy: (wikipedia)

- Classification based on how the CPU receives instructions and data
- Single instruction stream, single data stream (SISD)
- No parallelism, instructions and data accessed serially
- Single instruction stream, multiple data streams (SIMD)
- Single instruction applied to multiple data streams
- Structure of old vector processors, modern GPUs
- Multiple instruction streams, single data stream (MISD)
- Multiple instructions applied to one data stream
- Not very common
- Multiple instruction streams, multiple data streams (MIMD)
- Multiple processors simultaneously executing different instructions on different data
- This is what we normally consider parallel computing

MIMD versus SPMD versus SIMD

- Normally, we do a specific type of MIMD:
- Run a single program on multiple pieces of data (SPMD)
- Different than SIMD since it does not require specialized hardware and does not require the processes to be in sync
- Two approaches to SPMD:
- Distributed memory:
- Machine has separate nodes which are essentially their own computer
- Data (messages) are passed between nodes with interconnects, including commands to synchronize
- Usually use MPI standard message passing interface (next time)
- Shared memory:
- Several CPUs have access to the same memory
- Messages sent via the shared memory
- Program starts executing on one processor, execution splits in a parallel region, then resynchronized
- This is done via OpenMP (today)

OpenMP and multithreading

- Start process on a master thread
- Each time a piece of code is reached that is parallelized, the master thread forks subthreads to run the task

Master Thread
Parallel Task I Parallel Task II Parallel Task III

Parallel Task I
Parallel Task II
Master Thread

- After the parallel task is completed, threads join back to the master

Examples of OpenMP

- To use OpenMP, we modify our program with directives or pragmas
- Look like comments, but tells the compiler how it should process the input
- We also need to compile with flags for OpenMP
- E.g., gfortran -fopenmp
- Finally, environment variables can also set properties
- OMP_NUM_THREADS sets the number of threads
- Simplest example:

```
program hello
    !$OMP parallel
    print *, "Hello world"
    !$OMP end parallel
end program hello
```


OMP functions

- OMP provides some functions to get the number of threads, current thread, etc.:

```
program hello
    !integer, external :: omp_get_num_threads, omp_get_thread_num
    use omp_lib
    write(*,*) "outside of parallel region, num threads = " , omp_get_num_threads()
    !$OMP parallel
    write(*,*) "Hello world", omp_get_thread_num()
    !$OMP end parallel
end program hello
```


How can we get a speedup from threading?

- In the last example, we just did the same thing multiple times
- Simplest code to nontrivially parallelize are loops:

```
!$omp parallel private(i, j)
!$omp do
do j = 1,N
    do i = 1,N
        a(i,j)=0.
    end do
end do
!$omp end do
!$omp end parallel
```


Parallel calculations with OpenMP

- Can set the number of threads available with OMP_NUM_THREADS
- Your code will most likely still run if you ask for more threads than cores, but you will not get a speedup!
- There is some overhead for spawning the threads
- As discussed before, best to parallelize limiting parts of the program first

Private versus shared data

- Inside the parallel tasks, can specify if each thread has it's own copy (private) or not (shared)
- Shared is the default for variables declared outside of the parallel task
- Be careful modifying shared data!
- Consider the two pieces of code:

```
k=0
!$omp parallel shared(k)
k=omp_get_thread_num()
!$omp end parallel
write(*,*) 'k=',k
```

```
k=0
!$omp parallel private(k)
k=omp_get_thread_num()
!$omp end parallel
write(*,*) 'k=',k
```

- The first one shares k over the nodes, the second makes private copies on all nodes

Combining data with reduction

- We can combine the results from all threads automatically via reduction:

```
k=0
    !$omp parallel reduction(+:k)
k=omp_get_thread_num()
    !$omp end parallel
write(*,*) 'k=',k
```

- Will add the results of each thread

Controlling ordering an synchronization of threads

- As we saw before the threads will proceed in some unknown order
- We may want to have more control than this
- Some useful directives:
- ! \$omp critical: Make sure only one thread at a time can changes things in critical sections
- Creates a "thread safe" section of code
- Important when, e.g., incrementing shared variables
- ! \$omp barrier: Stops processes from proceeding until all processes catch up

Some comments on OpenMP

- We just covered some basics, OpenMP has quite a bit of functionality
- Have to make sure that your program is threadsafe:
- Don't inadvertently overwrite data
- Don't have issues because of the order or synchronization of processes
- Always good unit test in serial and parallel to make sure the results are the same
- Fairly straightforward to parallelize your code piece by piece
- Because directives look like comments, it is easy to run with and without parallelization (just change compiler flags)
- Works well for fortran, C, C++
- Will NOT work for pure python
- "Global interpreter lock" that means only one thread can talk to the interpreter at any one time
- Can use OpenMP with, e.g., Cython

After class tasks

- First draft of first two sections of writeup due today
- Tuesday Nov 23 will be our last normal class
- Presentations Tues Nov. 30 and Thurs. Dec 2
- Chosen at random, so please be prepared on Tuesday!
- Readings:
- Computational Methods for Physics, Joel Franklin, Chapter 14
- Make Your Own Neural Network, Tariq Rashid
- http://playground.tensorflow.org

[^0]: Make Your Own Neural Network, Tariq Rashid

