
PHY 604: Computational 
Methods in Physics and 

Astrophysics II
Cyrus Dreyer

cyrus.dreyer@stonybrook.edu

Fall 2023



My research interests: Computational condensed matter physics

https://www.simonsfoundation.org/flatiron/

https://you.stonybrook.edu/cdreyer/



Goals of the course:
• Learn how to solve problems in physics computationally

• Understand the limitations of numerical methods

• Have the ability to interpret numerical results presented in the 
literature

• Have exposure to computational tools

• Understand basic idea behind algorithms for performing common 
computational tasks



Technical points about the class: 
Programming Languages
• The assignments will involve writing computer programs
•  You may use the programming language of your choice.* I would 

prefer:
• Fortran
• C++
• Matlab
• python

• * In general, and especially if your language is not on the list, you 
should provide some help for how to compile (if necessary) and run 
your code
• Examples will be given in fortran, C++, and python



Technical points about the class:
Topics covered
• Basics of computation and programming constructions
• Good programming practices
• Numerical differentiation and integration
• Interpolation and root finding
• Ordinary differential equations
• Linear algebra
• Fast Fourier transforms
• Fitting
• Partial differential equations
• Monte Carlo techniques
• Genetic algorithms
• Parallel computing
• Machine learning



Technical points about the class:
Class location

• Vote: Move the class to Physics building (likely B131)



Technical points about the class:
Assignments
• Coding homework will be assigned roughly every two weeks

• Homeworks will be 80% of the final grade
• Will involve code and written analysis
• Recommendation (not required): Use Jupyter notebooks

• Proposed office hours: Mondays, 3:00pm to 4:00pm; Thursdays, 10:00am 
to 1:00pm
• Please feel free to come to me for help! 

• There will be a final project at the end of the semester
• Solve a physics problem computationally
• Write up a short report, and present to the class
• Final project is 20% of the final grade



Technical points about the class: Textbooks
• No textbook is required for this course
• Some recommended texts for further reading:  

Computational Physics, by Mark 
Newman
• Generally good coverage on 

most of the topics we’ll 
discuss

• Lots of physics examples
• Inexpensive
• Main recommended book

An Introduction to Computational 
Physics, by Tao Pang
• Also good coverage of the topics 

(up to PDEs)
• Lots of physics examples
• Inexpensive

Numerical Methods for Physics by 
Alejandro Garcia
• Broad coverage
• More PDE stuff than Pang

Effective Computation in Physics 
by Scopatz & Huff
• Introduces linux/unix shell
• Covers programming practices
• Introduces parallel 

programming



Why computation?

• Computation allows us to go beyond analytically solvable problems

• Computers allow us to perform repetitive tasks efficiently

• Computers allow us to generate and analyze large amounts of data

“Computational science now constitutes what many call the third pillar of the 
scientific enterprise, a peer alongside theory and physical experimentation.”

 —President's information technology advisory committee (2005)



