
PHY604 Lecture 3
September 5, 2023

Review: Roundoff and truncation error
• Consider computing exp(-24) via a truncated Taylor series:

• Error in the approximation (i.e., truncation error) is less than:

• But if we compute S(-24) by adding terms until they are less than
machine precision (8 byte):
• S(-24)=3.7814382919759864E-007
• Exp(-24)=3.7751345442790977E-011
• Error is larger than the result (much larger than truncation error)!!
• Looking at terms, we see we are relying on cancellations of terms

<latexit sha1_base64="oCXGyhUs9hxyJ6rMXQLI7MNueSs=">AAACKHicbVDLSgMxFM34rPVVdekmWoSKMMwUUTdqwY3LilYLfZFJ79hgJjMmGWkZ5nPc+CtuRBTp1i8xrVW0eiBw7jn3cnOPF3GmtOP0rYnJqemZ2cxcdn5hcWk5t7J6qcJYUqjQkIey6hEFnAmoaKY5VCMJJPA4XHk3JwP/6g6kYqG40L0IGgG5FsxnlGgjtXLH0OzWFQvgFp8XutuH7k7dl4Qm3TRxN9KvollMk6Ipbdv+lkSaiI20lcs7tjME/kvcEcmjEcqt3HO9HdI4AKEpJ0rVXCfSjYRIzSiHNFuPFUSE3pBrqBkqSACqkQwPTfGWUdrYD6V5QuOh+nMiIYFSvcAznQHRHTXuDcT/vFqs/YNGwkQUaxD0c5Efc6xDPEgNt5kEqnnPEEIlM3/FtENMENpkmzUhuOMn/yWXRdvds3fPdvOlo1EcGbSONlEBuWgfldApKqMKougePaIX9Go9WE/Wm9X/bJ2wRjNr6Bes9w8fkaVs</latexit>

ex ' S(x) = 1 +
x

1!
+

x2

2!
+ ...+

xn

n!

<latexit sha1_base64="4Cju4AUax88SPTG1LOVzp5Mdkbk=">AAACF3icbVDLSsNAFJ3UV62vqEs3o0WoKCWRoq6k4MZlBfuApi2T6aQdOpmEmYm0hPyFG3/FjQtF3OrOv3GaZqGtF4Z7OOdc7tzjhoxKZVnfRm5peWV1Lb9e2Njc2t4xd/caMogEJnUcsEC0XCQJo5zUFVWMtEJBkO8y0nRHN1O9+UCEpAG/V5OQdHw04NSjGClN9cyy4wmEY0d7FBynrRvzUztJ4pJuJ4eJ46OxE9tnpDt2kp5ZtMpWWnAR2BkogqxqPfPL6Qc48glXmCEp27YVqk6MhKKYkaTgRJKECI/QgLQ15MgnshOndyXwWDN96AVCP65gyv6eiJEv5cR3tdNHaijntSn5n9aOlHfViSkPI0U4ni3yIgZVAKchwT4VBCs20QBhQfVfIR4iHZTSURZ0CPb8yYugcV62L8qVu0qxep3FkQcH4AiUgA0uQRXcghqoAwwewTN4BW/Gk/FivBsfM2vOyGb2wZ8yPn8AgLyffA==</latexit>

|x|n+1

(n+ 1)!
max{1, ex}

Review: Distributed version control with Git

Centralized server of github

My computer

Repo

Another user

Repo

Make
changes

Repo

Commit

Repo

push

pull

Make
changes

Repo

Commit

push

pull

Pull/push

Pull/push

Today’s lecture:

• Good programming practices:
• Finish discussing version control

• Testing

• Misc. good practices

Example: Simple remote on group server
• We'll look at the example of having people work with a shared

remote repository—this is common with groups.
• Each developer will have their own clone that they interact with, develop in,

branch for experimentation, etc.
• You can push and pull to/from the remote repo to stay in sync with others
• You probably want to put everyone in the same UNIX group on the server

• Creating a master bare repo:
 git init --bare --shared myproject.git
 chgrp -R groupname myproject.git
 (to set permissions)

• This repo is empty, and bare—it will only contain the git files, not the actual
source files you want to work on
• Each user should clone it

• In some other directory. User A does:
• git clone /path/to/myproject.git

• Now you can operate on it
• Create a file (README)
• Add it to your repo: git add README
• Commit it to your repo: git commit README
• Push it back to the bare repo: git push

• Note that for each commit you will be prompted to add a log message
detailing the change

Example: Simple remote on group server

Example: Simple remote on group server

• Now user B comes along and wants to play too:
• In some other directory. User B does:
• git clone /path/to/myrepo.git

• Note that they already have the README file
• Edit README
• Commit you changes locally: git commit README
• Push it back to the bare repo: git push

• Now user A can get this changes by doing: git pull
• In general, you can push to a bare repo, but you can pull from anyone

Using github

• Don't want to use your own server? Use github or bitbucket
• Free for public (open source) projects
• Pay for private projects

• How to contribute to someone else's project?
• Since you are not a member of that project, you cannot push back to it

• You don't have write access
• Use pull requests:

• Fork the project into your own account
• Push back to your fork
• Issue a pull-request asking for your changes to be incorporated

Common Git commands available using
git --help

Some last comments about git and github

• If you put the remote repository on a different server, then you always
have a backup of your project
• Since git is distributed, if your remote server dies, each clone is a backup of the

entire repo, so you are safe both ways.

• Free (for open source), online, web-based hosting sites exist (e.g. Github)
• Best with Linux or Mac OS (in terminal).

• Windows? Try: https://git-for-windows.github.io/

• Github provides tools to share your code broadly and engage with your
community
• Pull requests, issue tracking, etc.

