
over...

PHY 604: Computational Methods in Physics and Astrophysics II
Homework #3

Due: Oct. 26, 2023

Programs can be written in any language (but python is recommended), In addition to the program, you
should have a writeup that contains the plots requested in the homework questions, answers to any analytical
or explanation questions, and a short description of your code and how to run it. This can be done in, e.g.,
LATEX, markdown, etc. Combining the code and writeup in jupyter notebooks is highly recommended.

Code and writeup should be submitted using git via github in the repo that was created from github
classroom link.

1. (Matrix inverse) (based on Garcia) An iterative method for constructing the matrix inverse can be
found via Newton’s method. A single step in the iteration appears as:

X(k+1) = 2X(k) − X(k)AX(k) (1)

where A is the matrix whose inverse we seek and X(k) is our current guess for the inverse.

Find the inverse of the following matrix using this technique:

A =


4 3 4 10
2 −7 3 0
−2 11 1 3
3 −4 0 2

 (2)

You will need to supply an initial guess and a desired tolerance. Be careful with your initial guess—
some choices will diverge. A choice that works well is:

X(0) = αAᵀ (3)

where α is a small, positive number.

2. (LU decomposition)

(a) Write a program that solves a linear system of equations (Ax = b) via LU decomposition.
The program should generate the lower-triangular matrix L = L−1

0 L−1
1 L−1

2 . . . L−1
N−1, where Li

is the matrix that performs a step of the forward substitution, and the upper-triangular matrix
U = LN−1 . . . L2L1L0A. Then, the solution of the system is obtained with two back-substitution
steps, Ly = b and Ux = y (see, e.g., slide 29 of Lecture 9).

(b) Test your program on the system:
2 1 4 1
3 4 −1 −1
1 −4 1 5
2 −2 1 3




x1
x2
x3
x4

 =


−4
3
9
7

 (4)

(c) Bonus +5 pts: Include partial pivoting in your program and test with:
0 1 4 1
3 4 −1 −1
1 −4 1 5
2 −2 1 3




x1
x2
x3
x4

 =


−4
3
9
7

 (5)

1



3. (Least squares with different basis functions)

(a) In class, we discussed how to perform a general least-squares fitting using a sum of basis func-
tions with coefficients that are fitted (e.g., see Lecture 12, slides 30-32). In the example program
discussed in class (see least_square.ipynb), we used polynomials as our basis functions (i.e.,
powers of x). Write a program that performs the fitting using a similar approach, but with
Legendre polynomials as basis functions.

(b) Consider the noisy quadratic polynomial constructed in least_square.ipynb. Show that you
can get a good fit of this function with your program with M = 3 coefficients. Increase to
M = 10. Do you get a better fit? How does the condition number of the matrix ATA change (for
python use numpy.linalg.cond)? How does the condition number compare to using simple
polynomials?

(c) Now repeat (b) for the function in the range [−1, 1]. How does the condition number change?
Why do you think this is?

4. (2D Fourier transform): Recall the discussion in class that a 2D DFT Fourier transform could be per-
formed as a sequence of two 1D FFTs. Specifically, we first perform a DFT for each row of the data:

F′ml =
N−1

∑
n=0

fmn exp
(
−i

2πln
N

)
,

and then again for the columns of the transformed points:

Fkl =
M−1

∑
m=0

F′ml exp
(
−i

2πkm
M

)
.

(a) Write a program that performs a 2D Fourier transform using the fast Fourier transform (FFT)
algorithm discussed in class (as opposed to the conventional DFT).

(b) As a first test, consider the function f (x, y) = sin(2πx/10) on a 64× 64 grid (see Fig. 1). Plot
the 2D FFT and explain why it looks the way it does. Show that your program works by
performing an inverse 2D FFT and reproducing the original function

(c) Do the same as in (b) with the function f (x, y) = sin(2πx/10 + 4πy/10) + sin(6πx/10 +
8πy/10).

(d) Generate a 2D function of your choice and take its FFT.

2



0 10 20 30 40 50 60

0

10

20

30

40

50

60
0.75

0.50

0.25

0.00

0.25

0.50

0.75

Figure 1: f (x, y) = sin(2πx/10) on a 64× 64 grid

3