The two roles of computational in physics research

• Calculation: Using 
computers to solve 
well-defined 
problems

• Simulation: Use the 
computer to perform 
computational 
experiments



Computational science is driven by 
more powerful computers



Computational science is driven by
better methods/algorithms

Ĥ = � ~
2me

X

i

r2
i �

X

i,I

ZIe
2

|ri �RI |
+

1

2

X

i 6=j

e
2

|ri � rj |
�
X

I

~2
2MI

r2
I +

1

2

X

I 6=J

ZIZJ

|RI �RJ |
<latexit sha1_base64="Xs+ln5BVt1eyM9D/mFowq4PZxGY=">AAADD3icbVJNbxMxEPUuBUr4aApHLhZRJSRolF2Q4IIUiUs3ElJBTVs1m1hex9u49XpXthcRWf4HXPgrXDiAEFeu3Pg3eD8EIelIlp7fzLx5O+uk4EzpweC351/bun7j5vatzu07d+/tdHfvH6u8lISOSc5zeZpgRTkTdKyZ5vS0kBRnCacnyeXrKn/ynkrFcnGklwWdZvhcsJQRrB2Fdr29eIG1ObCv9uNUYmLiRYKlNWGGqI1VmSEWC5xwPAsR268Jw55GFjbVZyiis9Ca2M3QsaYfdJIaaavS9vLOoqjO2idNS+DEbSsUCwovbMP/04FXCrnLRSPUaXxEcMVx1Ry+QZFt3KJoFm7Oi6p5I/vXOjxDozXvld1V76NmJOr2Bv1BHXATBC3ogTYOUfdXPM9JmVGhCcdKTYJBoacGS80Ip7YTl4oWmFziczpxUOCMqqmp/6eFe46ZwzSX7ggNa3a1w+BMqWWWuMoM64Vaz1XkVblJqdOXU8NEUWoqSDMoLTnUOaweB5wzSYnmSwcwkcx5hWSB3ba0e0Idt4Rg/ZM3wXHYD571w7fPe8Nhu45t8BA8Ao9BAF6AITgAh2AMiPfR++x99b75n/wv/nf/R1Pqe23PA/Bf+D//ANUMAAM=</latexit>



Computational science is driven by
better methods/algorithms

Ĥ = � ~
2me

X

i

r2
i �

X

i,I

ZIe
2

|ri �RI |
+

1

2

X

i 6=j

e
2

|ri � rj |
�
X

I

~2
2MI

r2
I +

1

2

X

I 6=J

ZIZJ

|RI �RJ |
<latexit sha1_base64="Xs+ln5BVt1eyM9D/mFowq4PZxGY=">AAADD3icbVJNbxMxEPUuBUr4aApHLhZRJSRolF2Q4IIUiUs3ElJBTVs1m1hex9u49XpXthcRWf4HXPgrXDiAEFeu3Pg3eD8EIelIlp7fzLx5O+uk4EzpweC351/bun7j5vatzu07d+/tdHfvH6u8lISOSc5zeZpgRTkTdKyZ5vS0kBRnCacnyeXrKn/ynkrFcnGklwWdZvhcsJQRrB2Fdr29eIG1ObCv9uNUYmLiRYKlNWGGqI1VmSEWC5xwPAsR268Jw55GFjbVZyiis9Ca2M3QsaYfdJIaaavS9vLOoqjO2idNS+DEbSsUCwovbMP/04FXCrnLRSPUaXxEcMVx1Ry+QZFt3KJoFm7Oi6p5I/vXOjxDozXvld1V76NmJOr2Bv1BHXATBC3ogTYOUfdXPM9JmVGhCcdKTYJBoacGS80Ip7YTl4oWmFziczpxUOCMqqmp/6eFe46ZwzSX7ggNa3a1w+BMqWWWuMoM64Vaz1XkVblJqdOXU8NEUWoqSDMoLTnUOaweB5wzSYnmSwcwkcx5hWSB3ba0e0Idt4Rg/ZM3wXHYD571w7fPe8Nhu45t8BA8Ao9BAF6AITgAh2AMiPfR++x99b75n/wv/nf/R1Pqe23PA/Bf+D//ANUMAAM=</latexit>

Di
ffi

cu
lty

Number of electrons (n)

Exact 
solution

+ 

+ 

+ 

+ - - - 

- - 

- 

- - - - 
- 

- 
- 

- - 

- 

50



Computational science is driven by
better methods/algorithms

Ĥ = � ~
2me

X

i

r2
i �

X

i,I

ZIe
2

|ri �RI |
+

1

2

X

i 6=j

e
2

|ri � rj |
�
X

I

~2
2MI

r2
I +

1

2

X

I 6=J

ZIZJ

|RI �RJ |
<latexit sha1_base64="Xs+ln5BVt1eyM9D/mFowq4PZxGY=">AAADD3icbVJNbxMxEPUuBUr4aApHLhZRJSRolF2Q4IIUiUs3ElJBTVs1m1hex9u49XpXthcRWf4HXPgrXDiAEFeu3Pg3eD8EIelIlp7fzLx5O+uk4EzpweC351/bun7j5vatzu07d+/tdHfvH6u8lISOSc5zeZpgRTkTdKyZ5vS0kBRnCacnyeXrKn/ynkrFcnGklwWdZvhcsJQRrB2Fdr29eIG1ObCv9uNUYmLiRYKlNWGGqI1VmSEWC5xwPAsR268Jw55GFjbVZyiis9Ca2M3QsaYfdJIaaavS9vLOoqjO2idNS+DEbSsUCwovbMP/04FXCrnLRSPUaXxEcMVx1Ry+QZFt3KJoFm7Oi6p5I/vXOjxDozXvld1V76NmJOr2Bv1BHXATBC3ogTYOUfdXPM9JmVGhCcdKTYJBoacGS80Ip7YTl4oWmFziczpxUOCMqqmp/6eFe46ZwzSX7ggNa3a1w+BMqWWWuMoM64Vaz1XkVblJqdOXU8NEUWoqSDMoLTnUOaweB5wzSYnmSwcwkcx5hWSB3ba0e0Idt4Rg/ZM3wXHYD571w7fPe8Nhu45t8BA8Ao9BAF6AITgAh2AMiPfR++x99b75n/wv/nf/R1Pqe23PA/Bf+D//ANUMAAM=</latexit>

