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Goals of the course:
• Learn how to solve problems in physics computationally

• Understand the limitations of numerical methods

• Have the ability to interpret numerical results presented in the 
literature

• Have exposure to computational tools

• Understand basic idea behind algorithms for performing common 
computational tasks



Technical points about the class: 
Programming Languages
• The assignments will involve writing computer programs

•  You may use the programming language of your choice.* I would 
prefer:

• Fortran

• C++

• Matlab

• Python (recommended)

• * In general, and especially if your language is not on the list, you 
should provide some help for how to compile (if necessary) and run 
your code

• Examples will be given mostly in python



Technical points about the class:
Topics covered
• Basics of computation and programming constructions

• Good programming practices

• Numerical differentiation and integration

• Interpolation and root finding

• Ordinary differential equations

• Linear algebra

• Fast Fourier transforms

• Fitting

• Partial differential equations

• Monte Carlo techniques

• Genetic algorithms

• Parallel computing

• Machine learning



Technical points about the class:
Class location

• Vote: Move the class to Physics building (likely B131)



Technical points about the class:
Assignments
• Coding homework will be assigned roughly every two weeks

• Homeworks will be 50% of the final grade
• Will involve code and written analysis
• Recommendation (not required): Use Jupyter notebooks

• Office hours: By appointment
• Please feel free to come to me for help! 

• There will be a final project at the end of the semester
• Solve a physics problem computationally
• Write up a short report, and present to the class
• Final project is 50% of the final grade



Technical points about the class: Textbooks
• No textbook is required for this course

• Some recommended texts for further reading:  

Computational Physics, by Mark 
Newman
• Generally good coverage on 

most of the topics we’ll 
discuss

• Lots of physics examples
• Inexpensive
• Main recommended book

An Introduction to Computational 
Physics, by Tao Pang
• Also good coverage of the topics 

(up to PDEs)
• Lots of physics examples
• Inexpensive

Numerical Methods for Physics by 
Alejandro Garcia
• Broad coverage
• More PDE stuff than Pang

Effective Computation in Physics 
by Scopatz & Huff
• Introduces linux/unix shell
• Covers programming practices
• Introduces parallel 

programming



Why computation?

• Computation allows us to go beyond analytically solvable problems

• Computers allow us to perform repetitive tasks efficiently

• Computers allow us to generate and analyze large amounts of data

“Computational science now constitutes what many call the third pillar of the 
scientific enterprise, a peer alongside theory and physical experimentation.”

 —President's information technology advisory committee (2005)



The two roles of computational in physics research

• Calculation: Using 
computers to solve 
well-defined 
problems

• Simulation: Use the 
computer to perform 
computational 
experiments



Computational science is driven by 
more powerful computers



Computational science is driven by
better methods/algorithms
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Goals for (the rest of) this lecture

• Representing numbers on the computer
• Types

• Finite precision of floating points

• Comparing real numbers



Information in computer programs 
categorized by “Type”

C++ Type Fortran Equivalent Description Example

short (also called short int) integer(4) Positive or negative number with no 
decimal places. 

56478, 3, -278

int integer

long (also called long int) integer(8)

float real Positive or negative number with 
decimal places. 

3.0, 1.67e10, -3.2234e-20

double real(8)

long double real(16)

char character(1) Single or multiple letters, numbers, 
symbols with no special interpretation

a, abj3a, gh_&w

string  (string type implemented 
as a container in C++ standard 
library)

character(len=*) (as of Fortran 
2008 standard)

bool logical True or False .True., False

complex (complex type 
implemented as a Template class in 
C++ standard library)

complex Complex numbers 3.0+5.6i



All information in a computer stored as bits

• Basic unit of information in a computer is a bit: 0 or 1
• 8 bits = 1 byte

• All types must be converted into some number of bytes

• Finite storage limits, e.g., the size or precision of a number



Binary data representation
• “Human” representation: Base ten (decimal)

• Each digit multiplies a power of 10

• “Computer” representation: Base two (binary)
• Each digit multiplies a power of 2:

