PHY604 Lecture 12

October 2, 2025

Today’s lecture: (non)Linear Algebra and
Fourier transforms

* Extrema of multivariable functions

 Fourier Transforms

Steepest descent: Extrema of multivariable functions

* Used for finding roots, minima, or maxima of functions of several
variables

* Based on the idea of moving downhill with each iteration, i.e.,
opposite to the gradient
* If current position is x,, next step is:

Tpai1 =Ty — anV f(zy)
 Determine the step size a such that we reach the line minimum in
direction of the gradient:

d

Ef[xn—l—l(an)] = —V[f(@nt1) - Vf(zn) =0

* Find root of function of « :

g(a) = Vflzppi(a)] - Vf(rn) =0

Steepest descent example

(From Stickler and Schachinger: Basic Concepts in Computational Physics)

e Consider the function:

f(x,y) = cos(2x) + sin(4y) + exp(1.5z° + 0.7y") + 2z

1.00
0.75
0.50
0.25
0.00
-0.25
—-0.50

-0.75

—1.00

-1.00-0.75-0.50-0.25 0.00 0.25 0.50 0.75 1.00

Comments on steepest descent

e Rather slow due to orthogonality of subsequent search directions

e Can only find local minimum closest to starting point
* Not global minimum

 Convergence rate is highly affected by choice of initial position

* Very simple method, works in space of arbitrary dimensions

Conjugate gradients method

* Based on the definition of N orthogonal search directionsin N
dimensional space .

e Consider function in “quadratic” form: f(x) = §XTAX —b'x+c¢

* For functions in this form, CG method will converge in at most N steps
* More steps for general functions, still more efficient than steepest descent

* Formulation is a bit complex, see readings

Previous slide example f(z,y) = 2 + 10y?

T =T f(x.y)
—o— steepest dece Y

nt

—— conjugate gradient
S T

. 9O ARWONNSSOO
 wououwoumowmowmowo

2 A 0 1

Stickler and Schachinger

Today’s lecture: (non)Linear Algebra and
Fourier transforms

 Fourier Transforms

Fourier analysis

 Study of the way general functions can be represented by sums of
trigonometric functions

e Applications in: Signal processing, solving of PDEs, interpolations,...

* In condensed matter/solid state physics, we often make use of
reciprocal space because of Bloch’s theorem

* Certain operators like spatial derivatives and convolutions are simpler in
reciprocal space

* Plane waves are often used as a basis to represent functions

Fourier Seriles

e A periodic function defined on aninterval 0 < x < L can be written
as a Fourier series:

Z o cos (27#@:13) Zﬁk . (2775:13)

k=0

oo
2mikx /L
E : YK€ /

k=—o00

* Where:
s(a_p+iB_y) k<O
Y = § Qo if k=0
%(O&k—iﬁk) itk >0

| Actual f outside of
f(' X) ‘ region of interest

Fourier series for nonperiodic functions

~L 0 fin region of interest [, T

(Newman) f periodically repeated

* If function is not periodic, we can take the portion over the range of
interest (O to L) and repeat it

* Fourier series will give correct result from Oto L

Fourier series coefficients

1 [t o
* Formally, the coefficients are: V& = Z/ f(x)e2mike/L
0

e Usually, we are dealing with f(x) that is discrete data
* Use the trapezoid rule to calculate the integral:

1 |1 1 pl orkz, \ |
= 3O+ 570+ X sawen (7)

* Where sample points are x,=n L/N
 Since we assume periodicity, f(0)=f(L) so:

1 N1 2mkx
=y O faen (—z' ")

Discrete Fourier transform

e Assume function evaluated on equally-spaced points n:

2mnk
Fk— anexp<—z N)

* (dropped the 1/N from pervious slide, matter of convention)
* This is the discrete Fourier transform (DFT)
* Does not require us to know the positions x,, of sample points, or even width L

 We can define an inverse discrete Fourier transform to recover the

initial function: N-—1
1 2mnk
Jn= = ,;_O Fi.exp (z 7;\7;)

* (1/N reappears)

* “Exact” (up to rounding errors), even though we used the trapezoid
rule

* see e.g., Newman Sec. 7.2

Example: Fourier transform of monochromatic functions

* f(x)=sin(2 rvyx) with v, =0.2: * f(x)=cos(2 rvyx) with vy =0.2:
* Peak in the imaginary part will appear at * Peak in the real part will appear at the
the characteristic frequency v, characteristic frequency v,
1.0 4 1.0 4
S NVAANAN N
§ 0.0 “g: 0.0
CIVU VUV VY
~1.01 l l l l —1.01 l : : :
0 10 20 30 40 50 0 10 20 30 40 50
20 — Re(Fo >0 — Re(F)
Im(Fy) Will discuss this 40 4 Im(Fy)
Y peak shortly 30
w o I) E:20—
20
10 A
_40_7 0
/0.0(; 0.125 O.ISO 0.175 1.IOO 1.125 1.150 1.175 2.00 0.00 0.125 O.:SO 0.175 1.IOO 1.125 1.:50 1.175 2.00

Peak at 0.2 k k

“Exact” in that inverse DFT gives the same
function back up to rounding errors

5 0.00

F(k)
o

—0.50 A

Real and imaginary parts

* Real parts represent even functions (e.g., Cosine)
* Imaginary parts represent odd functions (e.g., Sine)

* Could also think in terms of amplitude and phase

* For real f,:

N-1 S
Re(Fy) = Z fn COS(7;\7;)
n=0

N-1
Im(Fy) = Z fn sin (27;\7[116)
n=0

Frequencies in DFTs

* In the DFT, the physical coordinate value, x,,, does not enter—instead,
we just look at the index n itself
* Assumes data is regularly gridded

* Many FFT routines will return frequencies in “index” space, e.g., Kfq
=0, 1/N, 2/N, 3/N, ...

