PHY 604: Computational
Methods in Physics and
Astrophysics ||

Cyrus Dreyer
cyrus.dreyer@stonybrook.edu

Fall 2023

My research interests: Computational condensed matter physics

\ <~ FLATIRON
StOny BrOOk \ Center for Computational

Quantum Physics

L:IllveI‘Slt}f https://www.simonsfoundation.org/flatiron/
Modern first-principles Material and device properties
Materials physics : (C) Properties of polar heterostructures Impact of defects on
calculations g
(a) Berry-phase theory of polarization (b)Carrier capture Defect structure and o P - S pe'r ?rménce
p> %"ﬁc > dri{uy|a/: rates properties - ’Q; —l £ =
N - ' Defectsin 29§ ’:ﬂ:‘. i o
onradiative transitions iconduct - q .
semiconductors 7%‘57

Experimental signatures

(d) Photoluminescence spectra Temperature dependent
activation energies

Electron-phonon
coupling

—

Electrical polarization

I, |Ep / o

Lattice dynamics

- [ty(k)] | \7,k> =P.AV g

4 17

https://you.stonybrook.edu/cdreyer/

Goals of the course:

* Learn how to solve problems in physics computationally
e Understand the limitations of numerical methods

* Have the ability to interpret numerical results presented in the
literature

* Have exposure to computational tools

* Understand basic idea behind algorithms for performing common
computational tasks

Technical points about the class:
Programming Languages

* The assignments will involve writing computer programs

* You may use the programming language of your choice.* | would
prefer:

* Fortran
e C++

* Matlab
* python

* * In general, and especially if your language is not on the list, you
should provide some help for how to compile (if necessary) and run
your code

* Examples will be given in fortran, C++, and python

‘echnical points about the class:
‘opics covered

Basics of computation and programming constructions
Good programming practices

Numerical differentiation and integration
Interpolation and root finding

Ordinary differential equations

Linear algebra

Fast Fourier transforms

Fitting

Partial differential equations

Monte Carlo techniques

Genetic algorithms

Parallel computing

Machine learning

Technical points about the class:
Class location

* VVote: Move the class to Physics building (likely B131)

Technical points about the class:
Assignments

* Coding homework will be assigned roughly every two weeks
« Homeworks will be 80% of the final grade
* Will involve code and written analysis
 Recommendation (not required): Use Jupyter notebooks

* Proposed office hours: Mondays, 3:00pm to 4:00pm; Thursdays, 10:00am
to 1:00pm

* Please feel free to come to me for help!

* There will be a final project at the end of the semester
e Solve a physics problem computationally
* Write up a short report, and present to the class
* Final project is 20% of the final grade

echnical points about the class:

* No textbook is required for this course
* Some recommended texts for further reading:

COMPUTATIONAL
PHYSICS

Revised and expanded

Mark Newman

Computational Physics, by Mark

Newman

* Generally good coverage on
most of the topics we'll
discuss

* Lots of physics examples

* Inexpensive

* Main recommended book

|

L

....................

An Introduction to
Computational
Physics

An Introduction to Computational

Physics, by Tao Pang

* Also good coverage of the topics
(up to PDEs)

* Lots of physics examples

* Inexpensive

| L

extbooks

NUMERICAL
METHODS
FOR PHYSICS

SECOND EQITION

= MEANDRD L GARCIA

Numerical Methods for Physics by
Alejandro Garcia

* Broad coverage

* More PDE stuff than Pang

| L

Y OREILLY"

Effective

FIELD GUIDE TO RESEARCH
WITH PYTHON 7 %
o

Anthony Scopatz &
Kathryn D.Huff

Effective Computation in Physics
by Scopatz & Huff
* Introduces linux/unix shell

* Covers programming practices
* Introduces parallel
programming

Why computation?

“Computational science now constitutes what many call the third pillar of the
scientific enterprise, a peer alongside theory and physical experimentation.”

—President's information technology advisory committee (2005)

 Computation allows us to go beyond analytically solvable problems
* Computers allow us to perform repetitive tasks efficiently

 Computers allow us to generate and analyze large amounts of data

research

Computational science is driven by
more powerful computers

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years.
This advancement is important for other aspects of technological progress in computing - such as processing speed or the price of computers.