13710 = 1x102 + 3x101 + 7x100

102 = 100’s place

101 = 10’s place

100 = 1’s place

22 = 4’s place

21 = 2’s place

20 = 1’s place

1012 =1x22 + 0x21 + 1x20

= 510 (in base 10 representation) 



The amount of memory allocated to an integer 
determines largest number that can be stored
• E.g., 1 byte:

• 2-byte:
• This can store 215-1 distinct values: -32,768 to 32,767 (signed)
• Or it can store 216 values: 0 to 65,535 (unsigned)

• Standard in many languages is 4-bytes
• This can store 231-1 distinct values: -2,147,483,648 to 2,147,483,647 (signed)

• C/C++: int (usually) or int32_t
• Fortran: integer or integer(4)

• Or it can store 232 distinct values : 0 to 4,294,967,295 (unsigned)
• C/C++: uint or uint32_t
• Fortran (as of 95): unsigned

• For very big integers, 8-byte allows for 264

• Fotran: integer(8)
• C++: long

0 1 1 1 1 1 1 1

Sign bit;  0 if positive integer
                1 if negative integer

= 1x26 + 1x25 + 1x24 + 1x23 + 1x22 + 1x21 + 1x20 = 12710



Overflow: Trying to put more information in a 
type than will fit
• What happens when you try to store an integer that too large for the 

memory allocated?
• Depends on the language!
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Overflow: Trying to put more information in a 
type than will fit
• What happens when you try to store an integer that too large for the 

memory allocated?
• Depends on the language!

• Fortran: Just gives you the wrong result

• Python: Allows the size of the integer to scale with the size of the 
number



Another aspect of integers to keep in mind:
Integer division
• Multiplication of integers results in an integer; addition/subtraction of 

integers result in an integer; division of integers does not always 
result in an integer!!

• What happens if we divide two integers like: 1/2?



Another aspect of integers to keep in mind:
Integer division
• Multiplication of integers results in an integer; addition/subtraction of 

integers result in an integer; division of integers does not always 
result in an integer!

• What happens if we divide two integers like: 1/2?
• In some codes, 1/2 gives 0, in others it converts to real and give 0.5

• Common source of bugs!!



Integers versus real/floating-point: 
Mind the decimal place
• Keep in mind that in many languages, 2 and 2.0 (or 2.) are 

interpreted differently
• 2 is taken to be an integer
• 2. or 2.0 is taken to be real

• This can be important in a variety of contexts:
• Integers are stored exactly, floats are approximate
• Integer and floating-point division are different
• Exponentiating negative numbers can be problematic (-3.5)**(2)is safer 

than (-3.5)**(2.0)
• Integers must be used for, e.g., array indices   



Real/Floating point numbers are more 
complicated
• Infinite real numbers on the number line need to be represented by a finite 

number of bits

• Finite memory results in limited size and precision of floating point numbers
• Not all real numbers (even simple ones) can be stored in a finite number of digits in a base-2 

representation
• Example:   1/10=0.110 = 0.0001100110011...2 does not have a finite representation in base 2 

just as 1/3=0.333333...10 has no finite representation in base 10

• This means that even simple floating point numbers are often approximated with 
some small error

• This means that floating point arithmetic is not exact! (on all computers and programming 
languages)

• Errors can compound if not treated carefully! 



Real (a.k.a. floating point) data
• IEEE 754 mantissa-exponent form:

• Value = mantissa x 2 exponent

• Single precision:
• Sign: 1 bit; exponent: 8 bits; significand: 24 bits (23 stored) = 32 bits
• Range: 27-1 in exponent (because of sign) = 2127 multiplier ~ 1038

• Decimal precision: ~6 significant digits

• Double precision:
• Sign: 1 bit; exponent: 11 bits; significand: 53 bits (52 stored) = 64 bits
• Range: 210-1 in exponent = 21023 multiplier ~ 10308

• Decimal precision: ~15 significant digits

mmmmmmmmmmmmmmmmmmmmmmmmeeeeeeee

24 bit mantissa 8 bit exponent



Finite precision of floating points

• This means that most real numbers do not have an exact 
representation on a computer.

