PHY 604: Computational
Methods in Physics and
Astrophysics ||

Cyrus Dreyer
cyrus.dreyer@stonybrook.edu

Fall 2025

My research interests: Computational condensed matter physics

Q\\\ ™~ FLATIRON

Stony Brook \
University

Center for Computational
Quantum Physics

https://www.simonsfoundation.org/flatiron/

Modern first-principles Material and device properties

Materials physics calculations (C) Properties of polar heterostructures (Ijmp.act of C:efeCtS on
> evice performance
(a) Berry—phase theg)ry of polarization (b) Carrier capture Defect structure and S, -
> {:‘Eﬁc S dr(uf)a/: rates properties . .& .
Nonradiative transitions D.efec(;s " o g ju [-
semiconductors }g*&
e

Lattice dynamics
-E (k)] | v,k)=P.AVs

Electrical polarization

e
[
Lt

Electron-phonon
coupling

_‘—‘(\

\‘// 4

~ rl
[

7~ ™
Z ~ -

Experimental signatures

(d) Photoluminescence spectra Temperature dependent
activation energies

Ll g

https://you.stonybrook.edu/cdreyer/

Goals of the course:

* Learn how to solve problems in physics computationally
* Understand the limitations of numerical methods

* Have the ability to interpret numerical results presented in the
literature

* Have exposure to computational tools

* Understand basic idea behind algorithms for performing common
computational tasks

Technical points about the class:
Programming Languages

* The assignments will involve writing computer programs

* You may use the programming language of your choice.* | would
prefer:

* Fortran

e C++

* Matlab

* Python (recommended)

* * |n general, and especially if your language is not on the list, you
should provide some help for how to compile (if necessary) and run
your code

* Examples will be given mostly in python

‘echnical points about the class:
‘opics covered

Basics of computation and programming constructions
Good programming practices

Numerical differentiation and integration
Interpolation and root finding

Ordinary differential equations

Linear algebra

Fast Fourier transforms

Fitting

Partial differential equations

Monte Carlo techniques

Genetic algorithms

Parallel computing

Machine learning

Technical points about the class:
Class location

* Vote: Move the class to Physics building (likely B131)

Technical points about the class:
Assignments

* Coding homework will be assigned roughly every two weeks
 Homeworks will be 50% of the final grade
* Will involve code and written analysis
« Recommendation (not required): Use Jupyter notebooks

e Office hours: By appointment
* Please feel free to come to me for help!

* There will be a final project at the end of the semester
» Solve a physics problem computationally
* Write up a short report, and present to the class
* Final project is 50% of the final grade

echnical points about the class:

* No textbook is required for this course
 Some recommended texts for further reading:

COMPUTATIONAL
PHYSICS

Revised and expanded

Mark Newman

Computational Physics, by Mark

Newman

* Generally good coverage on
most of the topics we’ll
discuss

* Lots of physics examples

* Inexpensive

* Main recommended book

|

An Introduction to
Computational
Physics

SECOND EDITION

TAO PANG

An Introduction to Computational

Physics, by Tao Pang

* Also good coverage of the topics
(up to PDEs)

* Lots of physics examples

* Inexpensive

|

| L

extbooks

NUMERICAL
METHODS
H]R PRYSICS

I EOITION

= MEANORD L GARCIA

Numerical Methods for Physics by
Alejandro Garcia

* Broad coverage

* More PDE stuff than Pang

Y OREILLY"

Effective
Computatlon

Anthony Scopatz &
Kathryn D.Huff

Effective Computation in Physics
by Scopatz & Huff
* Introduces linux/unix shell

* Introduces parallel
programming

| L

* Covers programming practices

Why computation?

“Computational science now constitutes what many call the third pillar of the
scientific enterprise, a peer alongside theory and physical experimentation.”

—President's information technology advisory committee (2005)

 Computation allows us to go beyond analytically solvable problems
* Computers allow us to perform repetitive tasks efficiently

 Computers allow us to generate and analyze large amounts of data

research

omputational science is driven by
more powerful computers

Moore’s Law: The number of transistors on microchips doubles every two years

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years.

This advancement is important for other aspects of technological progress in computing - such as processing speed or the price of computers.