Transistor count
50,000,000,000

Moore’s Law: The number of transistors on microchips doubles every two years [oiff I\:;Vorld
in Data

10,000,000,000
5,000,000,000

1,000,000,000
500,000,000

100,000,000 oD S e
50,000,000 _pen

4 North J Lis oy
e & S npoand P
QARM Cortex-A9

ntium Il Coppermine

10,000,000
5,000,000

1,000,000
500,000

100,000
50,000

10,000 -4 o
5,000

i
1,000)
P g
NN

Ao D
NN

s e SR LR LC A L SRR LR AR N S R A S RN
R S S S S S S S S
Data source: Wikipedia (wikipedia.org/wiki/Transistor_count) Year in which the microchip was first introduced

OurWorldinData.org - Research and data to make progress against the world's largest problems Licensed under CC-BY by the authors Hannah Ritchie and Max Roser.

System

Frontier - HPE Cray EX235a, AMD Optimized 3rd
Generation EPYC 64C 2GHz, AMD Instinct MI250X,
Slingshot-11, HPE

DOE/SC/0ak Ridge National Laboratory

United States

Supercomputer Fugaku - Supercomputer Fugaku,

Ab4LFX 48C 2.2GHz, Tofu interconnect D, Fujitsu
RIKEN Center for Computational Science
Japan

LUMI - HPE Cray EX235a, AMD Optimized 3rd
Generation EPYC 64C 2GHz, AMD Instinct MI250X,
Slingshot-11, HPE

EuroHPC/CSC

Finland

Leonardo - BullSequana XH2000, Xeon Platinum 8358
32C 2.6GHz, NVIDIA A100 SXM4 64 GB, Quad-rail NVIDIA

HDR100 Infiniband, Atos
EuroHPC/CINECA
Italy

Summit - IBM Power System AC922, IBM POWER? 22C
3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR

Infiniband, IBM
DOE/SC/0ak Ridge National Laboratory
United States

Cores

8,699,904

7,630,848

2,220,288

1,824,768

2,614,592

Rmax
(PFlop/s)

1,194.00

442.01

309.10

238.70

148.60

Rpeak
(PFlop/s)

1,679.82

537.21

428.70

304.47

200.79

Power
(kW)

22,703

29,899

6,016

7,404

10,096

H=—

Computational science is driven by
better methods/algorithms

h 7 e’ 1 e? h? 1
V7 — - —y - Vi+ -
2mZ : ;|ri—R1]+2;|ri—rj| ZQM] 13

H=—

Computational science is driven by
better methods/algorithms

h 7 re? 1 e? h?
V? — - — E —V
QmGZ ‘ Z|ri—RI|+22|ri—rj| 2M
1 1,1 147 I
e, Exact
- solution

m Difficulty

>
! PYY
éé 02288 .:{b
202828

Computational science is driven by
better methods/algorithms

~ h Z[€2 1 62 h2 1 Z]ZJ
H=— V? — _ _ A v o
3 2 Vi Z|ri—RI|+22|ri—rj| 250 I+2Z|RI—RJ|
1 1,1 1% I I1#J
Exact ~50

’solution |
Quantum ~100

Monte Carlo

Density ~1000
functional

theory

m Difficulty G5

Number of electrons (n)

Goals for (the rest of) this lecture

* Representing numbers on the computer
* Types
* Finite precision of floating points
 Comparing real numbers

Information in computer programs

categorized by “Type”

C++ Type Fortran Equivalent Description Example

short (also called short int) integer (4) Positive or negative number with no 56478, 3, -278
decimal places.

int integer

long (also called 1ong int) integer (8)

float real Positive or negative number with 3.0, 1.67e10, -3.2234e-20
decimal places.

double real (8)

long double real (16)
Single or multiple letters, numbers, a, abj3a, gh &w
symbols with no special interpretation

bool logical True or False .True., False

complex (complex type complex Complex numbers 3.0+5.61

implemented as a Template class in
C++ standard library)

All information in a computer stored as bits

 Basic unit of information in a computeris a bit: 0 or 1
* 8 bits =1 byte

 All types must be converted into some number of bytes

* Finite storage limits, e.g., the size or precision of a number

Binary data representation

* “Human” representation: Base ten (decimal)
* Each digit multiplies a power of 10

100 = 1’s place T

10" =10’s place
102 = 100’s place '7 ;

137, = 1x10% + 3x101 + 7x10°

* “Computer” representation: Base two (binary)
* Each digit multiplies a power of 2:

20 =1's place T

21 =2splace T
22 = 4’s place "7

101, =1x22 + Ox21 + 1x2°

=5,, (in base 10 representation)

The amount of memory allocated to an integer
determines largest number that can be stored

