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PHY 604: Computational Methods in Physics and Astrophysics II
Homework #1
Due: 09/21/2023

Programs can be written in any language (but python is recommended), In addition to the program, you
should have a writeup that contains the plots requested in the homework questions, answers to any analytical
or explanation questions, and a short description of your code and how to run it. This can be done in, e.g.,
LATEX, markdown, etc. Combining the code and writeup in jupyter notebooks is highly recommended.

Code and writeup should be submitted using git via github in the repo that was created from github
classroom link.

1. Understanding roundoff error: (this is essentially Newman exercise 4.2) Consider a quadratic equation
of the form ax2 + bx + c = 0. The two solutions of this are:

x =
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b2 − 4ac

2a
(1)

An alternate expression that gives the same two roots is:

x =
2c

−b∓
√

b2 − 4ac
(2)

Understanding how roundoff error works (especially when subtracting two close numbers), and
using either or both of these expressions, write a code that gives accurate roots for a quadratic
equation for any input.

Test with a = 0.001, b = 1000, and c = 0.001.

2. Accurate calculation of the exponential series: Recall that in class we discussed computing the series
expansion for the exponential function:
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Write a program that computes the exponential function using the series expansion that is accu-
rate for all values of x, especially relatively large negative numbers (within the bounds of double
precision; depending on the code you use, you may have to check for overflows).

3. Comparing methods of integration: (based on Newman exercise 5.7) Consider the function:

I =
∫ 1

0
sin2

(√
100x

)
dx. (4)

(a) Plot the integrand over the range of the integral.

(b) Write a program that uses the adaptive trapezoid rule to calculate the integral to an approximate
accuracy of ε = 10−6, using the following procedure: Start with the trapezoid rule using a
single subinterval. Double the number of subintervals and recalculate the integral. Continue
to double the number of subintervals until the error is less than 10−6. Recall that the error is
given by εi =

1
3 (Ii − Ii−1) where the number of subintervals Ni used to calculate Ii is twice that

used to calculate Ii−1. To make your implementation more efficient, use the fact that

Ii =
1
2

Ii−1 + hi ∑
k

f (a + khi) (5)

where hi is the width of the subinterval for the ith iteration, and k runs over odd numbers from
1 to Ni − 1.
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(c) Write a separate program that uses Romberg integration to solve the integral, also to an accuracy
of 10−6 using the following procedure. First calculate the integral with the trapezoid rule for 1
subinterval [as you did in part (b)]; we will refer to this as step i = 1, and the result as I1 ≡ R1,1.
Then, calculate I2 ≡ R2,1 using 2 subintervals (make use of Eq. 5). Using these two results, we
can construct an improved estimate of the integral as: R2,2 = R2,1 +

1
3 (R2,1 − R1,1). In general

Ri,m+1 = Ri,m +
1

4m − 1
(Ri,m − Ri−1,m). (6)

Therefore, for each iteration i (where we double the number of subintervals), we can obtain
improved approximations up to m = i− 1 with very minor extra work. For each i and m, we
can calculate the error at previous steps as

εi,m =
1

4m − 1
(Ri,m − Ri−1,m). (7)

Use Eqs. 6 and 7, to iterate until the error in Ri,i is less than 10−6. How significant is the
improvement with respect to number of subintervals necessary compared to the approach of
part (b)?

(d) Use the Gauss-Legendre approach to calculate the integral. What order (i.e., how many points)
do you need to obtain an accuracy below 10−6? You can find tabulated weights and points
online, e.g.,

https://pomax.github.io/bezierinfo/legendre-gauss.html.

4. Integration to ∞: (based on Newman). Consider the gamma function,

Γ(a) =
∫ ∞

0
xa−1e−xdx (8)

We want to evaluate this numerically, and we will focus on a > 1. Consider a variable transforma-
tion of the form:

z =
x

x + c
(9)

This will map x ∈ [0, ∞) to z ∈ [0, 1], allowing us to do this integral numerically in terms of z.

For convenience, we express the integrand as φ(x) = xa−1e−x.

(a) Plot φ(x) for a = 2, 3, 4.

(b) For what value of x is the integrand φ(x) maximum?

(c) Choose the value c in our transformation such that the peak of the integrand occurs at z =
1/2—what value is c?

This choice spreads the interesting regions of integrand over the domain z ∈ [0, 1], making our
numerical integration more accurate.

(d) Find Γ(a) for a few different value of a > 1 using and numerical integration method you wish,
integrating from z = 0 to z = 1. Keep the number of points in your quadrature to a reasonable
amount (N . 50).

Don’t forget to include the factors you pick up when changing dx to dz.

Note that roundoff error may come into play in the integrand. Recognizing that you can write
xa−1 = e(a−1) ln x can help minimize this.
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