Transistor count
50,000,000,000

10,000,000,000
5,000,000,000

1,000,000,000
500,000,000

100,000,000
50,000,000

10,000,000
5,000,000

1,000,000 °
500,000

100,000
50,000

10,000 e g
5000 & roager $

1,000

Q AN X Ao A O A X b B O

W AN GV VR R DD Q

S A R A

Data source: Wikipedia (wikiped

OurWorldinData.org - Research

viki/Transistor_count)

VvV ox o O O 12 >
av o* o° o°® & o ¢ S
I R S S S S S S S
i

Year in which the microchip was first introduced

ta to make progre gainst the world'’s

&

* o O ¥ X 2o &
QQ '\,'\,'\’\,q/g'\,

v

CC-BY by the authors Hannah Ritchi

O
N

Rank

System

El Capitan - HPE Cray EX255a, AMD dth Gen EPYC 24C
1.8GHz, AMD Instinct MI300A, Slingshat-11, TOSS, HPE
DOE/MNSASLLNL

United States

Frontier - HPE Cray EX235a, AMD Optimized 3rd
Generation EPYC &64C 2GHz, AMD Instinct MI250X,
Slingshot-11, HPE Cray 05, HPE

DOE/SC/0ak Ridge Mational Laboratory

United States

Aurora - HPE Cray EX - Intel Exascale Compute Blade,
Xeon CPU Max 9470 52C 2.4GHz, Intel Data Center GPU
Max, Slingshot-11, Intel

DOE/SC/Argonne Maticnal Laboratory

United States

JUPITER Booster - BullSequana XH3000, GH Superchip
72C 3GHz, NVIDIA GH200 Superchip, Quad-Rail NVIDIA
nfiniBand NDR200, RedHat Enterprise Linux, EVIDEN
EuroHPC/FZ)J

Germany

Eagle - Microsoft NDv5, Xeon Platinum B480C 48C 2GHz,

MNYIDIA H100, NVIDIA Infiniband NOR, Microsoft Azure
Microsoft Azure
United States

Cores

11,039,416

7.066,176

7,264,128

4,801,344

2,073,600

Rmax
[PFlop/s)

1,742.00

1,353.00

1,012.00

793.40

561.20

Rpeak
[PFlop/s)

2,746.38

2,055.72

1,980.01

230.00

846.84

Power
(kw)

29,581

24,607

38,698

13,088

H=—

Computational science is driven by
better methods/algorithms

h 7 e’ 1 e? h?
2me ;Vf—; r; — Ry +§; r; — 1 —EI:ZMI

Computational science is driven by
better methods/algorithms

2 1 e’ R 1 717
+ = — Vi+ =
i—R]| 2;|I‘7;—I'j| 2132MI 1 QZ|R1_RJ|

Exact
solution

Computational science is driven by
better methods/algorithms

~ h Z[€2 1 62 hz
H = — V2 — - _
Qmez ' Z|ri—R1|+QZ|ri—rj| ZZM[
1 1,1 1#£] 1
Exact ~50)

’solution

Density ~1000

functional
theory

,f?" Difficulty

Quantum ~100
Monte Carlo

Number of electrons (n)

Goals for (the rest of) this lecture

* Representing numbers on the computer
* Types
* Finite precision of floating points
e Comparing real numbers

Information in computer programs

categorized by “Type”

C++ Type Fortran Equivalent Description Example

short (also called short int) integer (4) Positive or negative number with no 56478, 3, -278
decimal places.

int integer

long (also called long int) integer(8)

float real Positive or negative number with 3.0, 1.67el10, =-3.2234e-20
decimal places.

double real (8)

long double real (16)
Single or multiple letters, numbers, a, abj3a, gh &w
symbols with no special interpretation

bool logical True or False .True., False

complex (complex type complex Complex numbers 3.0+5.61

implemented as a Template class in
C++ standard library)

All information in a computer stored as bits

e Basic unit of information in a computer is a bit: 0 or 1
e 8 bits =1 byte

* All types must be converted into some number of bytes

* Finite storage limits, e.g., the size or precision of a number

Binary data representation

* “Human” representation: Base ten (decimal)
* Each digit multiplies a power of 10

10° = 1’'s place]

10" =10’s place]
102 = 100’s place ‘7 ;

137, = 1x10% + 3x10% + 7x10°

e “Computer” representation: Base two (binary)
e Each digit multiplies a power of 2:

20=1s place T
2'=2splace T
22 = 4’s place ‘7 ;

101, =1x22 + Ox2! + 1x2°
=5, (in base 10 representation)

The amount of memory allocated to an integer

determines largest number that can be stored
* Eg,lbyter Lol 11| 11]1]1]1]=1x25+1x2%+1x2%+ 1x23 + 1x22 + 1x2' + 1x20 = 127,

L

Sign bit; 0 if positive integer
1 if negative integer

e 2-byte:
* This can store 21°-1 distinct values: -32,768 to 32,767 (signed)
e Or it can store 2'®values: 0 to 65,535 (unsigned)

e Standard in many languages is 4-bytes
* This can store 231-1 distinct values: -2,147,483,648 to 2,147,483,647 (signed)
* C/C++:int (usually) orint32 t
* Fortran: integer or integer(4)
* Or it can store 232 distinct values : 0to 4,294,967,295 (unsigned)
* C/C++: uint or uint32_t
* Fortran (as of 95): unsigned

* For very big integers, 8-byte allows for 264

* Fotran: integer(8)
* C++:long

Overflow: Trying to put more information in a
type than will fit

* What happens when you try to store an integer that too large for the
memory allocated?
 Depends on the language!

