
PHY604 Lecture 11
September 30, 2025

Today’s lecture: (non)Linear Algebra

• Eigensystems

• Linear algebra libraries

• Nonlinear algebra: Roots and extrema of multivariable functions

Eigenvalues and eigenvectors

• Very common matrix problem in physics

• Mostly concerned with real symmetric matrices, or Hermitian
matrices

• For a symmetric matrix A, an eigenvector vi satisfies:

• i are the eigenvalues

• Eigenvectors are orthogonal, and we will assume they are normalized:

• Combining eigenvectors into matrix V, and eigenvalues into diagonal
matrix D:

QR algorithm for calculating eigenvalues/eigenvectors

• We will focus on real, symmetric, square A

• Makes use of QR decomposition to obtain V and D
• Same idea as LU decomposition

• Write A as a product of orthogonal matrix Q, and upper-triangular matrix R

• Any square matrix can be written that way

• 1. Break A down into QR decomposition:

• 2. Multiply on the left by :

• Note that since Q is orthogonal, QT=Q-1

QR decomposition
• 3. Now we define a new matrix, product of Q1 and R1 in reverse order:

• Combine with step 2 to get:

• 4. Repeat the process, find QR decomposition of A1:

• And so on:

Eigenvalues and eigenvectors from QR decomposition
• If you continue this process long enough, the matrix Ak will eventually

become diagonal:

• Continue until the off-diagonal elements are below some accuracy

• Eigenvector matrix is given by:

• V Orthogonal since the product of orthogonal matrices is orthogonal.
Then:

• So:

How do we do the QR decomposition?

• Think of the matrix as a set of N columns:

• Now define two new sets of vectors:

(Gram-Schmidt orthogonalization!)

How do we do the QR decomposition?
• General formula for ui and qi:

• We can show that the q vectors are orthonormal:

• Now we rearrange the definitions of the vectors:

How do we do the QR decomposition?
• Finally write all the equations as a single matrix equation:

• Our QR decomposition is thus

• Q is orthogonal since the columns are orthonormal

• R is upper triangular

QR decomposition algorithm:

• For a give N x N starting matrix A:

• 1. Create an N x N array to hold V; initialize as identity

• 2. Calculate QR decomposition A = QR

• 3. Update A with new value A = RQ

• 4. Multiply V on the RHS with Q

• 5. Check off-diagonal elements of A. If they are less than some
tolerance, we are done. Otherwise go back to 2.

Today’s lecture: (non)Linear Algebra

• Eigensystems

• Linear algebra libraries

• Nonlinear algebra: Roots and extrema of multivariable functions

Libraries for linear algebra:
BLAS (basic linear algebra subroutines)

• These are the standard building blocks (API) of linear algebra on a
computer (Fortran and C)

• Most linear algebra packages formulate their operations in terms of BLAS
operations

• Three levels of functionality:
• Level 1: vector operations (x + y)
• Level 2: matrix-vector operations (A x +  y)
• Level 3: matrix-matrix operations (A B +  C)

• Available on pretty much every platform (http://www.netlib.org/blas/)
• See (https://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms)
• Some compilers provide specially optimized BLAS libraries (-lblas) that take great

advantage of the underlying processor instructions
• ATLAS: automatically tuned linear algebra software

http://www.netlib.org/blas/
https://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms

Libraries for linear algebra: LAPACK
• The standard for linear algebra

• Built upon BLAS

• Routines named in the form xyyzzz
• x refers to the data type (s/d are single/double precision floating, c/z are

single/double complex)

• yy refers to the matrix type

• zzz refers to the algorithm (e.g. sgebrd = single precision bi-diagonal reduction
of a general matrix)

• Routines: https://github.com/Reference-LAPACK/lapack/tree/master

https://github.com/Reference-LAPACK/lapack/tree/master
https://github.com/Reference-LAPACK/lapack/tree/master
https://github.com/Reference-LAPACK/lapack/tree/master

Libraries for linear algebra: Python
• Basic methods in numpy.linalg (based on BLAS and LAPACK)

• https://numpy.org/doc/stable/reference/routines.linalg.html

• Has a matrix type built from the array class

• * operator works element by element for arrays but does matrix product for
matrices

