PHY 604: Computational Methods in Physics and Astrophysics II

Cyrus Dreyer

cyrus.dreyer@stonybrook.edu

Fall 2023

My research interests: Computational condensed matter physics

Stony Brook University

https://you.stonybrook.edu/cdreyer/

Goals of the course:

- Learn how to solve problems in physics computationally
- Understand the limitations of numerical methods
- Have the ability to interpret numerical results presented in the literature
- Have exposure to computational tools
- Understand basic idea behind algorithms for performing common computational tasks

Technical points about the class: Programming Languages

- The assignments will involve writing computer programs
- You may use the programming language of your choice.* I would prefer:
- Fortran
- C++
- Matlab
- python
- * In general, and especially if your language is not on the list, you should provide some help for how to compile (if necessary) and run your code
- Examples will be given in fortran, $\mathrm{C}++$, and python

Technical points about the class: Topics covered

- Basics of computation and programming constructions
- Good programming practices
- Numerical differentiation and integration
- Interpolation and root finding
- Ordinary differential equations
- Linear algebra
- Fast Fourier transforms
- Fitting
- Partial differential equations
- Monte Carlo techniques
- Genetic algorithms
- Parallel computing
- Machine learning

Technical points about the class: Class location

- Vote: Move the class to Physics building (likely B131)

Technical points about the class: Assignments

- Coding homework will be assigned roughly every two weeks
- Homeworks will be 80% of the final grade
- Will involve code and written analysis
- Recommendation (not required): Use Jupyter notebooks
- Proposed office hours: Mondays, 3:00pm to 4:00pm; Thursdays, 10:00am to 1:00pm
- Please feel free to come to me for help!
- There will be a final project at the end of the semester
- Solve a physics problem computationally
- Write up a short report, and present to the class
- Final project is 20% of the final grade

Technical points about the class: Textbooks

- No textbook is required for this course
- Some recommended texts for further reading:

Computational Physics, by Mark Newman

- Generally good coverage on most of the topics we'll discuss
- Lots of physics examples
- Inexpensive
- Main recommended book

An Introduction to Computational
Physics, by Tao Pang

- Also good coverage of the topics (up to PDEs)
- Lots of physics examples
- Inexpensive

Effective Computation in Physics by Scopatz \& Huff

- Introduces linux/unix shell
- Covers programming practices
- Introduces parallel programming

Why computation?

"Computational science now constitutes what many call the third pillar of the scientific enterprise, a peer alongside theory and physical experimentation."
-President's information technology advisory committee (2005)

- Computation allows us to go beyond analytically solvable problems
- Computers allow us to perform repetitive tasks efficiently
- Computers allow us to generate and analyze large amounts of data

The two roles of computational in physics research

- Calculation: Using computers to solve well-defined problems
- Simulation: Use the computer to perform computational experiments

Computational science is driven by more powerful computers

Computational science is driven by better methods/algorithms

$$
\hat{H}=-\frac{\hbar}{2 m_{e}} \sum_{i} \nabla_{i}^{2}-\sum_{i, I} \frac{Z_{I} e^{2}}{\left|\mathbf{r}_{i}-\mathbf{R}_{I}\right|}+\frac{1}{2} \sum_{i \neq j} \frac{e^{2}}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|}-\sum_{I} \frac{\hbar^{2}}{2 M_{I}} \nabla_{I}^{2}+\frac{1}{2} \sum_{I \neq J} \frac{Z_{I} Z_{J}}{\left|\mathbf{R}_{I}-\mathbf{R}_{J}\right|}
$$

Computational science is driven by better methods/algorithms

$\hat{H}=-\frac{\hbar}{2 m_{e}} \sum_{i} \nabla_{i}^{2}-\sum_{i, I} \frac{Z_{I} e^{2}}{\left|\mathbf{r}_{i}-\mathbf{R}_{I}\right|}+\frac{1}{2} \sum_{i \neq j} \frac{e^{2}}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|}-\sum_{I} \frac{\hbar^{2}}{2 M_{I}} \nabla_{I}^{2}+\frac{1}{2} \sum_{I \neq J} \frac{Z_{I} Z_{J}}{\left|\mathbf{R}_{I}-\mathbf{R}_{J}\right|}$

Computational science is driven by better methods/algorithms

$$
\hat{H}=-\frac{\hbar}{2 m_{e}} \sum_{i} \nabla_{i}^{2}-\sum_{i, I} \frac{Z_{I} e^{2}}{\left|\mathbf{r}_{i}-\mathbf{R}_{I}\right|}+\frac{1}{2} \sum_{i \neq j} \frac{e^{2}}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|}-\sum_{I} \frac{\hbar^{2}}{2 M_{I}} \nabla_{I}^{2}+\frac{1}{2} \sum_{I \neq J} \frac{Z_{I} Z_{J}}{\left|\mathbf{R}_{I}-\mathbf{R}_{J}\right|}
$$

Exact

Goals for (the rest of) this lecture

- Representing numbers on the computer
- Types
- Finite precision of floating points
- Comparing real numbers

Information in computer programs categorized by "Type"