Overflow: Trying to put more information in a
type than will fit

* What happens when you try to store an integer that too large for the
memory allocated?
 Depends on the language!

e Fortran: Just gives you the wrong result

Overflow: Trying to put more information in a
type than will fit

* What happens when you try to store an integer that too large for the
memory allocated?
 Depends on the language!

e Fortran: Just gives you the wrong result

* Python: Allows the size of the integer to scale with the size of the
number

Another aspect of integers to keep in mind:
Integer division

* Multiplication of integers results in an integer; addition/subtraction of
integers result in an integer; division of integers does not always
result in an integer!!

 What happens if we divide two integers like: 1 /27

Another aspect of integers to keep in mind:
Integer division

* Multiplication of integers results in an integer; addition/subtraction of
integers result in an integer; division of integers does not always
result in an integer!

 What happens if we divide two integers like: 1 /27

* In some codes, 1/2 gives O, in others it converts to real and give 0.5
e Common source of bugs!!

ntegers versus real/floating-point:
Mind the decimal place

* Keep in mind that in many languages, 2 and 2.0 (or 2.) are
interpreted differently

e 2 is taken to be an integer
e 2.0r 2.0 istaken to be real

* This can be important in a variety of contexts:
* Integers are stored exactly, floats are approximate
* Integer and floating-point division are different

* Exponentiating negative numbers can be problematic (-3.5) ** (2) is safer
than (=3.5)**(2.0)

* Integers must be used for, e.g., array indices

Real/Floating point numbers are more
complicated

* Infinite real numbers on the number line need to be represented by a finite
number of bits

* Finite memory results in limited size and precision of floating point numbers
® Not all real numbers (even simple ones) can be stored in a finite number of digits in a base-2

representation
* Example: 1/10=0.1,,=0.0001100110011..., does not have a finite representation in base 2

just as 1/3=0.333333...,, has no finite representation in base 10

* This means that even simple floating point numbers are often approximated with

some small error
* This means that floating point arithmetic is not exact! (on all computers and programming

languages)

e Errors can compound if not treated carefully!

Real (a.k.a. floating point) data

* |EEE 754 mantissa-exponent form:

mmmmmmmmmmmmmmmmmmmmmmmmeeeeeeee
N -/
g e

24 bit mantissa | 8 bit exponent

e Value = mantissa x 2 exponent

* Single precision:
» Sign: 1 bit; exponent: 8 bits; significand: 24 bits (23 stored) = 32 bits
e Range: 27-1 in exponent (because of sign) = 22/ multiplier ~ 1038
* Decimal precision: ~6 significant digits

* Double precision:
» Sign: 1 bit; exponent: 11 bits; significand: 53 bits (52 stored) = 64 bits
e Range: 210-1 in exponent = 21923 multiplier ~ 1038
e Decimal precision: ~15 significant digits

Finite precision of floating points

* This means that most real numbers do not have an exact
representation ond computer.
* Spacing between numbers varies with the size of numbers
* Relative spacing is constant

, [true number — computer number|
relative roundoft error = < €
[true number|

Overflows/underflows with reals

* Overflows and underflows can still occur when you go outside the
representable range.
* The floating-point standard will signal these (and compilers can catch them)

e Some special numbers:
e NaN=0/0or v—1
e Inf is for overflows, like 1/0

* Both of these allow the program to continue, and both can be trapped (and dealt
with)

 —0 isavalid number,and -0 = 0 incomparison

* Floating point is governed by an |[EEE standard

* Ensures all machines do the same thing
* Aggressive compiler optimizations can break the standard

A result of finite precision: Need to be careful
when comparing floats/reals

* Floating point numbers involve rounding and imprecision, which propagate
in different ways under different operations

 Mathematically analogous expressions may vyield slightly (or significantly as
we will seel) different results

* In principle, this can be accounted for since floating point operations follow
specific rules

* see reading “What Every Computer Scientist Should Know About Floating-Point
Arithmetic,” by David Goldberg

* |n practice, it best to do an “epsilon check”

Epsilon check for comparing floats

e Take two real numbers a and b

* We take a==b ifabs(a-b) < epsilon

* Have to be very careful with this!!! We should think about:

* The choice of epsilon based on the precision we require/expect for a and
b

* The choice of epsilon based on the magnitude of a and b
 What will happen in special cases (0, NaN, inf)

OTB: Round-off error example

* Imagine that we can only keep track of 4 significant digits
e Compute VI +1—+/x