* Bg,lbyter Lol 111 1] 1]1]1]=1x25+1x25 + 1x2% + 1x23 + 1x22 + 1x2 + 1x20 = 127,

L

Sign bit; 0O if positive integer
1 if negative integer

» 2-byte:
* This can store 21>-1 distinct values: -32,768 to 32,767 (signed)
e Orit can store 216 values: 0 to 65,535 (unsigned)

e Standard in many languages is 4-bytes
* This can store 231-1 distinct values: -2,147,483,648 to 2,147,483,647 (signed)
e C/C++:int (usually) orint32_t
* Fortran: integer or integer(4)

* Or it can store 232 distinct values : 0 to 4,294,967,295 (unsigned)
e C/C++:uintoruint32_t
* Fortran (as of 95): unsigned

* For very big integers, 8-byte allows for 264
* Fotran: integer(8)
e C++:long

Overflow: Trying to put more information in a
type than will fit

* What happens when you try to store an integer that too large for the
memory allocated?
* Depends on the language!

* Fortran: Just gives you the wrong result

* Python: Allows the size of the integer to scale with the size of the
number

Another aspect of integers to keep in mind:
Integer division

* Multiplication of integers results in an integer; addition/subtraction of
integers result in an integer; division of integers does not always
result in an integer!

* What happens if we divide two integers like: 1 /27
* In some codes, 1/2 gives 0, in others it converts to real and give 0.5
e Common source of bugs!!

Real/Floating point numbers are more
complicated

* Infinite real numbers on the number line need to be represented by a finite
number of bits

* Finite memory results in limited size and precision of floating point numbers

®* Not all real numbers (even simple ones) can be stored in a finite number of digits in a base-2
representation

e Example: 1/10=0.1,,=0.0001100110011..., does not have a finite representation in base 2
just as 1/3=0.333333...,, has no finite representation in base 10

* This means that even simple floating point numbers are often approximated with
some small error

* This means that floating point arithmetic is not exact! (on all computers and programming
languages)

* Errors can compound if not treated carefully!

Real (a.k.a. floating point) data

* |EEE 754 mantissa-exponent form:

mmmmmmmmmmmmmmmmmmmmmmmmeeeeeeee
N -/
Iy ey

24 bit mantissa | 8 bit exponent

* Value = mantissa x 2 exponent

* Single precision:
 Sign: 1 bit; exponent: 8 bits; significand: 24 bits (23 stored) = 32 bits
« Range: 27-1 in exponent (because of sign) = 2% multiplier ~ 1038
* Decimal precision: ~6 significant digits

* Double precision:
 Sign: 1 bit; exponent: 11 bits; significand: 53 bits (52 stored) = 64 bits
e Range: 219-1 in exponent = 21923 multiplier ~ 10308
* Decimal precision: ~15 significant digits

Finite precision of floating points

* This means that most real numbers do not have an exact
representation onad computer.
* Spacing between numbers varies with the size of numbers
* Relative spacing is constant

, [true number — computer number|
relative roundoft error = <e€
[true number|

Overflows/underflows with reals

* Overflows and underflows can still occur when you go outside the
representable range.
* The floating-point standard will signal these (and compilers can catch them)

e Some special numbers:
e NaN=0/0or v—1
 Tnf isfor overflows, like 1/0

* Both of these allow the program to continue, and both can be trapped (and dealt
with)

* —0isavalid number,and -0 = 0 incomparison

* Floating point is governed by an IEEE standard
* Ensures all machines do the same thing
* Aggressive compiler optimizations can break the standard

A result of finite precision: Need to be careful
when comparing floats/reals

* Floating point numbers involve rounding and imprecision, which propagate
in different ways under different operations

 Mathematically analogous expressions may yield slightly (or significantly as
we will see!) different results

* |[n principle, this can be accounted for since floating point operations follow
specific rules

* see reading “What Every Computer Scientist Should Know About Floating-Point
Arithmetic,” by David Goldberg

* |[n practice, it best to do an “epsilon check”

Epsilon check for comparing floats

 Take two real numbers a and b
* We take a==b ifabs (a-b) < epsilon

* Have to be very careful with this!!! We should think about:

* The choice of epsilon based on the precision we require/expect for a and
o

* The choice of epsilon based on the magnitude of a and b
 What will happen in special cases (0, NaN, inf)

After class tasks

* Readings:
 What every computer scientist should know about floating-point arithmetic
 Wikipedia page on the Floating Point
 Wikipedia page on the Kahan Summation Algorithm

https://dl.acm.org/doi/10.1145/103162.103163
https://en.wikipedia.org/wiki/Floating-point_arithmetic
https://en.wikipedia.org/wiki/Kahan_summation_algorithm

