PHY604 Lecture 6

September 9, 2021

Review: Lagrange interpolation

* General method for building a single polynomial that goes through all
the points (alternate formulations exist)

* Given n points: Xy, X4, ..., X,.1, With associated function values: f,, f,
N
n—1

* Construct basis functions: [;(z) = H

J=0,i#j
* Note basis function /; is 0 at all x; except for x; (where it is one)

CC—CL‘j

ZIZi—ZEj

* Function value at xis: f(x)

||
B
=

Review: Lagrange Interpolation of two

‘unctions on even grid

Num. Points: 21
1.00 1 xo)(\/‘
/ \ 15 A
X
0.75 A X \
0
050 T ':' ‘\‘
0254 | \ 5 7
0.00 1 * x X () [ECAVIVIVIVIVIVIVEVE o0 ne sy X
~0.25- J
X A —5
~0.50 \
A 7 ~10-
~0.75 1 \ £
N\ "' —15 -
~1.00 - Ko
2 3 4 5 6 0.0 0.5 1.0 1.5

1.00 -

0.75 A

0.50 A

0.25 A

0.00 A

—0.25 A

—0.50 A

—0.75 A

—1.00 A

Num. Points: 31

A
\
N\
N
\
\
\
\
/<‘\
J
l' ‘\‘
4 \
J
/ X
X \
J \
I i \
W \
S \
¥ Ay
L
X X
X \
X \
\ ¥
1 I
X r
|‘ x
\ 7
“ J
\ X
\ X
|‘ 7
\ J
X
\
X
$‘ \
K¢’
T T T T
0 2 3 4 5 6

1.0 A

0.8 A

0.6 1

0.4 A

0.2 A

0.0

Review: Lagrange Interpolation of two
functions with Chebyshev nodes

Num. Points: 31

4
/

IGO0
\fx‘;

0.0 0.5 1.0 1.5

2.0

Review: Splines -

Ax
* We have a set of regular-spaced discrete data: f=x(x;) at xg,x1,X5,...,X,

* m-th order polynomial to approximate f(x) for x in [x;,x.,,]:

pi(z) =Y cpa®
k=0
* Coefficients chosen so p,(x:)=f; and from smoothness condition: all
derivatives (/) match at the endpoints

l l
pz(')(ﬂfz‘+1) — pEﬁl(xm), [=0,1,....m —1

* Except for points on the boundary of the curve

Review: Cubic spline for random numbers

1.0 -

0.8 A1

0.6 1

0.4 1

0.2 A1

0.0 A

0.0

0.2 0.4 0.6 0.8 1.0

Today’s lecture

* Finish discussing roots of functions:
* Newton Raphson method

e Secant method

* Begin discussing ordinary differential equations

Newton-Raphson method procedure

* 1. Make an initial guess for the root: x,
* 2. Use the Taylor series expansion to find a better estimate of the

root:
f (o)
f' (o)

* 3. Use x; as an improved estimate at the root and employ the
Taylor series expansion again to get a better estimate x,

1 =X T —

* Repeat process until the answer is accurate enough at the nth
estimate:
f(xn_1)

f'(Tn-1)

Geometrical Interpretation of Newton-
Raphson Iteration

A
1
True
root
\ Initial guess at root x
< / >
— First improved estimate of root 1 based on

intercept of tangent line with slope ' (o)

31 estimate T3 _Z”d improved estimate of root 2 based on
intercept of tangent line with slope f/(z)

Failure of Newton-Raphson

* Example of a simple function that will defeat Newton-Raphson Iteration:

A

1st estimate 31 estimate
<€ >

A
/

2nd
v estimate

e Each estimate gets further from the true root. Estimates are diverging
not converging

Stopping criteria for iterations must be
chosen carefully

* Could stop when we reach some maximum number of iterations
e Estimate may be no where near the root

 We can consider this case a failure of the method and warn user about it.

A

/ﬁtimate 3rd estimate
<€ >

_—
/

2nd estimate

Stopping criteria for iterations must be
chosen carefully

* Could stop when we reach some maximum number of iterations

e Estimate may be no where near the root

 \We can consider this case a failure of the method and warn user about it.