* Lowest frequency: 1/L (corresponds largest wavelength, A = L: entire
domain)

* Highest frequency ~ N/L ~ 1/Ax (corresponds to shortest wavelength,
A = Ax)

k=0 is the DC offset

e Real part is the average:
N-—1
Re(Fp) = Z fn coS (
n=0

N-1
Im(Fp) = Z fn sin (
n=0

2T

N

27N
N

-

-

Caveat: DFT exact only for sampled points

(Newman)

N / N\
\ / \
! / ®

2
. \ _ J
\\ /'. . \\/ /
> A ——

N // \
S T D -
\‘____/,‘/ y \ f\‘_,/
l A

Same DFT

* Functions with the same values at the sample points will have the
same DFT

DFTs of real functions

* Works for real or complex functions, but most of the time, we have
real data

* If f, is real, we can simplify further:

1
* Consider F, for k in the upper half of the range: k = N-r where:1 < r < §N

N-1
_ Z I exp (_Z,QT('(N > Z ‘ exp(27?7“71) _
n=0

1
* Therefore, for real functions, only need to calculate F, for 0 < k < 2N

What can we do with the DFT? E.g., filtering

* Can use DFT to remove wither high or low frequency “noise” from a

signal
* E.g., three sine functions:

Remove frequencies in DFT one at a time:

fx)

What can we do with the DFT? E.g., filtering

* Sin function with noise:

—50 4

—100 A

—150 A

—200 A

:
:
§
|

00 05 10 15

2.0
Yk

2.5

1.5 A

1.0 1

0.5 1

0.0 A

—0.5 1

—1.01

—1.5 4

30

40

50

F(k)

1.5

1.0 1

0.5

0.0 A

—0.51

—1.0 A1

—-1.5 1

o4

—50 A

—100 A

—150 1

—200 A

0.0

1.0 1

0.5 1

0.0 A

—-0.51

—1.0 A1

o4

F(k)

* Error function wit

—— Erf function with|noise
—— Erf function

150 A

100 A

50

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

F(k)

N noise:

150 A

100 A

50 A

0.75 1.00 1.25 1.50 1.75 2.00
k

0.00 0.25 0.50

2.01

1.51

1.0 1

0.5

0.0 1

f(x)

Two-dimensional Fourier transforms

e Simply transform with respect to one variable and then the other

* Consider function on M x N grid
e 1. Perform DFT on each of the M rOws:

2min
= z fomexp (—1 3")

e 2. Take Ith coefficientin each of the M rows and DFT:
M—1

21k
Fry = Z F! exp (—z 7;\4771)

m=0

* Combining these giveS'
—1N-1

Fip = > >1fmn€XP {—227T<]j\;n | Zj)}

m=0 n=0

COSine tra nSfOrmatiOn (see Newman Sec. 7.3)

(Newman)

| |
IIIIIIIIIII

A

1Y
Mirror Function

e Can also construct Fourier series from using sine and cosine functions instead of
complex exponentials

e Cosine series: Can only represent functions symmetric about the midpoint of the
interval

* Can enforce this for any function by mirroring it, and then repeating the mirrored function
e Different ways of writing it (see Newman):

~— rk(n + 2 — rk(n + 2
Fk_nzofnCOS((N+2)>’ In %ZFkCOS((N—l_Z))

llllll
I 1 T I *

Benefits of the cosine transformation

* Only involves real functions

* Does not assume samples are periodic (i.e., first point and last point
are the same)

e Avoids discontinuities from periodically repeating function over interval
* Often preferable for data that is not intrinsically periodic

* Used for compressing images and other media
* JPEG, MPEG

* Can also define a sine transformation
e Requires that function vanish at either end of its range

Fast Fourier transforms

* DFTs shown before have a double sum, so scale something like N?
operations
* We can do it in much less

— 2mnk
* Consider the DFT: Fj = E:O fnexp (—z N)

* Take the number of samples to be a power of 2: N =27

* Break F, into n even and n odd. For the even terms:
iIN-1 iIN-1

2wk (2r) 2mkr
B = Z Jor €xp (—”L) Z Jor €xp <—Z N/2)

e Just another Fourier transform, but with N/2 samples

Fast Fourier transforms continued

 For the odd terms:

IN—-1
2mk(2r + 1 . 0 |
f27~_|_1 exp <_Z 7 (]\7; +)) _ 6—7,27T]€/N ;:0: f27"—|—1 exp <—Z]\7;/;> :6—127Tk/N