• As of python 3.5, @ operator will do matrix multiplication for NumPy arrays

• Vectors are automatically converted into 1×N or N×1 matrices

• Matrix objects cannot be > rank 2

• Matrix has .H (or .T), .I, and .A attributes (transpose, inverse, as array)

• More general stuff in SciPy (scipy.linalg)
• http://docs.scipy.org/doc/scipy/reference/linalg.html

https://numpy.org/doc/stable/reference/routines.linalg.html
https://numpy.org/doc/stable/reference/routines.linalg.html
http://docs.scipy.org/doc/scipy/reference/linalg.html
http://docs.scipy.org/doc/scipy/reference/linalg.html

Today’s lecture: (non)Linear Algebra

• Eigensystems

• Linear algebra libraries

• Nonlinear algebra: Roots and extrema of multivariable functions

Multivariate Newton’s method
• We can generalize Newton’s method for equations with several

variables
• Can be used when we no longer have a linear system

• Cast the problem as one of root finding

• Consider the vector function:

• Where the unknowns are:

• Revised guess from initial guess x(0):
• J-1 is the inverse of the Jacobian matrix:

• To avoid taking the inverse at each step, solve with Gaussian
substitution:

Example: Lorenz model (Garcia Sec. 4.3)

• Lorenz system:

• , r, and b are positive constants

• If we want steady-state, we can propagate with, e.g., 4th order RK

• Steady-state directly given by roots of Lorenz system:

Lorenz model steady-state:
Newton versus 4th order RK

Steepest descent: Extrema of multivariable functions

• Used for finding roots, minima, or maxima of functions of several
variables

• Based on the idea of moving downhill with each iteration, i.e.,
opposite to the gradient
• If current position is xn, next step is:

• Determine the step size  such that we reach the line minimum in
direction of the gradient:

• Find root of function of  :

Steepest descent example
(From Stickler and Schachinger: Basic Concepts in Computational Physics)

• Consider the function:

Comments on steepest descent

• Rather slow due to orthogonality of subsequent search directions

• Can only find local minimum closest to starting point
• Not global minimum

• Convergence rate is highly affected by choice of initial position

• Very simple method, works in space of arbitrary dimensions

Conjugate gradients method
• Based on the definition of N orthogonal search directions in N

dimensional space

• Consider function in “quadratic” form:

• For functions in this form, CG method will converge in at most N steps
• More steps for general functions, still more efficient than steepest descent

• Formulation is a bit complex, see readings

Stickler and Schachinger

Previous slide example

After class tasks

• Homework 2 due tomorrow Oct. 1 by the end of the day

• Class on Thursday Oct. 2 will start at late at 2:30pm!

• Readings:
• Newman Ch. 6

• Garcia Ch. 4

• Pang Ch. 5

• “An Introduction to the Conjugate Gradient Method Without the Agonizing
Pain,” Jonathan Richard Shewchuk

	Slide 1: PHY604 Lecture 11
	Slide 2: Today’s lecture: (non)Linear Algebra
	Slide 3: Eigenvalues and eigenvectors
	Slide 4: QR algorithm for calculating eigenvalues/eigenvectors
	Slide 5: QR decomposition
	Slide 6: Eigenvalues and eigenvectors from QR decomposition
	Slide 7: How do we do the QR decomposition?
	Slide 8: How do we do the QR decomposition?
	Slide 9: How do we do the QR decomposition?
	Slide 10: QR decomposition algorithm:
	Slide 11: Today’s lecture: (non)Linear Algebra
	Slide 12: Libraries for linear algebra: BLAS (basic linear algebra subroutines)
	Slide 13: Libraries for linear algebra: LAPACK
	Slide 14: Libraries for linear algebra: Python
	Slide 15: Today’s lecture: (non)Linear Algebra
	Slide 16: Multivariate Newton’s method
	Slide 17: Example: Lorenz model (Garcia Sec. 4.3)
	Slide 18: Lorenz model steady-state: Newton versus 4th order RK
	Slide 19: Steepest descent: Extrema of multivariable functions
	Slide 20: Steepest descent example (From Stickler and Schachinger: Basic Concepts in Computational Physics)
	Slide 21: Comments on steepest descent
	Slide 22: Conjugate gradients method
	Slide 23: After class tasks

