
PHY 604: Computational
Methods in Physics and

Astrophysics II

Cyrus Dreyer

cyrus.dreyer@stonybrook.edu

Fall 2025

My research interests: Computational condensed matter physics

https://www.simonsfoundation.org/flatiron/

https://you.stonybrook.edu/cdreyer/

Goals of the course:
• Learn how to solve problems in physics computationally

• Understand the limitations of numerical methods

• Have the ability to interpret numerical results presented in the
literature

• Have exposure to computational tools

• Understand basic idea behind algorithms for performing common
computational tasks

Technical points about the class:
Programming Languages
• The assignments will involve writing computer programs

• You may use the programming language of your choice.* I would
prefer:

• Fortran

• C++

• Matlab

• Python (recommended)

• * In general, and especially if your language is not on the list, you
should provide some help for how to compile (if necessary) and run
your code

• Examples will be given mostly in python

Technical points about the class:
Topics covered
• Basics of computation and programming constructions

• Good programming practices

• Numerical differentiation and integration

• Interpolation and root finding

• Ordinary differential equations

• Linear algebra

• Fast Fourier transforms

• Fitting

• Partial differential equations

• Monte Carlo techniques

• Genetic algorithms

• Parallel computing

• Machine learning

Technical points about the class:
Class location

• Vote: Move the class to Physics building (likely B131)

Technical points about the class:
Assignments
• Coding homework will be assigned roughly every two weeks

• Homeworks will be 50% of the final grade
• Will involve code and written analysis
• Recommendation (not required): Use Jupyter notebooks

• Office hours: By appointment
• Please feel free to come to me for help!

• There will be a final project at the end of the semester
• Solve a physics problem computationally
• Write up a short report, and present to the class
• Final project is 50% of the final grade

Technical points about the class: Textbooks
• No textbook is required for this course

• Some recommended texts for further reading:

Computational Physics, by Mark
Newman
• Generally good coverage on

most of the topics we’ll
discuss

• Lots of physics examples
• Inexpensive
• Main recommended book

An Introduction to Computational
Physics, by Tao Pang
• Also good coverage of the topics

(up to PDEs)
• Lots of physics examples
• Inexpensive

Numerical Methods for Physics by
Alejandro Garcia
• Broad coverage
• More PDE stuff than Pang

Effective Computation in Physics
by Scopatz & Huff
• Introduces linux/unix shell
• Covers programming practices
• Introduces parallel

programming

Why computation?

• Computation allows us to go beyond analytically solvable problems

• Computers allow us to perform repetitive tasks efficiently

• Computers allow us to generate and analyze large amounts of data

“Computational science now constitutes what many call the third pillar of the
scientific enterprise, a peer alongside theory and physical experimentation.”

 —President's information technology advisory committee (2005)

The two roles of computational in physics research

• Calculation: Using
computers to solve
well-defined
problems

• Simulation: Use the
computer to perform
computational
experiments

Computational science is driven by
more powerful computers

Computational science is driven by
better methods/algorithms

Computational science is driven by
better methods/algorithms

D
iff

ic
u

lt
y

Number of electrons (n)

Exact
solution

+

+

+

+
- - -

- -

-

-
- - -
-

-
-

- -

-

50

Computational science is driven by
better methods/algorithms

D
if

fi
cu

lt
y

Number of electrons (n)

Exact
solution

Density
functional
theory

~50

Quantum
Monte Carlo

~1000

~100

Goals for (the rest of) this lecture

• Representing numbers on the computer
• Types

• Finite precision of floating points

• Comparing real numbers

Information in computer programs
categorized by “Type”

C++ Type Fortran Equivalent Description Example

short (also called short int) integer(4) Positive or negative number with no
decimal places.

56478, 3, -278

int integer

long (also called long int) integer(8)

float real Positive or negative number with
decimal places.

3.0, 1.67e10, -3.2234e-20

double real(8)

long double real(16)

char character(1) Single or multiple letters, numbers,
symbols with no special interpretation

a, abj3a, gh_&w

string (string type implemented
as a container in C++ standard
library)

character(len=*) (as of Fortran
2008 standard)

bool logical True or False .True., False

complex (complex type
implemented as a Template class in
C++ standard library)

complex Complex numbers 3.0+5.6i

All information in a computer stored as bits

• Basic unit of information in a computer is a bit: 0 or 1
• 8 bits = 1 byte

• All types must be converted into some number of bytes

• Finite storage limits, e.g., the size or precision of a number

Binary data representation
• “Human” representation: Base ten (decimal)

• Each digit multiplies a power of 10

• “Computer” representation: Base two (binary)
• Each digit multiplies a power of 2:

13710 = 1x102 + 3x101 + 7x100

102 = 100’s place

101 = 10’s place

100 = 1’s place

22 = 4’s place

21 = 2’s place

20 = 1’s place

1012 =1x22 + 0x21 + 1x20

= 510 (in base 10 representation)