 Therefore:
Fk _ ngen _I_ e—iQWk/NF]g)dd

e So full DFT is sum of two DFTs with half as many points

* Now repeat the process until we get down to a single sample where:

0
ko = Z fne’ = fo
n=0

odd
Fk

Procedure for FFT

e 1. Start with (trivial) FT of single samples:
0
Fo=> fne’ = fo
n=0

e 2. Combine them in pairs using:

—i27k /N podd
Fk:ngen‘F@ 127k / FIS

* 3. Continue combining into fours, eights, etc. until the full transform
on the full set of samples is reconstructed

Speed up

* First “round” we have N samples

* Next round we combine these into pairs to make N/2 transforms with
two coefficients each: N coefficients

* Next round we combine these into fours to make N/4 transforms with
four coefficients each: N coefficients

* For 2™ samples we have m = log, N levels, so the number of
coefficients we have to calculate is N log, N

* Way better scaling than N?!

Speed up of FFT vs DFT

107 -

1072 5

® DFI b
»
i d
»
® FFT '
»
»
i d
2 i d
..... < N
R
i d
------ « Nlog,N
[
i d
i d
i d
i d
»
L B
»
i d
»
»
»
»
0.
i d
”
, @
» .
¢ “‘
» “
: o
o’ e
i d
[K ,
’ »
,*
i d “
. o.
o .. -
»
»
» s®
’ o .-
” s
.
» »
» '
R .*
i d “
i d »
» P4
» »
.’
i d
» . »*
”
» »*
’ P
4 »
» »
» »
» P
o *
.
»
R
’.
.t
»
T T T T

Number of samples

Libraries for FF

* FFTW (fastest Fourier transform in the west)
e https://www.fftw.org/
e Csubroutine library
* Open source

* Intel MKL (math kernel library)

* https://software.intel.com/content/www/us/en/develop/tools/oneapi/comp
onents/onemkl.html#gs.bu9rfp

Written in C/C++, fortran

Also involves linear algebra routines

Not open source, but freely available

Often very fast, especially on intel processors

https://www.fftw.org/
https://www.fftw.org/
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/onemkl.html#gs.bu9rfp
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/onemkl.html#gs.bu9rfp
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/onemkl.html#gs.bu9rfp

Python’s fft

 numpy.fft: https://numpy.org/doc/stable/reference/routines.fft.html

o fft/ifft: 1-d data

* By design, the k=0, ... N/2 data is first, followed by the negative
frequencies. These later are not relevant for a real-valued f(x)

* k's can be obtained from fftfreq(n)
e fftshift(x) shifts the k=0 to the center of the spectrum

o rfft/irfft: for 1-d real-valued functions. Basically the same as fft/ifft,
but doesn't return the negative frequencies

e 2-d and n-d routines analogously defined

https://numpy.org/doc/stable/reference/routines.fft.html

After class tasks

* Homework 3 will be posted next week

* Readings

* Readings:
* Optimization:

* “An Introduction to the Conjugate Gradient Method Without the Agonizing Pain,”
Jonathan Richard Shewchuk

 DFT/FFT:
* Newman Ch.7
e https://en.wikipedia.org/wiki/Discrete Fourier transform

https://en.wikipedia.org/wiki/Discrete_Fourier_transform
https://en.wikipedia.org/wiki/Discrete_Fourier_transform

	Slide 1: PHY604 Lecture 12
	Slide 2: Today’s lecture: (non)Linear Algebra and Fourier transforms
	Slide 3: Steepest descent: Extrema of multivariable functions
	Slide 4: Steepest descent example (From Stickler and Schachinger: Basic Concepts in Computational Physics)
	Slide 5: Comments on steepest descent
	Slide 6: Conjugate gradients method
	Slide 7: Today’s lecture: (non)Linear Algebra and Fourier transforms
	Slide 8: Fourier analysis
	Slide 9: Fourier Series
	Slide 10: Fourier series for nonperiodic functions
	Slide 11: Fourier series coefficients
	Slide 12: Discrete Fourier transform
	Slide 13: Example: Fourier transform of monochromatic functions
	Slide 14: “Exact” in that inverse DFT gives the same function back up to rounding errors
	Slide 15: Real and imaginary parts
	Slide 16: Frequencies in DFTs
	Slide 17: k=0 is the DC offset
	Slide 18: Caveat: DFT exact only for sampled points
	Slide 19: DFTs of real functions
	Slide 20: What can we do with the DFT? E.g., filtering
	Slide 21: What can we do with the DFT? E.g., filtering
	Slide 22: Two-dimensional Fourier transforms
	Slide 23: Cosine transformation (see Newman Sec. 7.3)
	Slide 24: Benefits of the cosine transformation
	Slide 25: Fast Fourier transforms
	Slide 26: Fast Fourier transforms continued
	Slide 27: Procedure for FFT
	Slide 28: Speed up
	Slide 29: Speed up of FFT vs DFT
	Slide 30: Libraries for FFT
	Slide 31: Python’s fft
	Slide 32: After class tasks