• We'll use git to hand in our homework assignments (more on this later)

https://git-for-windows.github.io/

Today’s lecture:

• Good programming practices:
• Finish discussing version control

• Testing

• Misc. good practices

• Numerical differentiation

Testing
• Testing is obviously a crucial part of writing programs

• When programs get complicated, testing is not so straight forward:
• How do I know that a change to one part didn’t break another part?
• How do I know what I did will work on different architectures?
• My code crashes after running for 78 hours, where did the error originate from?

• Testing involves running the program or part of the program with some
inputs and determining if the outputs are those that are expected (or at
least consistent)

• Many types of testing. We will discuss unit testing and regression testing

Unit testing

• Unit testing is the practice in which each smallest, self-contained unit
of the code is tested independently of the others

• There are unit testing frameworks out there that help automate the
procedure for different codes
• E.g., unittest for python

Another simple example: Matrix inversion

• Say your code has a matrix inversion routine that computes A-1

• A unit test for this routine can be:
• Pick a vector x
• Compute b = A x
• Compute x = A-1 b
• Does the x you get match (to machine tol) the original x?

Regression Testing
• Imagine you've “perfected” your program (simulation tool,

analysis tool, etc.)
• You are confident that the answer it gives is “right”
• You want to make sure that any changes you do in the future do not change

the output
• Regression testing tests whether changes to the code change the solution

• Regression testing:
• Store a copy of the current output (a benchmark)
• Make some changes to the code
• Compare the new solution to the previous solution
• If the answers differ, either:

• You've introduced a bug → fix it
• You've fixed a bug → update your benchmark

Regression testing

• Simplest requirements:
• You just need a tool to compare the current output to benchmark
• You can build up a more complex system from here with simple scripting

• Big codes need a bunch of tests to exercise all possible options for the
code
• If you spend a lot of time hunting down a bug, once you fix it, put a test case

in your suite to check that case

• If someone implements a new functionality, ask them to submit a test

• You'll never have complete coverage, but your number of tests will grow with
time, experience, and code complexity

Today’s lecture:

• Good programming practices:
• Finish discussing version control

• Testing

• Misc. good practices

• Numerical differentiation

Comments and Documentation
• Many in computer science will say that “good code documents itself”

• Do not believe it.
• Remember, we are often writing code for programming novices (both the developers and

users)
• The better people can understand your code, the more productive science will be done with

it

• No hard-and-fast rules. Comments should explain the basic idea of what a block
of code does
• Only comment “single lines” if there is something special or unusual about them
• Keep comments up to date with the code
• Think about what information will be useful for you in the future, and other developers of

your code

• Can often use tools to turn comments in the source into external documentation
• Robodoc: https://rfsber.home.xs4all.nl/Robo/
• FORD: http://fortranwiki.org/fortran/show/FORD
• Pydoc: https://docs.python.org/3/library/pydoc.html
• Others for python: https://wiki.python.org/moin/DocumentationTools

https://rfsber.home.xs4all.nl/Robo/
http://fortranwiki.org/fortran/show/FORD
https://docs.python.org/3/library/pydoc.html
https://wiki.python.org/moin/DocumentationTools

Debugging tools
• Simplest debugging: print out information at intermediate points in code execution

• Running with appropriate compiler glags (e.g., -g for gnu compilers) can provide
debugging information
• Can make code run slower, but useful for test purposes

• Interactive debuggers let you step through your code line-by-line, inspect the values of
variables as they are set, etc.
• gdb is the version that works with the GNU compilers. Some graphical frontends exist.
• Lots of examples online
• Not very useful for parallel code.

• Particularly difficult errors to find often involve memory management
• Valgrind is an automated tool for finding memory leaks. No source code modifications are

necessary.

DEMO valgrind
• Ssh –Y rusty
• Cd ~/teaching/PHY604_Fall2021/Lecture2_demos/cxx_val
• Emacs bounds
• g++ -o bounds bounds.cpp
• ./bounds
• Valgrind ./bounds

• Finds leak, but not sure where
• g++ -o bounds bounds.cpp -g
• valgrind ./bounds

• Now we can see leak is
• Uncomment std::cout…
• g++ -o bounds bounds.cpp -g
• valgrind ./bounds

• Uninitialized error

Building your code with, e.g., Makefiles

• It is good style to separate your subroutines/functions into files,
grouped together by purpose
• Makes a project easier to manage (for you and version control)
• Reduces compiler memory needs (although, can prevent inlining across files)
• Reduces compile time—you only need to recompile the code that changed

(and anything that might depend on it)

• Makefiles automate the process of building your code
• No ambiguity of whether your executable is up-to-date with your changes
• Only recompiles the code that changed (looks at dates)
• Very flexible: lots of rules allow you to customize how to build, etc.
• Written to take into account dependencies

We have not really discussed general coding style
• Depends very much on the language, and is often a matter of opinion

(google it)
• Some general rules:
• 1. Use a consistent programming style
• 2. Use brief but descriptive variable and function names
• 3. Avoid “magic numbers”

• Name your constants, specify your flags
• 4. Use functions and/or subroutines for repetitive tasks
• 5. Check return values for errors before proceeding
• 6. Share information effectively (e.g., using modules or namespaces)
• 7. Limit the scope of your variables, methods, etc.
• 8. Think carefully about the most effective way to input and output data
• 9. Be careful about memory, i.e., allocating and deallocating
• 10. Make your code readable and portable, you will thank yourself (or your

collaborators will thank you) later.

After class tasks

• If you do not already have one, make an account on github:
https://github.com/

• Readings:
• Wikipedia artical on makefiles
• Fortran best practices
• Good Enough Practices in Scientific Computing

https://github.com/
https://en.wikipedia.org/wiki/Make_(software)
https://www.fortran90.org/src/best-practices.html
https://arxiv.org/pdf/1609.00037.pdf