The amount of memory allocated to an integer
determines largest number that can be stored
• E.g., 1 byte:

• 2-byte:
• This can store 215-1 distinct values: -32,768 to 32,767 (signed)
• Or it can store 216 values: 0 to 65,535 (unsigned)

• Standard in many languages is 4-bytes
• This can store 231-1 distinct values: -2,147,483,648 to 2,147,483,647 (signed)

• C/C++: int (usually) or int32_t
• Fortran: integer or integer(4)

• Or it can store 232 distinct values : 0 to 4,294,967,295 (unsigned)
• C/C++: uint or uint32_t
• Fortran (as of 95): unsigned

• For very big integers, 8-byte allows for 264

• Fotran: integer(8)
• C++: long

0 1 1 1 1 1 1 1

Sign bit; 0 if positive integer
 1 if negative integer

= 1x26 + 1x25 + 1x24 + 1x23 + 1x22 + 1x21 + 1x20 = 12710

Overflow: Trying to put more information in a
type than will fit
• What happens when you try to store an integer that too large for the

memory allocated?
• Depends on the language!

Overflow: Trying to put more information in a
type than will fit
• What happens when you try to store an integer that too large for the

memory allocated?
• Depends on the language!

• Fortran: Just gives you the wrong result

Overflow: Trying to put more information in a
type than will fit
• What happens when you try to store an integer that too large for the

memory allocated?
• Depends on the language!

• Fortran: Just gives you the wrong result

• Python: Allows the size of the integer to scale with the size of the
number

Another aspect of integers to keep in mind:
Integer division
• Multiplication of integers results in an integer; addition/subtraction of

integers result in an integer; division of integers does not always
result in an integer!!

• What happens if we divide two integers like: 1/2?

Another aspect of integers to keep in mind:
Integer division
• Multiplication of integers results in an integer; addition/subtraction of

integers result in an integer; division of integers does not always
result in an integer!

• What happens if we divide two integers like: 1/2?
• In some codes, 1/2 gives 0, in others it converts to real and give 0.5

• Common source of bugs!!

Integers versus real/floating-point:
Mind the decimal place
• Keep in mind that in many languages, 2 and 2.0 (or 2.) are

interpreted differently
• 2 is taken to be an integer
• 2. or 2.0 is taken to be real

• This can be important in a variety of contexts:
• Integers are stored exactly, floats are approximate
• Integer and floating-point division are different
• Exponentiating negative numbers can be problematic (-3.5)**(2)is safer

than (-3.5)**(2.0)
• Integers must be used for, e.g., array indices

Real/Floating point numbers are more
complicated
• Infinite real numbers on the number line need to be represented by a finite

number of bits

• Finite memory results in limited size and precision of floating point numbers
• Not all real numbers (even simple ones) can be stored in a finite number of digits in a base-2

representation
• Example: 1/10=0.110 = 0.0001100110011...2 does not have a finite representation in base 2

just as 1/3=0.333333...10 has no finite representation in base 10

• This means that even simple floating point numbers are often approximated with
some small error

• This means that floating point arithmetic is not exact! (on all computers and programming
languages)

• Errors can compound if not treated carefully!

Real (a.k.a. floating point) data
• IEEE 754 mantissa-exponent form:

• Value = mantissa x 2 exponent

• Single precision:
• Sign: 1 bit; exponent: 8 bits; significand: 24 bits (23 stored) = 32 bits
• Range: 27-1 in exponent (because of sign) = 2127 multiplier ~ 1038

• Decimal precision: ~6 significant digits

• Double precision:
• Sign: 1 bit; exponent: 11 bits; significand: 53 bits (52 stored) = 64 bits
• Range: 210-1 in exponent = 21023 multiplier ~ 10308

• Decimal precision: ~15 significant digits

mmmmmmmmmmmmmmmmmmmmmmmmeeeeeeee

24 bit mantissa 8 bit exponent

Finite precision of floating points

• This means that most real numbers do not have an exact
representation on a computer.

• Spacing between numbers varies with the size of numbers

• Relative spacing is constant

Overflows/underflows with reals

• Overflows and underflows can still occur when you go outside the
representable range.

