
PHY 604: ComputationalMethods in Physics and Astrophysics II
Homework #4

Due: Nov. 5,2025

Programs can be written in any language (but python is recommended), In addition to the program, you
should have a writeup that contains the plots requested in the homework questions, answers to any analytical
or explanation questions, and a short description of your code and how to run it. This can be done in, e.g.,
LATEX, markdown, etc. Combining the code and writeup in jupyter notebooks is highly recommended.

Code and writeup should be submitted using git via github in the repo that was created from github
classroom link.

1. Convolutions. A convolution is defined as:

( f ⋆ g)(t) ≡
∫ ∞

−∞
f (τ)g(t − τ)dτ (1)

It is easy to compute this with FFTs, via the convolution theorem,

F{ f ⋆ g} = F{ f } F{g} (2)

That is the Fourier transform of the convolution of f and g is simply the product of the individual
transforms of f and g. This allows us to compute the convolution via multiplication in Fourier space
and then take the inverse transform, F−1{}, to recover the convolution in real space:

f ⋆ g = F−1{F{ f } F{g}} (3)

The file signal.txt in your git repo contains data of a function polluted with noise. We want to
remove the noise to recover the original function. The three columns in the file are: x, f (orig)(x), and
f (noisy)(x).

Consider the following kernels:

• tophat:

qth(x) =

{
1/L if x < L
0 if x ≥ L

(4)

• Gaussian:
qgauss(x) =

1
σ
√

2π
e−

1
2 (x/σ)2

(5)

For each of these kernels, plot the FFT (feel free to use a library for the FFT, the code from class, or
your own implementation). Compute the convolution of f (noisy)(x) and q(x) in Fourier space and
transform back to real space, and plot the de-noised function together with the original signal from
the signal.txt (i.e., f (orig)(x)). Experiment with the tunable parameters in the kernels (L or σ) to
see how clean you can get the noisy data and comment on what you see.

This process is used a lot in image processing both to remove noise and to compensate for the
behavior of cameras to sharpen images.

Note: The Gaussian kernel is centered around x = 0; thus, since we require the function to be
periodic, it should be split between the beginning and end of the interval (e.g., see Fig. 1). Also,
ensure that your kernel’s are normalized (i.e., add up to 1 over the domain).
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Figure 1: Gaussian kernel, made to be periodic.

2. Three time-level schemes for the diffusion equation (based on Garcia)

(a) The Richardson scheme for solving the diffusion equation uses the following discretization:

Tn+1
i − Tn−1

i
2τ

= κ
Tn

i+1 + Tn
i−1 − 2Tn

i

h2 . (6)

Note that this method is a “three time-level” scheme, so it requires a different scheme to get
started. Write a program that uses this scheme to solve the diffusion equation with the initial
conditions discussed in Lecture 15 (see Diffusion_FTCS.ipynb). Use the FTCS scheme on the
first step to get started. Try a few values of τ and show that this method is always unstable.

(b) The DuFort-Frankel scheme for solving the diffusion equation uses the following discretiza-
tion:

Tn+1
i − Tn−1

i
2τ

= κ
Tn

i+1 + Tn
i−1 − (Tn+1

i + Tn−1
i )

h2 . (7)

Do the same as part (a), and show that this scheme is unconditionally stable, but it’s accuracy
decreases with increasing τ.

3. Other methods for the advection equation (based on Garcia)

(a) The “upwind” scheme for solving the advection equation uses a left derivative for the ∂/∂x
term,

an+1
i − an

i
τ

= −c
an

i − an
i−1

h
. (8)

Use this method to solve the advection equation for the initial conditions used in advect-to-post.ipynb
(Lecture 15). For what values of τ is this method stable?

(b) The leap-frog scheme for solving the advection equation uses centered derivatives for both
terms:

an+1
i − an−1

i
2τ

= −c
an

i+1 − an
i−1

2h
. (9)

Note that this a three time-level scheme, so to get started you need to use one step of a different
scheme (e.g., Lax). Use this method to solve the advection equation for the initial conditions
used in advect-to-post.ipynb. For what values of τ is this method stable?

4. Relaxation methods for the Poisson equation (based on Garcia) Write a program that solves the two-
dimensional Poisson equation in a square geometry with the Dirichlet boundary conditions Φ = 0
at the boundaries using one of the relaxation methods discussed in class (i.e., Jacobi, Gauss-Seidel, or
SOR). Map the potential for a single charge at the center of the system. Compare with the potential
for a charge in free space (recall that a point charge in 2D is equivalent to a line charge in 3D).
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