* Take x = 1984. Keeping only 4 digits each step of the way:

v +1—+/z=44.55 —44.54 = 0.01

* We've lost a lot of precision

* Instead, consider:

B vr+1+y/x\ 1
Votl=ve=(Va+ _ﬁ)(m+ﬁ)_\/a:—+l+\/5
* Then
V1985 — v 1984 = ! ! = 0.01122

V1985 + /1984 44.55 + 44.54

Truncation errors are different from roundoft

* Translating continuous mathematical expressions into discrete forms
introduces truncation error

) n
X __ | L | QZ | ZE—
* For example: e ~ S(z) =1 A T + n!
p|
* Error: (n+ 1)1 max{l, e}

cor (o) — tim TEER) @)

h—0 h

Floating point arithmetic not associative

* Adding lots of numbers together can compound round-off error
* One solution: sort and add starting with the smallest numbers

e Kahan summation (see reading list)

* Algorithm for adding sequence of numbers while minimizing roundoff
accumulation

e Keeps a separate variable that accumulates small errors
* Requires that the compiler obey parenthesis

Floating point arithmetic not associative:

(1.0—-1.0) + 1.0 = 1.0+ (=1.0 + 1.079)

! Purpose: Test the precision of reals
! Author: Cyrus Dreyer
! Date: 2/4/2019
program test prec reals
implicit none ! Turn off implicit typing
! Variable dictionary
real :: factorl ! Variable for factor 1
real :: factor? ! Variable for factor 2
real :: prec test lhs ! Variable for result
real :: prec test rhs ! Variable for result
factorl = 1.0 ! Assign a value to factorl
factor2 = 1.0d-9 ! Assign a value to factor?
prec test lhs = (factorl-factorl) + factor2 ! LHS of Inequality on slide
prec test rhs = factorl + (-factorl + factor2) ! RHS of inequality on slide
! Output
write(*, "' (a20,e20.12e2,a20,e20.12e2)"') "Prec test lhs:",prec test lhs, &
"Prec test rhs:", prec test rhs
stop O ! Stop execution of the program
end program test prec reals

Further reading

* Readings:
 What every computer scientist should know about floating-point arithmetic
* Wikipedia page on the Floating Point
* Wikipedia page on the Kahan Summation Algorithm

https://dl.acm.org/doi/10.1145/103162.103163
https://dl.acm.org/doi/10.1145/103162.103163
https://dl.acm.org/doi/10.1145/103162.103163
https://dl.acm.org/doi/10.1145/103162.103163
https://en.wikipedia.org/wiki/Floating-point_arithmetic
https://en.wikipedia.org/wiki/Floating-point_arithmetic
https://en.wikipedia.org/wiki/Kahan_summation_algorithm
https://en.wikipedia.org/wiki/Kahan_summation_algorithm

	Slide 1: PHY 604: Computational Methods in Physics and Astrophysics II
	Slide 2: My research interests: Computational condensed matter physics
	Slide 3: Goals of the course:
	Slide 4: Technical points about the class: Programming Languages
	Slide 5: Technical points about the class: Topics covered
	Slide 6: Technical points about the class: Class location
	Slide 7: Technical points about the class: Assignments
	Slide 8: Technical points about the class: Textbooks
	Slide 9: Why computation?
	Slide 10: The two roles of computational in physics research
	Slide 11: Computational science is driven by more powerful computers
	Slide 12: Computational science is driven by better methods/algorithms
	Slide 13: Computational science is driven by better methods/algorithms
	Slide 14: Computational science is driven by better methods/algorithms
	Slide 15: Goals for (the rest of) this lecture
	Slide 16: Information in computer programs categorized by “Type”
	Slide 17: All information in a computer stored as bits
	Slide 18: Binary data representation
	Slide 19: The amount of memory allocated to an integer determines largest number that can be stored
	Slide 20: Overflow: Trying to put more information in a type than will fit
	Slide 21: Overflow: Trying to put more information in a type than will fit
	Slide 22: Overflow: Trying to put more information in a type than will fit
	Slide 23: Another aspect of integers to keep in mind: Integer division
	Slide 24: Another aspect of integers to keep in mind: Integer division
	Slide 25: Integers versus real/floating-point: Mind the decimal place
	Slide 26: Real/Floating point numbers are more complicated
	Slide 27: Real (a.k.a. floating point) data
	Slide 28: Finite precision of floating points
	Slide 29: Overflows/underflows with reals
	Slide 30: A result of finite precision: Need to be careful when comparing floats/reals
	Slide 31: Epsilon check for comparing floats
	Slide 32: OTB: Round-off error example
	Slide 33: Truncation errors are different from roundoff
	Slide 34: Floating point arithmetic not associative
	Slide 35: Floating point arithmetic not associative:
	Slide 36: Further reading

