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Today’s lecture: Linear Algebra

• Gaussian elimination

• LU decomposition

• Iterative methods



By hand: Forward elimination
• 1. Eliminate x1 from second and third equation. Add first equation to 

the second and subtract twice the first equation  from the third:

• 2. Eliminate x2 from third equation. Multiply the second equation by 
(-2/3) and subtract it from the third 



By hand: Back substitution

• 3. Solve for x3 = 3. 

• 4. Substitute x3 into the second equation to get x2 = 2

• 5. Substitute x3 and x2 into the first equation to get x1 = 1

• In general, for N variables and N equations: 
• Use forward elimination make the last equation provide the solution for xN

• Back substitute from the Nth equation to the first

• Scales like N3 (can do better for “sparse” equations)



Pitfalls of Gaussian substitution: Roundoff errors 

• Consider a different example (also from Garcia):

• First, lets take and solve:
Subtract second from third: Add first to third: Back substitute:



Roundoff error example: Now solve with 
• Forward elimination starts by multiplying first equation by 1/ and 

subtracting it from second and third:

• Clearly have an issue if  is near zero, e.g., if for C 
order unity:

Cannot solve, 
now have two 
equations, three 
unknowns



Simple fix: Pivoting
• Interchange the order of the equations before performing the forward 

elimination

• Now the first step of forward elimination gives us:

• Now we round off:

Same as when we 

initially took  to 0.



Gaussian elimination with pivoting

• Partial-pivoting: 
• Interchange of rows to move the one with the largest element in the current 

column to the top

• (Full pivoting would allow for row and column swaps—more complicated)

• Scaled pivoting
• Consider largest element relative to all entries in its row

• Further reduces roundoff when elements vary in magnitude greatly

• Row echelon form: This is the form that the matrix is in after forward 
elimination



Matrix determinants with Gaussian elimination

• Once we have done forward substitution and obtained a row echelon 
matrix it is trivial to calculate the determinant:

• Every time we pivoted in the forward substitution, we change the sign



Matrix inverse with Gaussian elimination
• We can also use Gaussian elimination to fin the inverse of a matrix

• We would like to find AA-1 = I

• We can use Gaussian elimination to solve: A xi = ei

• ei is a column of the identity:

• xi is a column of the inverse:



Singular matrix

• If a matrix has a vanishing determinant, then the system is not 
solvable

• Common way for this to enter, one equation in the system is a linear 
combination of some others

• Not always easy to detect from the start



Singular and close to singular matrices

• Condition number: Measures how close to singular we are
• How much x would change with a small change in b

• Requires defining a norm of A
• https://en.wikipedia.org/wiki/Matrix_norm

• See, e.g., numpy implementation:
• https://numpy.org/doc/stable/reference/generated/numpy.linalg.cond.html

• Rule of thumb:

https://en.wikipedia.org/wiki/Matrix_norm
https://en.wikipedia.org/wiki/Matrix_norm
https://numpy.org/doc/stable/reference/generated/numpy.linalg.cond.html
https://numpy.org/doc/stable/reference/generated/numpy.linalg.cond.html


Tridiagonal and banded matrices
• We saw this type of matrix when solving for cubic spline coefficients:

• Often come up in physical situations

• These types of matrices can be efficiently solved with Gaussian 
elimination



Gaussian elimination for banded matrices 

• Only need to do Gaussian elimination steps for m nonzero elements 
below given row (m is less than the number of diagonal bands)

• Example:



Today’s lecture: Linear Algebra

• Gaussian elimination

• LU decomposition

• Iterative methods



LU decomposition (Newman Ch. 6)

• Often happens that we would like to solve:   for the same 
A but many v 
• For example, our implementation for the inverse

• Wasteful to do Gaussian elimination over and over, we will always get the 
same row echelon matrix, just vi will be different

• Instead, we should keep track of operations we did to v1 and use them over 
and over

• Consider a general 4 x 4 matrix:

• Let’s perform Gaussian elimination



LU decomposition: First GE step 
• Write the first step of the GE as:

• Where the b’s are some linear combination of a coefficients 

• The first matrix on the LHS is a lower triangular matrix we call:



LU decomposition: Second LU step



LU decomposition: Last two steps for 4x4 matrix

• So, we can write:

• Afterwards, the equation is ready for back substitution

• Mathematically identical to Gaussian elimination, but we only have to 
find L0-L3 once, and then we can operate on many v’s



Slightly different formulation of LU decomposition
• From the properties of upper triangular matrices (same holds for 

lower):
• Product of two upper triangular matrices is an upper triangular matrix. 

• Inverse of an upper triangular matrix is an upper triangular matrix

• Consider the lower-diagonal matrix L and the upper-diagonal matrix 
U:

• Then trivially: LU = A, so for Ax = v,, we can write LUx = v



Expression for L

• We can confirm that for our 4 x 4 example,

• Multiplying together we get 



Solving the equation with L and U
• Break into two steps:

• 1. Ly = v can be solved by back substitution:

• 2. Now solve Ux = y by back substitution:



Some comments about LU decomposition

• Most common method for solving simultaneous equations

• Decomposition needs to be done once, then only back substitution is 
needed for different v

• In general, still may need to pivot
• Every time you swap rows, you have to do the same to L

• Need to perform the same sequence of swaps on v



Today’s lecture: 
More on Linear Algebra

• Gaussian elimination

• LU decomposition

• Iterative methods



Jacobi and Gauss-Seidel iterative methods

• Gaussian elimination is a direct method

• We can also use an iterative method
• Choose an initial guess and converge to better and better guesses

• E.g., Jacobi or Gauss Seidel, Newton methods

• Can be much more efficient for very large systems

• Often puts restrictions on the form of the matrix for guaranteed convergence



Jacobi iterative method
• Starting with a linear system:

• Pick initial guesses xk, solve equation i for ith unknown to get an improved guess:



Jacobi iterative method
• We can write an element-wise formula for x:

• Or:

• Where D is a diagonal matrix constructed from the diagonal elements of A

• Convergence is guaranteed if matrix is diagonally dominant (but 
works in other cases):



Multivariate Newton’s method
• We can generalize Newton’s method for equations with several 

variables
• Can be used when we no longer have a linear system

• Cast the problem as one of root finding 

• Consider the vector function:

• Where the unknowns are:

• Revised guess from initial guess x(0):
• J-1 is the inverse of the Jacobian matrix:

• To avoid taking the inverse at each step, solve with Gaussian 
substitution:



Example: Lorenz model (Garcia Sec. 4.3)

• Lorenz system:

• , r, and b are positive constants

• If we want steady-state, we can propagate with, e.g., 4th order RK

• Steady-state directly given by roots of Lorenz system:



Lorenz model steady-state: 
Newton versus 4th order RK



After class tasks

• Homework 2 due on Wednesday Oct. 1

• Readings:
• Newman Ch. 6

• Garcia Ch. 4

• Pang Sec. 5.3
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