PHY604 Lecture 10

September 25, 2025

Today’s lecture: Linear Algebra

e Gaussian elimination
* LU decomposition

e |lterative methods

By hand: Forward elimination

* 1. Eliminate x, from second and third equation. Add first equation to
the second and subtract twice the first equation from the third:

r1+xo +x3 =0

3ro+x3 =9
—2332—5133 = —7

* 2. Eliminate x, from third equation. Multiply the second equation by
(-2/3) and subtract it from the third

T1+To T3 — 0

35132 TIX3 — 9

By hand: Back substitution

T1+To T3 = 0

3re +x3 =29

1
— x5

3

—1

* 3. Solve for x5 = 3.
* 4, Substitute x5 into the second equation to get x, = 2
* 5. Substitute x; and x, into the first equation to get x; =1

* In general, for N variables and N equations:
* Use forward elimination make the last equation provide the solution for x,
* Back substitute from the Nth equation to the first
* Scales like N3 (can do better for “sparse” equations)

Pitfalls of Gaussian substitution: Roundoff errors

e Consider a different example (also from Garcia):
ex1+xrotrs =5
L1 TI92 =3

r1+ +IT3 = 4

* First, lets take ¢ — 0 and solve:

Subtract second from third: Add first to third: Back substitute:
To+Ts =95 To+x3 = O Ty =
T1+T2 =3 T1+To =3 rT1 =
—xaotwy =1 203 = 6 T3 =

Roundoft error example: Now solve with &

* Forward elimination starts by multiplying first equation by 1/cand
subtracting it from second and third:
€T + To +x3 =95
(1—1/€)xzs —(1/€)xs =3 —5/¢
—(1/e)xes +(1 —1/€)x3 =4 —5/¢

* Clearly have an issue if ¢is near zero, e.g., if C —1/e — —1/e for C
order unity:

ET1 + 9 —I—ZIZ‘3 =9

~ (1 ~(1fe)zs = =5/ e
—(1/e)xes —(1/€)x3 = —5/€

equations, three
unknowns

Simple fix: Pivoting

* Interchange the order of the equations before performing the forward
elimination r1+To — 3

€x1t+xot+xry =95

L1 ry = 4
* Now the first step of forward elimination gives us:
T1+To =3
(1 —€)x1 +x3=05— 3¢
— XT3 — 1
* Now we round off:
T1+I9 =3
Same as when we
I1 X3 — 5

initially took ¢to 0.

Gaussian elimination with pivoting

* Partial-pivoting:
* Interchange of rows to move the one with the largest element in the current
column to the top
* (Full pivoting would allow for row and column swaps—more complicated)

e Scaled pivoting
* Consider largest element relative to all entries in its row
* Further reduces roundoff when elements vary in magnitude greatly

e Row echelon form: This is the form that the matrix is in after forward
elimination

Matrix determinants with Gaussian elimination

* Once we have done forward substitution and obtained a row echelon
matrix it is trivial to calculate the determinant:

N
det(A) = (_1)Npivot H Aggw—echelon
1=1

* Every time we pivoted in the forward substitution, we change the sign

Matrix inverse with Gaussian elimination
* \We can also use Gaussian elimination to fin the inverse of a matrix
 We would like to find AA1 =1

* We can use Gaussian elimination to solve: A x; = e,
* e;is a column of the identity:

0 0 ;
0 1 0 ‘

€1 =10, €2= 10|, €e3 = |1}|+---» N — 8
1

* X;is a column of the inverse:

A_lz[xl Xo X3 ... XN]

Singular matrix

* If a matrix has a vanishing determinant, then the system is not
solvable

« Common way for this to enter, one equation in the system is a linear
combination of some others

* Not always easy to detect from the start

Singular and close to singular matrices

* Condition number: Measures how close to singular we are
* How much x would change with a small change in b

cond(A) = [|A[| [[A™]]

* Requires defining a norm of A
e https://en.wikipedia.org/wiki/Matrix_norm
e See, e.g., numpy implementation:
e https://numpy.org/doc/stable/reference/generated/numpy.linalg.cond.html

HXexact __ ~calc ||

X
‘ ‘ Xexact ‘ ‘

* Rule of thumb: ~ cond(A) - gmachine

https://en.wikipedia.org/wiki/Matrix_norm
https://en.wikipedia.org/wiki/Matrix_norm
https://numpy.org/doc/stable/reference/generated/numpy.linalg.cond.html
https://numpy.org/doc/stable/reference/generated/numpy.linalg.cond.html