C++ Type	Fortran Equivalent	Description	Example
short (also called short int)	integer (4)	Positive or negative number with no decimal places.	56478, 3, -278
int	integer		
long (also called long int)	integer (8)		
float	real	Positive or negative number with decimal places.	$3.0,1.67 e 10,-3.2234 e-20$
double	real (8)		
long double	real (16)		
char	character (1)	Single or multiple letters, numbers, symbols with no special interpretation	a, abj3a, gh_\&w
```string (string type implemented as a container in C++ standard library)```	character (len=*) (as of Fortran 2008 standard)		
bool	logical	True or False	.True., False
complex (complex type implemented as a Template class in C++ standard library)	complex	Complex numbers	$3.0+5.6 i$

## All information in a computer stored as bits

- Basic unit of information in a computer is a bit: $\mathbf{0}$ or $\mathbf{1}$
- 8 bits $=1$ byte
- All types must be converted into some number of bytes
- Finite storage limits, e.g., the size or precision of a number


## Binary data representation

- "Human" representation: Base ten (decimal)
- Each digit multiplies a power of 10

- "Computer" representation: Base two (binary)
- Each digit multiplies a power of 2:



## The amount of memory allocated to an integer determines largest number that can be stored

- E.g., 1 byte:

- 2-byte:
- This can store $2^{15-1}$ distinct values: $-32,768$ to 32,767 (signed)
- Or it can store $2^{16}$ values: 0 to 65,535 (unsigned)
- Standard in many languages is 4 -bytes
- This can store $2^{31}-1$ distinct values: $-2,147,483,648$ to $2,147,483,647$ (signed)
- C/C++: int (usually) or int32_t
- Fortran: integer or integer(4)
- Or it can store $2^{32}$ distinct values : 0 to 4,294,967,295 (unsigned)
- C/C++: uint or uint32_t
- Fortran (as of 95): unsigned
- For very big integers, 8 -byte allows for $2^{64}$
- Fotran: integer(8)
- C++: long


## Overflow: Trying to put more information in a type than will fit

- What happens when you try to store an integer that too large for the memory allocated?
- Depends on the language!
- Fortran: Just gives you the wrong result
- Python: Allows the size of the integer to scale with the size of the number


## Another aspect of integers to keep in mind: Integer division

- Multiplication of integers results in an integer; addition/subtraction of integers result in an integer; division of integers does not always result in an integer!
- What happens if we divide two integers like: $1 / 2$ ?
- In some codes, $1 / 2$ gives 0 , in others it converts to real and give 0.5
- Common source of bugs!!


## Real/Floating point numbers are more complicated

- Infinite real numbers on the number line need to be represented by a finite number of bits
- Finite memory results in limited size and precision of floating point numbers
- Not all real numbers (even simple ones) can be stored in a finite number of digits in a base-2 representation
- Example: $1 / 10=0.1_{10}=0.0001100110011 \ldots 2$ does not have a finite representation in base 2 just as $1 / 3=0.33333 \omega_{10}$ has no finite representation in base 10
- This means that even simple floating point numbers are often approximated with some small error
- This means that floating point arithmetic is not exact! (on all computers and programming languages)
- Errors can compound if not treated carefully!


## Real (a.k.a. floating point) data

- IEEE 754 mantissa-exponent form:

- Value = mantissa $\times 2$ exponent
- Single precision:
- Sign: 1 bit; exponent: 8 bits; significand: 24 bits ( 23 stored) $=32$ bits
- Range: $2^{7}-1$ in exponent (because of sign) $=2^{127}$ multiplier $\sim 10^{38}$
- Decimal precision: ${ }^{\sim} 6$ significant digits
- Double precision:
- Sign: 1 bit; exponent: 11 bits; significand: 53 bits ( 52 stored) $=64$ bits
- Range: $2^{10}-1$ in exponent $=2^{1023}$ multiplier $\sim 10^{308}$
- Decimal precision: $\sim 15$ significant digits


## Finite precision of floating points

- This means that most real numbers do not have an exact representation on a computer.
- Spacing between numbers varies with the size of numbers
- Relative spacing is constant

$$
\text { relative roundoff error }=\frac{\mid \text { true number }- \text { computer number } \mid}{\mid \text { true number } \mid} \leq \epsilon
$$

## Overflows/underflows with reals

- Overflows and underflows can still occur when you go outside the representable range.
- The floating-point standard will signal these (and compilers can catch them)
- Some special numbers:
- $\mathrm{NaN}=0 / 0$ or $\sqrt{-1}$
- Inf is for overflows, like $1 / 0$
- Both of these allow the program to continue, and both can be trapped (and dealt with)
- -0 is a valid number, and $-0=0$ in comparison
- Floating point is governed by an IEEE standard
- Ensures all machines do the same thing
- Aggressive compiler optimizations can break the standard


## A result of finite precision: Need to be careful when comparing floats/reals

- Floating point numbers involve rounding and imprecision, which propagate in different ways under different operations
- Mathematically analogous expressions may yield slightly (or significantly as we will see!) different results
- In principle, this can be accounted for since floating point operations follow specific rules
- see reading,"What Every Computer Scientist Should Know About Floating-Point Arithmetic," by David Goldberg
- In practice, it best to do an "epsilon check"


## Epsilon check for comparing floats

- Take two real numbers a and b
- We take $a==b$ if $a b s(a-b)$ e epsilon
- Have to be very careful with this!!! We should think about:
- The choice of epsilon based on the precision we require/expect for a and b
- The choice of epsilon based on the magnitude of $a$ and $b$
- What will happen in special cases ( $0, \mathrm{NaN}$, inf)
- ...


## After class tasks

- Readings:
- What every computer scientist should know about floating-point arithmetic
- Wikipedia page on the Floating Point
- Wikipedia page on the Kahan Summation Algorithm