Di
ffi

cu
lty

Number of electrons (n)

Exact 
solution

Density 
functional 
theory

~50

Quantum 
Monte Carlo

~1000

~100



Goals for (the rest of) this lecture

• Representing numbers on the computer
• Types
• Finite precision of floating points
• Comparing real numbers



Information in computer programs 
categorized by “Type”

C++ Type Fortran Equivalent Description Example
short (also called short int) integer(4) Positive or negative number with no 

decimal places. 
56478, 3, -278

int integer

long (also called long int) integer(8)

float real Positive or negative number with 
decimal places. 

3.0, 1.67e10, -3.2234e-20

double real(8)

long double real(16)

char character(1) Single or multiple letters, numbers, 
symbols with no special interpretation

a, abj3a, gh_&w

string  (string type implemented 
as a container in C++ standard 
library)

character(len=*) (as of Fortran 
2008 standard)

bool logical True or False .True., False

complex (complex type 
implemented as a Template class in 
C++ standard library)

complex Complex numbers 3.0+5.6i



All information in a computer stored as bits

• Basic unit of information in a computer is a bit: 0 or 1
• 8 bits = 1 byte

• All types must be converted into some number of bytes

• Finite storage limits, e.g., the size or precision of a number



Binary data representation
• “Human” representation: Base ten (decimal)
• Each digit multiplies a power of 10

• “Computer” representation: Base two (binary)
• Each digit multiplies a power of 2:

13710 = 1x102 + 3x101 + 7x100

102 = 100’s place

101 = 10’s place

100 = 1’s place

22 = 4’s place

21 = 2’s place

20 = 1’s place

1012 =1x22 + 0x21 + 1x20

= 510 (in base 10 representation) 



The amount of memory allocated to an integer 
determines largest number that can be stored
• E.g., 1 byte:

• 2-byte:
• This can store 215-1 distinct values: -32,768 to 32,767 (signed)
• Or it can store 216 values: 0 to 65,535 (unsigned)

• Standard in many languages is 4-bytes
• This can store 231-1 distinct values: -2,147,483,648 to 2,147,483,647 (signed)

• C/C++: int (usually) or int32_t
• Fortran: integer or integer(4)

• Or it can store 232 distinct values : 0 to 4,294,967,295 (unsigned)
• C/C++: uint or uint32_t
• Fortran (as of 95): unsigned

• For very big integers, 8-byte allows for 264

• Fotran: integer(8)
• C++: long

0 1 1 1 1 1 1 1

Sign bit;  0 if positive integer
                1 if negative integer

= 1x26 + 1x25 + 1x24 + 1x23 + 1x22 + 1x21 + 1x20 = 12710



Overflow: Trying to put more information in a 
type than will fit
• What happens when you try to store an integer that too large for the 

memory allocated?
• Depends on the language!

• Fortran: Just gives you the wrong result

• Python: Allows the size of the integer to scale with the size of the 
number



Another aspect of integers to keep in mind:
Integer division
• Multiplication of integers results in an integer; addition/subtraction of 

integers result in an integer; division of integers does not always 
result in an integer!

• What happens if we divide two integers like: 1/2?
• In some codes, 1/2 gives 0, in others it converts to real and give 0.5
• Common source of bugs!!