Tridiagonal and banded matrices

* We saw this type of matrix when solving for cubic spline coefficients:

/ A4Nx Ax
Ax 4Azx
Ax

Ax

)

A4Axr Az

Axr 4Ax Ax

Axr 4Azx /

[
P
P

p%—Q
7,
\pn—l

e Often come up in physical situations

)

/ Jo—2f1+ /2
J1—2f2+ f3

Jo—2f3+ J4

fn—S _ 2fT.L—2 + fn—l

* These types of matrices can be efficiently solved with Gaussian
elimination

)

\ fn—2 T 2fn—1 + fn /

Gaussian elimination for banded matrices

* Only need to do Gaussian elimination steps for m nonzero elements

below given row (m is less than the number of diagonal bands)

* Example:
2 1 0 O
3 4 -5 0| .
0O —4 3 5 ’
0 0 1 3)

1 0 0
25 —5 o\
—4 3 5

0 1 3

0 0
—5 0
5 5

3,‘

(2 1
0 2.5
0 0

\0 0

0
—9

Today’s lecture: Linear Algebra

* LU decomposition

e |lterative methods

I_U deCOm pOSItIOﬂ (Newman Ch. 6)

* Often happens that we would like to solve: Ax; = v, for the same
A but many v
* For example, our implementation for the inverse

* Wasteful to do Gaussian elimination over and over, we will always get the
same row echelon matrix, just v; will be different

* Instead, we should keep track of operations we did to v, and use them over
and over

e Consider a general 4 x 4 matrix:

 Let’s perform Gaussian elimination

aoo

LU decomposition: First GE step

* Write the first step of the GE as:

(1

—aio

0

aoo
0

0

0
0

/ oo aAo1
ajp a1l
az2p d21

\a:so a3i

a03\
a13
a23
as33

(1

\0

* Where the b’s are some linear combination of g coefficients

* The first matrix on the LHS is a lower triangular matrix we call:

Lo

1

a0

(1
—aio
—Aano

\—a:so

0

aoo
0

0

0
0
ao
0

0
0

o O
aoo/

LU decomposition: Second LU step

b
(b

o

0
1

—bay
—b31

0
0
b11
0

0y
0

0
b11 /

(1
0
0

\ 0
(bll

0
0

\ 0

bo1
b11

ba1
b31

bo2
b12
ba2
b32

0
1

—ba1
—b31

503\

b13

ba3
b33 /

0
0
b11
0

0')
0
0

b11)

1 ¢

I
0 0
\0 0

LU decomposition: Last two steps for 4x4 matrix

(622 0 0 0 \ /d33 0 0 O\
L, = L 0 C29 0 0 L. = L 0 d33 0 0
T |0 0 1 0" P T dw| 0 0 dyz O
\ 0 0 —c3 o) \0 0 0 1/

* SO, we can write:
L3L2L1LOA — L3L2L1L0V

» Afterwards, the equation is ready for back substitution

 Mathematically identical to Gaussian elimination, but we only have to
find Ly-L; once, and then we can operate on many v’s

Slightly different formulation of LU decomposition

* From the properties of upper triangular matrices (same holds for
lower):
* Product of two upper triangular matrices is an upper triangular matrix.
* Inverse of an upper triangular matrix is an upper triangular matrix

* Consider the lower-diagonal matrix L and the upper-diagonal matrix
U:
L=L;'L7'Ly'L;', U =LsL,L;LoA

* Then trivially: LU = A, so for AX = v,, we can write LUx =v

Expression for L

* We can confirm that for our 4 x 4 example,

apo 0 0 O 1 0 0 0
-1 aio 1 0 O -1 0 b11 0 O -1
LO - aso 0O 1 0}’ Ll |0 1721 1 0}’ L2 -
azp 0 0 1 0 b33 0 1

OO O =

S O = O

C22
C32

o O O =

SO = O

o= O O

o O O

Solving the equation with L and U

* Break into two steps:

e 1. Ly = v can be solved by back substitution:

e 2. Now solve Ux =y by back substitution:

0

X

0

l11
l21

I3 sz l33)

Uil
0

0

0
0

[22

/ Upoo U1 U2

Ui

U2
0

0
0
0

\W iﬁ?\
)

(io\

(50\
s

23/

(yo\
Y1

s/

Some comments about LU decomposition

* Most common method for solving simultaneous equations

* Decomposition needs to be done once, then only back substitution is
needed for different v

* In general, still may need to pivot
* Every time you swap rows, you have to do the sameto L
* Need to perform the same sequence of swaps on v