• Spacing between numbers varies with the size of numbers

• Relative spacing is constant



Overflows/underflows with reals

• Overflows and underflows can still occur when you go outside the 
representable range.  

• The floating-point standard will signal these (and compilers can catch them)

• Some special numbers:
• NaN = 0/0 or
• Inf is for overflows, like 1/0
• Both of these allow the program to continue, and both can be trapped (and dealt 

with)

• -0 is a valid number, and -0 = 0 in comparison 

• Floating point is governed by an IEEE standard
• Ensures all machines do the same thing
• Aggressive compiler optimizations can break the standard



A result of finite precision: Need to be careful 
when comparing floats/reals
• Floating point numbers involve rounding and imprecision, which propagate 

in different ways under different operations 

• Mathematically analogous expressions may yield slightly (or significantly as 
we will see!) different results

• In principle, this can be accounted for since floating point operations follow 
specific rules 

• see reading “What Every Computer Scientist Should Know About Floating-Point 
Arithmetic,” by David Goldberg

• In practice, it best to do an “epsilon check”



Epsilon check for comparing floats

• Take two real numbers a and b

• We take a==b if abs(a-b) < epsilon

• Have to be very careful with this!!! We should think about:
• The choice of epsilon based on the precision we require/expect for a and 
b

• The choice of epsilon based on the magnitude of a and b

• What will happen in special cases (0, NaN, inf)

• …



OTB: Round-off error example
• Imagine that we can only keep track of 4 significant digits

• Compute

• Take x = 1984. Keeping only 4 digits each step of the way: 

• We've lost a lot of precision

• Instead, consider:

• Then



Truncation errors are different from roundoff

• Translating continuous mathematical expressions into discrete forms 
introduces truncation error

• For example:

• Error:

• Or          vs. 



Floating point arithmetic not associative

• Adding lots of numbers together can compound round-off error

• One solution: sort and add starting with the smallest numbers

• Kahan summation (see reading list)
• Algorithm for adding sequence of numbers while minimizing roundoff 

accumulation

• Keeps a separate variable that accumulates small errors

• Requires that the compiler obey parenthesis



Floating point arithmetic not associative:

! Purpose:  Test the precision of reals                    

! Author:   Cyrus Dreyer                           

! Date:     2/4/2019                            

program test_prec_reals

 implicit none     ! Turn off implicit typing               

 ! Variable dictionary                            

 real :: factor1   ! Variable for factor 1                 

 real :: factor2   ! Variable for factor 2                 

 real :: prec_test_lhs ! Variable for result                 

 real :: prec_test_rhs ! Variable for result                 

 factor1 = 1.0      ! Assign a value to factor1             

 factor2 = 1.0d-9    ! Assign a value to factor2             

 prec_test_lhs = (factor1-factor1) + factor2 ! LHS of inequality on slide  

 prec_test_rhs = factor1 + (-factor1 + factor2) ! RHS of inequality on slide

 ! Output                                  

 write(*,'(a20,e20.12e2,a20,e20.12e2)') "Prec_test_lhs:",prec_test_lhs, &

   "Prec_test_rhs:", prec_test_rhs

 stop 0        ! Stop execution of the program            

end program test_prec_reals



Further reading

• Readings:
• What every computer scientist should know about floating-point arithmetic

• Wikipedia page on the Floating Point

• Wikipedia page on the Kahan Summation Algorithm

https://dl.acm.org/doi/10.1145/103162.103163
https://dl.acm.org/doi/10.1145/103162.103163
https://dl.acm.org/doi/10.1145/103162.103163
https://dl.acm.org/doi/10.1145/103162.103163
https://en.wikipedia.org/wiki/Floating-point_arithmetic
https://en.wikipedia.org/wiki/Floating-point_arithmetic
https://en.wikipedia.org/wiki/Kahan_summation_algorithm
https://en.wikipedia.org/wiki/Kahan_summation_algorithm
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