* Could stop when value of the function evaluated at the nth estimate
less than small number : | f(x,)| < €

* But this can be deceptive; final estimate may not be near the root, might just be
close to zero ’

Stopping criteria for iterations must be
chosen carefully

* Could stop when we reach some maximum number of iterations

e Estimate may be no where near the root
* \We can consider this case a failure of the method and warn user about it.

* Could stop when value of the function evaluated at the nth estimate less
than small number : | f(z,)| < €

e But this can be deceptive; final estimate may not be near the root, might just be
close to zero

* Could stop when change between estimates becomes small relative to

the current (nth) estimate: |Zn+1 — Tn| < €|2y| a
* Better, but still fails when root is located at zero /

Stopping criteria for iterations must be
chosen carefully

* Could stop when we reach some maximum number of iterations

e Estimate may be no where near the root
* \We can consider this case a failure of the method and warn user about it.

* Could stop when value of the function evaluated at the nth estimate less
than small number : | f(z,,)| < €

e But this can be deceptive; final estimate may not be near the root, might just be
close to zero

* Could stop when change between estimates becomes small relative to
the current (nth) estimate:|Tn+1 — Tn| < €|z,
* Better, but still fails when root is located at zero

e So let's use: €|$n|, when |$n\ £ ()

X — Tp| <
Tnt1 = T €, when |x,,| = 0

Pseudocode of Newton-Raphson Algorithm

* 1. Choose initial guess at the root (x,), and the convergence
tolerance (¢&).

* 2. Loop through n up to a maximum number N__, (exit and tell the
user that the root finding has failed if it reaches N,_,)

e 3. Make sure f’(x) #0
* 4. Compute new estimate of root: =, ~ x,_1 —

f(xn_1)
f(wn—1)

* 5. Check convergence criteria:

€|lx,|, when |x,| # 0
Ln4+1 — xn| <
€, when |x,,| = 0

Example: f(x) = x>+ 6

-60 |-

20

0

_20L

* See NR_root.£f08

Secant method

* Similar to the Newton-Raphson method, but does not require
calculating the derivative of the function

* Start with two initial guesses, x; ; and x;

* Use finite difference derivative to get a new guess x;,,

T = Z; — fzi)(ziz1 — i)
. b f(wion) = f(z)

* Proceed in the same way as the Newton-Raphson method

Summary of root-finding methods

* Bisection:
* Robust (with appropriate initial guesses)
* Slow, each iteration reduces error by a factor of two
* Need to make sure root is within initial guesses

* Newton-Raphson:
e Fast: often only takes a few iterations
* Need to know derivative of function, and they must exist
e Can diverge, e.g., in cases with small second derivatives

e Secant method

e Similar convergence speed as NR method
Don’t need analytical derivatives
Same divergence properties as NR method
Numerical derivatives may be noisy

Today’s lecture

* Begin discussing ordinary differential equations

Differential equations wewmancn.s

* One of the major applications of computation to science and
engineering is solving differential equations

* Even for very simple-looking equations if they are “nonlinear,” they are difficult
or imposible to solve analytically

e Classifications:
* |nitial value problems

* Boundary value problems
* Eigenvalue problems

e Often problems are described by systems of coupled differential
equations

e As with the other topics, there are many different methods
* We just want to see the basic ideas and popular methods

Example of system of differential equations:
Equations of motion

* We know that the equations of motion for a point particle with
mass are given by:

dx (t) dv
— =V _
dt T dt

= a(x,Vv,t)

* In order to fully describe the trajectory of this particle, we need to
specify initial conditions, i.e., the position and velocity, of the
particle at the initial time t = 0:

x(0) = xg9, v(0) = vy

Approximating the Equations of Motion

* If we consider a time interval that is sufficiently short, we can
approximate the differential by

dt ~ At

* We can then approximate the time derivative of the position by:
dx x(t+ At) — x(t)
dt At

 Similarly, the time derivative of the velocity can be approximated by

dv v(t+ At) — v(t)

Y

dt At

Euler’s method for integrating the
equations of motion

* We can then substitute the approximate derivatives into the
equations of motion to obtain:

x(t + At) — x(t)
At

~ v(t), vit + AAti —v(®) ~ a(x,Vv,t)