• The floating-point standard will signal these (and compilers can catch them)

• Some special numbers:
• NaN = 0/0 or
• Inf is for overflows, like 1/0
• Both of these allow the program to continue, and both can be trapped (and dealt

with)

• -0 is a valid number, and -0 = 0 in comparison

• Floating point is governed by an IEEE standard
• Ensures all machines do the same thing
• Aggressive compiler optimizations can break the standard

A result of finite precision: Need to be careful
when comparing floats/reals
• Floating point numbers involve rounding and imprecision, which propagate

in different ways under different operations

• Mathematically analogous expressions may yield slightly (or significantly as
we will see!) different results

• In principle, this can be accounted for since floating point operations follow
specific rules

• see reading “What Every Computer Scientist Should Know About Floating-Point
Arithmetic,” by David Goldberg

• In practice, it best to do an “epsilon check”

Epsilon check for comparing floats

• Take two real numbers a and b

• We take a==b if abs(a-b) < epsilon

• Have to be very careful with this!!! We should think about:
• The choice of epsilon based on the precision we require/expect for a and
b

• The choice of epsilon based on the magnitude of a and b

• What will happen in special cases (0, NaN, inf)

• …

OTB: Round-off error example
• Imagine that we can only keep track of 4 significant digits

• Compute

• Take x = 1984. Keeping only 4 digits each step of the way:

• We've lost a lot of precision

• Instead, consider:

• Then

Truncation errors are different from roundoff

• Translating continuous mathematical expressions into discrete forms
introduces truncation error

• For example:

• Error:

• Or vs.

Floating point arithmetic not associative

• Adding lots of numbers together can compound round-off error

• One solution: sort and add starting with the smallest numbers

• Kahan summation (see reading list)
• Algorithm for adding sequence of numbers while minimizing roundoff

accumulation

• Keeps a separate variable that accumulates small errors

• Requires that the compiler obey parenthesis

Floating point arithmetic not associative:

! Purpose: Test the precision of reals

! Author: Cyrus Dreyer

! Date: 2/4/2019

program test_prec_reals

 implicit none ! Turn off implicit typing

 ! Variable dictionary

 real :: factor1 ! Variable for factor 1

 real :: factor2 ! Variable for factor 2

 real :: prec_test_lhs ! Variable for result

 real :: prec_test_rhs ! Variable for result

 factor1 = 1.0 ! Assign a value to factor1

 factor2 = 1.0d-9 ! Assign a value to factor2

 prec_test_lhs = (factor1-factor1) + factor2 ! LHS of inequality on slide

 prec_test_rhs = factor1 + (-factor1 + factor2) ! RHS of inequality on slide

 ! Output

 write(*,'(a20,e20.12e2,a20,e20.12e2)') "Prec_test_lhs:",prec_test_lhs, &

 "Prec_test_rhs:", prec_test_rhs

 stop 0 ! Stop execution of the program

end program test_prec_reals

Further reading

• Readings:
• What every computer scientist should know about floating-point arithmetic

• Wikipedia page on the Floating Point

• Wikipedia page on the Kahan Summation Algorithm

https://dl.acm.org/doi/10.1145/103162.103163
https://dl.acm.org/doi/10.1145/103162.103163
https://dl.acm.org/doi/10.1145/103162.103163
https://dl.acm.org/doi/10.1145/103162.103163
https://en.wikipedia.org/wiki/Floating-point_arithmetic
https://en.wikipedia.org/wiki/Floating-point_arithmetic
https://en.wikipedia.org/wiki/Kahan_summation_algorithm
https://en.wikipedia.org/wiki/Kahan_summation_algorithm

	Slide 1: PHY 604: Computational Methods in Physics and Astrophysics II
	Slide 2: My research interests: Computational condensed matter physics
	Slide 3: Goals of the course:
	Slide 4: Technical points about the class: Programming Languages
	Slide 5: Technical points about the class: Topics covered
	Slide 6: Technical points about the class: Class location
	Slide 7: Technical points about the class: Assignments
	Slide 8: Technical points about the class: Textbooks
	Slide 9: Why computation?
	Slide 10: The two roles of computational in physics research
	Slide 11: Computational science is driven by more powerful computers
	Slide 12: Computational science is driven by better methods/algorithms
	Slide 13: Computational science is driven by better methods/algorithms
	Slide 14: Computational science is driven by better methods/algorithms
	Slide 15: Goals for (the rest of) this lecture
	Slide 16: Information in computer programs categorized by “Type”
	Slide 17: All information in a computer stored as bits
	Slide 18: Binary data representation
	Slide 19: The amount of memory allocated to an integer determines largest number that can be stored
	Slide 20: Overflow: Trying to put more information in a type than will fit
	Slide 21: Overflow: Trying to put more information in a type than will fit
	Slide 22: Overflow: Trying to put more information in a type than will fit
	Slide 23: Another aspect of integers to keep in mind: Integer division
	Slide 24: Another aspect of integers to keep in mind: Integer division
	Slide 25: Integers versus real/floating-point: Mind the decimal place
	Slide 26: Real/Floating point numbers are more complicated
	Slide 27: Real (a.k.a. floating point) data
	Slide 28: Finite precision of floating points
	Slide 29: Overflows/underflows with reals
	Slide 30: A result of finite precision: Need to be careful when comparing floats/reals
	Slide 31: Epsilon check for comparing floats
	Slide 32: OTB: Round-off error example
	Slide 33: Truncation errors are different from roundoff
	Slide 34: Floating point arithmetic not associative
	Slide 35: Floating point arithmetic not associative:
	Slide 36: Further reading

