PHY604 Lecture 12

October 2, 2025

Today's lecture: (non)Linear Algebra and Fourier transforms

Extrema of multivariable functions

Fourier Transforms

Steepest descent: Extrema of multivariable functions

- Used for finding roots, minima, or maxima of functions of several variables
- Based on the idea of moving downhill with each iteration, i.e., opposite to the gradient
 - If current position is \mathbf{x}_n , next step is:

$$x_{n+1} = x_n - \alpha_n \nabla f(x_n)$$

• Determine the step size α such that we reach the line minimum in direction of the gradient:

$$\frac{d}{d\alpha_n} f[x_{n+1}(\alpha_n)] = -\nabla f(x_{n+1}) \cdot \nabla f(x_n) = 0$$

• Find root of function of α :

$$g(\alpha) = \nabla f[x_{n+1}(\alpha)] \cdot \nabla f(x_n) = 0$$

Steepest descent example

(From Stickler and Schachinger: Basic Concepts in Computational Physics)

Consider the function:

$$f(x,y) = \cos(2x) + \sin(4y) + \exp(1.5x^2 + 0.7y^2) + 2x$$

Comments on steepest descent

Rather slow due to orthogonality of subsequent search directions

- Can only find local minimum closest to starting point
 - Not global minimum

Convergence rate is highly affected by choice of initial position

Very simple method, works in space of arbitrary dimensions

Conjugate gradients method

- Based on the definition of N orthogonal search directions in N dimensional space
- Consider function in "quadratic" form: $f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^{\mathrm{T}}\mathbf{A}\mathbf{x} \mathbf{b}^{\mathrm{T}}\mathbf{x} + c$
- For functions in this form, CG method will converge in at most N steps
 - More steps for general functions, still more efficient than steepest descent
- Formulation is a bit complex, see readings

Stickler and Schachinger

Today's lecture: (non)Linear Algebra and Fourier transforms

Extrema of multivariable functions

Fourier Transforms

Fourier analysis

 Study of the way general functions can be represented by sums of trigonometric functions

• Applications in: Signal processing, solving of PDEs, interpolations,...

- In condensed matter/solid state physics, we often make use of reciprocal space because of Bloch's theorem
 - Certain operators like spatial derivatives and convolutions are simpler in reciprocal space
 - Plane waves are often used as a basis to represent functions

Fourier Series

• A periodic function defined on an interval $0 \le x < L$ can be written as a Fourier series:

$$f(x) = \sum_{k=0}^{\infty} \alpha_k \cos\left(\frac{2\pi kx}{L}\right) + \sum_{k=0}^{\infty} \beta_k \sin\left(\frac{2\pi kx}{L}\right)$$
$$= \sum_{k=-\infty}^{\infty} \gamma_k e^{2\pi i kx/L}$$

Where:

$$\gamma_k = \begin{cases} \frac{1}{2}(\alpha_{-k} + i\beta_{-k}) & \text{if } k < 0\\ \alpha_0 & \text{if } k = 0\\ \frac{1}{2}(\alpha_k - i\beta_k) & \text{if } k > 0 \end{cases}$$

Fourier series for nonperiodic functions

• If function is not periodic, we can take the portion over the range of interest (0 to L) and repeat it

• Fourier series will give correct result from 0 to L

Fourier series coefficients

- \bullet Formally, the coefficients are: $\gamma_k = \frac{1}{L} \int_0^L f(x) e^{-2\pi i k x/L}$
- Usually, we are dealing with f(x) that is discrete data
- Use the trapezoid rule to calculate the integral:

$$\gamma_k = \frac{1}{N} \left[\frac{1}{2} f(0) + \frac{1}{2} f(L) + \sum_{n=1}^{N-1} f(x_n) \exp\left(-i\frac{2\pi k x_n}{L}\right) \right]$$

- Where sample points are $x_n = n L/N$
- Since we assume periodicity, f(0)=f(L) so:

$$\gamma_k = \frac{1}{N} \sum_{n=0}^{N-1} f(x_n) \exp\left(-i\frac{2\pi k x_n}{L}\right)$$

Discrete Fourier transform

• Assume function evaluated on equally-spaced points *n*:

$$F_k = \sum_{n=0}^{N-1} f_n \exp\left(-i\frac{2\pi nk}{N}\right)$$

- (dropped the 1/N from pervious slide, matter of convention)
- This is the discrete Fourier transform (DFT)
- Does not require us to know the positions x_n of sample points, or even width L
- We can define an inverse discrete Fourier transform to recover the initial function:

 1 N-1($2\pi n k$)

$$f_n = \frac{1}{N} \sum_{k=0}^{N-1} F_k \exp\left(i\frac{2\pi nk}{N}\right)$$

- (1/N reappears)
- "Exact" (up to rounding errors), even though we used the trapezoid rule
 - see e.g., Newman Sec. 7.2

Example: Fourier transform of monochromatic functions

- $f(x) = \sin(2\pi v_0 x)$ with $v_0 = 0.2$:
 - Peak in the imaginary part will appear at the characteristic frequency v_0

- $f(x) = \cos(2\pi v_0 x)$ with $v_0 = 0.2$:
 - Peak in the real part will appear at the characteristic frequency v_0

"Exact" in that inverse DFT gives the same function back up to rounding errors

Real and imaginary parts

- Real parts represent even functions (e.g., Cosine)
- Imaginary parts represent odd functions (e.g., Sine)

Could also think in terms of amplitude and phase

• For real f_n :

$$\operatorname{Re}(F_k) = \sum_{n=0}^{N-1} f_n \cos\left(\frac{2\pi nk}{N}\right)$$

$$\operatorname{Im}(F_k) = \sum_{n=0}^{N-1} f_n \sin\left(\frac{2\pi nk}{N}\right)$$

Frequencies in DFTs

- In the DFT, the physical coordinate value, x_n , does not enter—instead, we just look at the index n itself
 - Assumes data is regularly gridded
- Many FFT routines will return frequencies in "index" space, e.g., $k_{\text{freq}} = 0$, 1/N, 2/N, 3/N, ...
- Lowest frequency: 1/L (corresponds largest wavelength, $\lambda = L$: entire domain)
- Highest frequency $\sim N/L \sim 1/\Delta x$ (corresponds to shortest wavelength, $\lambda = \Delta x$)

k=0 is the DC offset

Real part is the average:

$$Re(F_0) = \sum_{n=0}^{N-1} f_n \cos\left(\frac{2\pi n0}{N}\right) = \sum_{n=0}^{N-1} f_n$$

$$Im(F_0) = \sum_{n=0}^{N-1} f_n \sin\left(\frac{2\pi n0}{N}\right) = 0$$

Caveat: DFT exact only for sampled points

 Functions with the same values at the sample points will have the same DFT

DFTs of real functions

- Works for real or complex functions, but most of the time, we have real data
- If f_n is real, we can simplify further:
- Consider F_k for k in the upper half of the range: k = N-r where: $1 \le r < \frac{1}{2}N$

$$F_{N-r} = \sum_{n=0}^{N-1} f_n \exp\left(-i\frac{2\pi(N-r)n}{N}\right) = \sum_{n=0}^{N-1} f_n \exp\left(i\frac{2\pi rn}{N}\right) = F_r^*$$

• Therefore, for real functions, only need to calculate F_{k} for $0 \leq k \leq \frac{1}{2}N$

What can we do with the DFT? E.g., filtering

- Can use DFT to remove wither high or low frequency "noise" from a signal
- E.g., three sine functions:

Remove frequencies in DFT one at a time:

What can we do with the DFT? E.g., filtering

• Sin function with noise:

Error function with noise:

Two-dimensional Fourier transforms

- Simply transform with respect to one variable and then the other
- Consider function on M x N grid
 - 1. Perform DFT on each of the M rows:

$$F'_{ml} = \sum_{n=0}^{N-1} f_{mn} \exp\left(-i\frac{2\pi ln}{N}\right)$$

• 2. Take *I*th coefficient in each of the *M* rows and DFT:

$$F_{kl} = \sum_{m=0}^{M-1} F'_{ml} \exp\left(-i\frac{2\pi km}{M}\right)$$

Combining these gives:

$$F_{kl} = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f_{mn} \exp\left[-i2\pi \left(\frac{km}{M} + \frac{ln}{N}\right)\right]$$

Cosine transformation (see Newman Sec. 7.3)

- Can also construct Fourier series from using sine and cosine functions instead of complex exponentials
- Cosine series: Can only represent functions symmetric about the midpoint of the interval
 - Can enforce this for any function by mirroring it, and then repeating the mirrored function
- Different ways of writing it (see Newman):

$$F_k = \sum_{n=0}^{N-1} f_n \cos\left(\frac{\pi k(n+\frac{1}{2})}{N}\right), \quad f_n = \frac{1}{N} \sum_{k=0}^{N-1} F_k \cos\left(\frac{\pi k(n+\frac{1}{2})}{N}\right)$$