Real/Floating point numbers are more 
complicated
• Infinite real numbers on the number line need to be represented by a finite 

number of bits

• Finite memory results in limited size and precision of floating point numbers
• Not all real numbers (even simple ones) can be stored in a finite number of digits in a base-2 

representation
• Example:   1/10=0.110 = 0.0001100110011...2 does not have a finite representation in base 2 

just as 1/3=0.333333...10 has no finite representation in base 10

• This means that even simple floating point numbers are often approximated with 
some small error

• This means that floating point arithmetic is not exact! (on all computers and programming 
languages)

• Errors can compound if not treated carefully! 



Real (a.k.a. floating point) data
• IEEE 754 mantissa-exponent form:

• Value = mantissa x 2 exponent

• Single precision:
• Sign: 1 bit; exponent: 8 bits; significand: 24 bits (23 stored) = 32 bits
• Range: 27-1 in exponent (because of sign) = 2127 multiplier ~ 1038

• Decimal precision: ~6 significant digits
• Double precision:

• Sign: 1 bit; exponent: 11 bits; significand: 53 bits (52 stored) = 64 bits
• Range: 210-1 in exponent = 21023 multiplier ~ 10308

• Decimal precision: ~15 significant digits

mmmmmmmmmmmmmmmmmmmmmmmmeeeeeeee

24 bit mantissa 8 bit exponent



Finite precision of floating points

• This means that most real numbers do not have an exact 
representation on a computer.
• Spacing between numbers varies with the size of numbers
• Relative spacing is constant



Overflows/underflows with reals

• Overflows and underflows can still occur when you go outside the 
representable range.  
• The floating-point standard will signal these (and compilers can catch them)

• Some special numbers:
• NaN = 0/0 or
• Inf is for overflows, like 1/0
• Both of these allow the program to continue, and both can be trapped (and dealt 

with)
• -0 is a valid number, and -0 = 0 in comparison 
• Floating point is governed by an IEEE standard

• Ensures all machines do the same thing
• Aggressive compiler optimizations can break the standard

p
�1

<latexit sha1_base64="QRscTt1+Otohv6pUG/GwvVEKnJc=">AAAB/3icbVA9SwNBEN2LXzF+RS1tFoNgY7iLAS0DNpYRzIckIext9pIlu3vn7pwQjhT+Blut7cTWn2LpP3EvucIkPhh4vDfDzDw/EtyA6347ubX1jc2t/HZhZ3dv/6B4eNQ0Yawpa9BQhLrtE8MEV6wBHARrR5oR6QvW8sc3qd96YtrwUN3DJGI9SYaKB5wSsNJD1zxqSC68ab9YcsvuDHiVeBkpoQz1fvGnOwhpLJkCKogxHc+NoJcQDZwKNi10Y8MiQsdkyDqWKiKZ6SWzg6f4zCoDHITalgI8U/9OJEQaM5G+7ZQERmbZS8X/vE4MwXUv4SqKgSk6XxTEAkOI0+/xgGtGQUwsIVRzeyumI6IJBZvRwhZfppl4ywmskmal7F2WK3fVUq2apZNHJ+gUnSMPXaEaukV11EAUSfSCXtGb8+y8Ox/O57w152Qzx2gBztcvfoiW3A==</latexit>



A result of finite precision: Need to be careful 
when comparing floats/reals
• Floating point numbers involve rounding and imprecision, which propagate 

in different ways under different operations 

• Mathematically analogous expressions may yield slightly (or significantly as 
we will see!) different results

• In principle, this can be accounted for since floating point operations follow 
specific rules 
• see reading “What Every Computer Scientist Should Know About Floating-Point 

Arithmetic,” by David Goldberg

• In practice, it best to do an “epsilon check”



Epsilon check for comparing floats

• Take two real numbers a and b
• We take a==b if abs(a-b) < epsilon

• Have to be very careful with this!!! We should think about:
• The choice of epsilon based on the precision we require/expect for a and 
b
• The choice of epsilon based on the magnitude of a and b
• What will happen in special cases (0, NaN, inf)
• …



After class tasks

• Readings:
• What every computer scientist should know about floating-point arithmetic
• Wikipedia page on the Floating Point
• Wikipedia page on the Kahan Summation Algorithm

https://dl.acm.org/doi/10.1145/103162.103163
https://en.wikipedia.org/wiki/Floating-point_arithmetic
https://en.wikipedia.org/wiki/Kahan_summation_algorithm