* We can then solve for the new values of the position and velocity
v(t + At) ~ v(t) + a(x, v, t)At
x(t + At) ~ x(t) + v(t)At

 This algorithm for “integrating” the equations of motion forward in
time in known as Euler’s method

Example: A body orbiting the sun

* We consider the Sun’s location to be at the origin and the plane of
the orbit to be the x-y plane

—GMgyy .
* In this case we have: a(x) = > e
* Where: x — *_ i

* The components of the acceleration are then given by:

7»3

_GMsuny
7‘3

ax(xay) — ; ay(xvy) —

Euler’s method for body orbiting the sun

* Now we discretize in time and apply Euler’s method:
G Mgunx(t) At
(2(t)2 + y(t)*)*

G Mguny(t) At
(x(t)2 + y(t)2)*

Ve (t+ At) = v, (t) —

0, (t + A1) = v, (1) -

x(t+ At) = x(t) + v (t) At

y(t + At) = y(t) + v, (1) At

Parameters for orbit problem

* We'll use units of solar masses, and Astronomical Units (AU) for
distance

* In these units, M_,,=1 and G = 39.47 AU3M_ " tyr?

* Initial conditions:
At t =0 we’'ll place the body along the x-axis at a distance of 1 AU from the
sun and give it the Earth’s velocity in the y-direction:
* x(0)=1,y(0)=0
* Vv, (0) = 6.283185 AU/yr
* We will try a time step of 1 day: At =1/365 yr

Example program for Euler orbit problem

* See euler orbit.f08

More accurate ODE numerical methods

* The problem with Euler’s method is that the right-
hand-side of the equations is evaluated at the
beginning of the timestep

* The right-hand-side usually changes over the course of o
each timestep and we may be getting an inaccurate }erro,

answer as a result b True

* It would be better if we could evaluate the right-hand-side
in the middle of the timestep.

* However, we can’t do that unless we know the solution in
advance

* We could use higher-order finite differences, however ; » t
this is not a common approach

* Strategy: Use Euler’s method to estimate the solution
at the midpoint of the timestep. And then use this
estimate to evaluate the right-hand-side

* This is called a second order Runge-Kutta method

Second-order Runge-Kutta method

ty(t)

: : >
T tn + 2h tn + h

Fadlisyah, Muhammad thesis (2014)

Aside: Notation for coupled systems of
ordinary differential equations

* The equations we were solving with Euler’s method were of the
form:

dy1
T ’ IRERIE 7t
It fl(?/l Y2 YN)
dys
— = t
dt f2(ylay27 y YN)
dynN
At :fN(ylay27'°°7yN7t)

* This is a set of coupled first-order ordinary differential equations
(ODEs)

Aside: Euler’s Method for Coupled Systems
of ODEs

e Use shorthand notation for the time at the nth step: t”, and denote
y(t") as y;"
* Then approximate the derivatives are written:

dy; oyl —yp
dt At
* And Euler’s method for a set of coupled ODEs is:
yiH_l — y? T Atfl(yla Yz, ... 7yN7t)

Yy Tt =yl + Atfo(y1,y2, -, YN, 1)

yntt =y + Atfn (Y1, 92, - - YN, t)

Aside: Coupled systems of ODEs in vector
notation

* In order to simplify the description of the second order Runge-
Kutta algorithm we use the following vector notation to simplify
the equations:

Yy = (Y1,Y2, Y3, - -, YN)
f= (f17f27f37'°°7fN)

e Using this notation, the original set of ODEs is:

dy
— =f(y.,t

* In this notation Euler’s method is:

y" T =y" + Atf(y", ")

Second-order Runge-Kutta

 Taylor expand around t + 1/2 At :

1 1 . dy

dy

y(t) = y(t + At)——A yn

e Subtract the two expressions

d
y(t + At) = y(t) + Atd—i

t+1 At

method

1
+ At —=2 + O(AL?)
t+1 At

1
+ —At? =2 — O(At?)
t+5 At

+ O(At?)

e Need f evaluated at midpoint

—y(t) + AtF(y(t + %At), - %At) L O(A#)

Second-order Runge-Kutta method

e Step 1: Estimate change due of the right-hand side using Euler's
method:

 Step 2: Use estimate to predict value of solution at midpoint of the
timestep. Evaluate right hand side at midpoint:

1 1
y "t =y 4 Atf(y" + §k1, t" + §At)
* Seerk2 orbit.f08

he fourth-order Runge-Kutta method

* |n practice, the workhorse algorithm for first-order sets of ODEs is the
fourth-order Runge-Kutta algorithm which (we state here without
derivation)

* Step 1: k, = At f(y",t")

e Step 2: ko = At f(y —|—§k1,t —|—§At)
1 1

« Step 3: ks = At f(y"™ + §k2,t” + §At)

* Step 4: ks = At f(y" + ks, t"™ + At)

1
* Step 5: y”“ = y” + 6 (k1 + 2ks + 2ks + k4)

Second and fourth-order Runge-Kutta
methods

2nd order | 4th order
Ay(2) '

tn tn + 5h tn +h b tat+ ik tn+h

Fadlisyah, Muhammad thesis (2014)

Runge-Kutta methods

e Euler method can be though of as the first-order RK method
* Accurate to first order in At, i.e., error is order At?

e Second-order RK method accurate to At?, so error At>

e Fourth-order RK method accurate to At?, so error At®
e By far the most common method for the numerical solution of ODEs
* Balances accuracy and complexity

* Quoted accuracies are for one step, errors accumulate over the number of
steps needed in the calculation, usually loose an order of accuracy (see
Newman)

Adaptive step size

 So far, we have set by hand a constan
step size At

e Often, we can get better results by
varying the step size

* Increase in regions where function
varies rapidly, decrease where it varies
slowly

* Approach: vary At so the error
introduced per unit interval is
roughly constant

* First we need to estimate the error in
the steps

(Newman)

Adaptive step size: Estimating the error

e 1. Choose initial (small) At

A
|
* 2. Use RK method to do two At |]
steps of the solution | / Z
) -t
e | / At At
e 3. Go back to initial t and do an | /
RK step with 2At / e .

f | t+ 2At
* 4. Compare the results to

estimate the error

Adaptive step size: Estimating the error

* True value of function related to estimate y,,:

y(t + 2At) = yas + 2¢At°
* For doubled step size yjp;:

y(t + 2At) = yons + 32cAt°
* So per step error is:

1
e = cAL’ = %(ym — Y2At)

» Take o to be the target accuracy per step. Then the step size
necessary to get that accuracy is:

30At)

At = At}
\ym — yzm\

Adaptive step size: Complete approach

e 1. Choose initial (small) At

e 2. Use RK method to do two At steps of the solution
* 3. Go back to initial t and do an RK step with 2At

* 4. Compare the results to estimate the error

* 5. Calculate ideal step size At’
e If ¢ >0, then redo the calculation with At’

e If ¢ <0, take the results obtained using At and move on to time t + At. In the
next iteration use At’ as the timestep

* Requires at least 3 RK steps for every two actually used, but usually
results in an overall speedup for a given accuracy

e Usually limit how much At’ can differ from At (e.g., by less than a
factor of two) in case the denominator happens to diverge

Example: Elliptical orbit with adaptive 4t"-order RK

1.00 A 1.00 A
0.75 1 0.75 1
Circular: 0.50 0.50 Elliptical:
Xo= 1 AU 0.25 - 0.25 - Xo= 0.3 AU
5 °
Vo =6.283185 AUfyear £] - l v,0 =14.955378 AU/year
N
—0.251 —0.25 1
—0.50 1 —0.50 1
—0.75 A —0.75 A
~1.00 4 —1.00 ~
—]I..O —6.5 010 015 le -2.0 —]I..5 —i.O —6.5 010 0.5
X position
. 15
41 10
£ 2
g 5.
g
—44 5
—6
0 20 40 60 0 10 20 30 40 50 60

Step

After class tasks

* Homework 1 due Sept. 16 by 11pm

* Let me know if you have HW questions or questions/issues on github
classroom

e Office hours: Mondays, 3:00pm to 4:00pm; Thursdays, 11:05am to 1:00pm

* Feel free to send me an email, and remember, if you push your changes, | should be able
to see them

* Readings:
* Newman Ch. 8
 Wikipedia page on root finding

https://en.wikipedia.org/wiki/Root-finding_algorithms