Benefits of the cosine transformation

- Only involves real functions
- Does not assume samples are periodic (i.e., first point and last point are the same)
 - Avoids discontinuities from periodically repeating function over interval
 - Often preferable for data that is not intrinsically periodic
- Used for compressing images and other media
 - JPEG, MPEG
- Can also define a sine transformation
 - Requires that function vanish at either end of its range

Fast Fourier transforms

- DFTs shown before have a double sum, so scale something like N^2 operations
 - We can do it in much less

• Consider the DFT:
$$F_k = \sum_{n=0}^{N-1} f_n \exp\left(-i\frac{2\pi nk}{N}\right)$$

- Take the number of samples to be a power of 2: $N = 2^m$
- Break F_k into n even and n odd. For the even terms:

$$F_k^{\text{even}} = \sum_{r=0}^{\frac{1}{2}N-1} f_{2r} \exp\left(-i\frac{2\pi k(2r)}{N}\right) = \sum_{r=0}^{\frac{1}{2}N-1} f_{2r} \exp\left(-i\frac{2\pi kr}{N/2}\right)$$

• Just another Fourier transform, but with N/2 samples

Fast Fourier transforms continued

• For the odd terms:

$$\sum_{r=0}^{\frac{1}{2}N-1} f_{2r+1} \exp\left(-i\frac{2\pi k(2r+1)}{N}\right) = e^{-i2\pi k/N} \sum_{r=0}^{\frac{1}{2}N-1} f_{2r+1} \exp\left(-i\frac{2\pi kr}{N/2}\right) = e^{-i2\pi k/N} F_k^{\text{odd}}$$

• Therefore:

$$F_k = F_k^{\text{even}} + e^{-i2\pi k/N} F_k^{\text{odd}}$$

• So full DFT is sum of two DFTs with half as many points

• Now repeat the process until we get down to a single sample where:

$$F_0 = \sum_{n=0}^{0} f_n e^0 = f_0$$

Procedure for FFT

• 1. Start with (trivial) FT of single samples:

$$F_0 = \sum_{n=0}^{0} f_n e^0 = f_0$$

• 2. Combine them in pairs using:

$$F_k = F_k^{\text{even}} + e^{-i2\pi k/N} F_k^{\text{odd}}$$

• 3. Continue combining into fours, eights, etc. until the full transform on the full set of samples is reconstructed

Speed up

- First "round" we have N samples
- Next round we combine these into pairs to make N/2 transforms with two coefficients each: N coefficients
- Next round we combine these into fours to make N/4 transforms with four coefficients each: N coefficients

•

- For 2^m samples we have $m = \log_2 N$ levels, so the number of coefficients we have to calculate is $N \log_2 N$
- Way better scaling than N²!

Speed up of FFT vs DFT

Libraries for FFT

- FFTW (fastest Fourier transform in the west)
 - https://www.fftw.org/
 - C subroutine library
 - Open source

- Intel MKL (math kernel library)
 - https://software.intel.com/content/www/us/en/develop/tools/oneapi/comp onents/onemkl.html#gs.bu9rfp
 - Written in C/C++, fortran
 - Also involves linear algebra routines
 - Not open source, but freely available
 - Often very fast, especially on intel processors

Python's fft

numpy.fft: https://numpy.org/doc/stable/reference/routines.fft.html

- fft/ifft: 1-d data
 - By design, the k=0, ... N/2 data is first, followed by the negative frequencies. These later are not relevant for a real-valued f(x)
 - k's can be obtained from fftfreq(n)
 - fftshift(x) shifts the *k*=0 to the center of the spectrum
- rfft/irfft: for 1-d real-valued functions. Basically the same as fft/ifft, but doesn't return the negative frequencies
- 2-d and n-d routines analogously defined

After class tasks

Homework 3 will be posted next week

- Readings
- Readings:
 - Optimization:
 - "An Introduction to the Conjugate Gradient Method Without the Agonizing Pain,"
 Jonathan Richard Shewchuk
 - DFT/FFT:
 - Newman Ch. 7
 - https://en.wikipedia.org/wiki/Discrete Fourier transform