Today’s lecture:
More on Linear Algebra

e |lterative methods

Jacobi and Gauss-Seidel iterative methods

e Gaussian elimination is a direct method

* We can also use an iterative method
* Choose an initial guess and converge to better and better guesses
e E.g., Jacobi or Gauss Seidel, Newton methods
e Can be much more efficient for very large systems
e Often puts restrictions on the form of the matrix for guaranteed convergence

Jacobi iterative method

* Starting with a linear system: 41171+ a12Z2 + -+ + a1nZpn = b
a21%1 + A22%2 + * -+ + A2p Ty = b2

Ap1T1 + Ap2T2 + -+ AppTp = bn

* Pick initial guesses xX, solve equation i for ith unknown to get an improved guess:

k+1 1

k k k
7 = ———(a127y + a3z + -+ aix, — by)
a1
1
k41 k k k
x2+ = —— (@217 + ag3x5 + -+ + aspx, — b2)
a22
1
k41l k k k
r, T =———(an12] + ap2s + -+ apn_1%,_1 — by)

a”I’L’I’L

Jacobi iterative method

 We can write an element-wise formula for x:
k1 L | Kk
T, = — b; — g Qi T
" ji

* Or:
r x"*1=D7" (b - (A — D)x")

* Where D is a diagonal matrix constructed from the diagonal elements of A

e Convergence is guaranteed if matrix is diagonally dominant (but
works in other cases): N
ai >)]

j=1,j71

Multivariate Newton’s method

* We can generalize Newton’s method for equations with several
variables
* Can be used when we no longer have a linear system
* Cast the problem as one of root finding

« Consider the vector function: f(x) = [f1(x) f2(x) ... [fn(x)]

* Where the unknowns are: x = [xl To ... :EN}

* Revised guess from initial guess x{0: X1 = Xg — f(Xo)J_l(Xo)
* J'1is the inverse of the Jacobian matrix:

Jij(x) = a];;j()

* To avoid taking the inverse at each step, solve with Gaussian
substitution:
Jox" = —f(x"*)

Example: Lorenz model (cariasec. 4.3

* Lorenz system: d_x =o(y — x)
dit
dy
— =rr—y—xz
dt Y
dz
— =y — bz
at Y

* g, r, and b are positive constants
* |f we want steady-state, we can propagate with, e.g., 4t order RK
» Steady-state directly given by roots of Lorenz system:
o(y — x) -0 o 0
flx,y,z)=[re—y—22] =0 J=|r—2z -1 —x
xy — bz J r —b

_orenz model steady-state:
Newton versus 4t order RK

initial pos: (50,50,50) initial pos: (2,2,2) initial pos: (5,5,5)

- 40

- 30

= ==-Newton/s metho0

—— RK4 pfopagatjon
- 10

After class tasks

* Homework 2 due on Wednesday Oct. 1

* Readings:
* Newman Ch. 6
 GarciaCh. 4
* Pang Sec. 5.3

	Slide 1: PHY604 Lecture 10
	Slide 2: Today’s lecture: Linear Algebra
	Slide 3: By hand: Forward elimination
	Slide 4: By hand: Back substitution
	Slide 5: Pitfalls of Gaussian substitution: Roundoff errors
	Slide 6: Roundoff error example: Now solve with e
	Slide 7: Simple fix: Pivoting
	Slide 8: Gaussian elimination with pivoting
	Slide 9: Matrix determinants with Gaussian elimination
	Slide 10: Matrix inverse with Gaussian elimination
	Slide 11: Singular matrix
	Slide 12: Singular and close to singular matrices
	Slide 13: Tridiagonal and banded matrices
	Slide 14: Gaussian elimination for banded matrices
	Slide 15: Today’s lecture: Linear Algebra
	Slide 16: LU decomposition (Newman Ch. 6)
	Slide 17: LU decomposition: First GE step
	Slide 18: LU decomposition: Second LU step
	Slide 19: LU decomposition: Last two steps for 4x4 matrix
	Slide 20: Slightly different formulation of LU decomposition
	Slide 21: Expression for L
	Slide 22: Solving the equation with L and U
	Slide 23: Some comments about LU decomposition
	Slide 24: Today’s lecture: More on Linear Algebra
	Slide 25: Jacobi and Gauss-Seidel iterative methods
	Slide 26: Jacobi iterative method
	Slide 27: Jacobi iterative method
	Slide 28: Multivariate Newton’s method
	Slide 29: Example: Lorenz model (Garcia Sec. 4.3)
	Slide 30: Lorenz model steady-state: Newton versus 4th order RK
	Slide 31: After class tasks

