
PHY604 Lecture 12
October 2, 2025

Today’s lecture: (non)Linear Algebra and
Fourier transforms

• Extrema of multivariable functions

• Fourier Transforms

Steepest descent: Extrema of multivariable functions

• Used for finding roots, minima, or maxima of functions of several
variables

• Based on the idea of moving downhill with each iteration, i.e.,
opposite to the gradient
• If current position is xn, next step is:

• Determine the step size  such that we reach the line minimum in
direction of the gradient:

• Find root of function of  :

Steepest descent example
(From Stickler and Schachinger: Basic Concepts in Computational Physics)

• Consider the function:

Comments on steepest descent

• Rather slow due to orthogonality of subsequent search directions

• Can only find local minimum closest to starting point
• Not global minimum

• Convergence rate is highly affected by choice of initial position

• Very simple method, works in space of arbitrary dimensions

Conjugate gradients method
• Based on the definition of N orthogonal search directions in N

dimensional space

• Consider function in “quadratic” form:

• For functions in this form, CG method will converge in at most N steps
• More steps for general functions, still more efficient than steepest descent

• Formulation is a bit complex, see readings

Stickler and Schachinger

Previous slide example

Today’s lecture: (non)Linear Algebra and
Fourier transforms

• Extrema of multivariable functions

• Fourier Transforms

Fourier analysis

• Study of the way general functions can be represented by sums of
trigonometric functions

• Applications in: Signal processing, solving of PDEs, interpolations,…

• In condensed matter/solid state physics, we often make use of
reciprocal space because of Bloch’s theorem
• Certain operators like spatial derivatives and convolutions are simpler in

reciprocal space

• Plane waves are often used as a basis to represent functions

Fourier Series

• A periodic function defined on an interval can be written
as a Fourier series:

• Where:

Fourier series for nonperiodic functions

• If function is not periodic, we can take the portion over the range of
interest (0 to L) and repeat it

• Fourier series will give correct result from 0 to L

(Newman)

f in region of interest

f periodically repeated

Actual f outside of
region of interest

Fourier series coefficients

• Formally, the coefficients are:

• Usually, we are dealing with f(x) that is discrete data

• Use the trapezoid rule to calculate the integral:

• Where sample points are xn=n L/N

• Since we assume periodicity, f(0)=f(L) so:

Discrete Fourier transform
• Assume function evaluated on equally-spaced points n:

• (dropped the 1/N from pervious slide, matter of convention)

• This is the discrete Fourier transform (DFT)

• Does not require us to know the positions xn of sample points, or even width L

• We can define an inverse discrete Fourier transform to recover the
initial function:

• (1/N reappears)

• “Exact” (up to rounding errors), even though we used the trapezoid
rule
• see e.g., Newman Sec. 7.2

Example: Fourier transform of monochromatic functions

• f(x)=sin(20x) with 0 = 0.2:
• Peak in the imaginary part will appear at

the characteristic frequency 0

Peak at 0.2

Will discuss this
peak shortly

• f(x)=cos(20x) with 0 = 0.2:
• Peak in the real part will appear at the

characteristic frequency 0

“Exact” in that inverse DFT gives the same
function back up to rounding errors

Real and imaginary parts

• Real parts represent even functions (e.g., Cosine)

• Imaginary parts represent odd functions (e.g., Sine)

• Could also think in terms of amplitude and phase

• For real fn:

Frequencies in DFTs

• In the DFT, the physical coordinate value, xn , does not enter—instead,
we just look at the index n itself
• Assumes data is regularly gridded

• Many FFT routines will return frequencies in “index” space, e.g., kfreq
= 0, 1/N, 2/N, 3/N, ...

• Lowest frequency: 1/L (corresponds largest wavelength, λ = L: entire
domain)

• Highest frequency ~ N/L ~ 1/Δx (corresponds to shortest wavelength,
λ = Δx)

k=0 is the DC offset

• Real part is the average:

Caveat: DFT exact only for sampled points

• Functions with the same values at the sample points will have the
same DFT

Same DFT

(Newman)

DFTs of real functions

• Works for real or complex functions, but most of the time, we have
real data

• If fn is real, we can simplify further:

• Consider Fk for k in the upper half of the range: k = N-r where:

• Therefore, for real functions, only need to calculate Fk for

What can we do with the DFT? E.g., filtering

• Can use DFT to remove wither high or low frequency “noise” from a
signal

• E.g., three sine functions:

Remove frequencies in DFT one at a time:

What can we do with the DFT? E.g., filtering
• Sin function with noise: • Error function with noise:

Two-dimensional Fourier transforms
• Simply transform with respect to one variable and then the other

• Consider function on M x N grid
• 1. Perform DFT on each of the M rows:

• 2. Take lth coefficient in each of the M rows and DFT:

• Combining these gives:

Cosine transformation (see Newman Sec. 7.3)

• Can also construct Fourier series from using sine and cosine functions instead of
complex exponentials

• Cosine series: Can only represent functions symmetric about the midpoint of the
interval
• Can enforce this for any function by mirroring it, and then repeating the mirrored function

• Different ways of writing it (see Newman):

(Newman)

FunctionMirror

Benefits of the cosine transformation

• Only involves real functions

• Does not assume samples are periodic (i.e., first point and last point
are the same)
• Avoids discontinuities from periodically repeating function over interval

• Often preferable for data that is not intrinsically periodic

• Used for compressing images and other media
• JPEG, MPEG

• Can also define a sine transformation
• Requires that function vanish at either end of its range

Fast Fourier transforms
• DFTs shown before have a double sum, so scale something like N2

operations
• We can do it in much less

• Consider the DFT:

• Take the number of samples to be a power of 2: N = 2m

• Break Fk into n even and n odd. For the even terms:

• Just another Fourier transform, but with N/2 samples

Fast Fourier transforms continued
• For the odd terms:

• Therefore:

• So full DFT is sum of two DFTs with half as many points

• Now repeat the process until we get down to a single sample where:

Procedure for FFT

• 1. Start with (trivial) FT of single samples:

• 2. Combine them in pairs using:

• 3. Continue combining into fours, eights, etc. until the full transform
on the full set of samples is reconstructed

Speed up
• First “round” we have N samples

• Next round we combine these into pairs to make N/2 transforms with
two coefficients each: N coefficients

• Next round we combine these into fours to make N/4 transforms with
four coefficients each: N coefficients

• …

• For 2m samples we have m = log2 N levels, so the number of
coefficients we have to calculate is N log2 N

• Way better scaling than N2!

Speed up of FFT vs DFT

Libraries for FFT
• FFTW (fastest Fourier transform in the west)

• https://www.fftw.org/

• C subroutine library

• Open source

• Intel MKL (math kernel library)
• https://software.intel.com/content/www/us/en/develop/tools/oneapi/comp

onents/onemkl.html#gs.bu9rfp

• Written in C/C++, fortran

• Also involves linear algebra routines

• Not open source, but freely available

• Often very fast, especially on intel processors

https://www.fftw.org/
https://www.fftw.org/
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/onemkl.html#gs.bu9rfp
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/onemkl.html#gs.bu9rfp
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/onemkl.html#gs.bu9rfp

Python’s fft
• numpy.fft: https://numpy.org/doc/stable/reference/routines.fft.html

• fft/ifft: 1-d data
• By design, the k=0, ... N/2 data is first, followed by the negative

frequencies. These later are not relevant for a real-valued f(x)

• k's can be obtained from fftfreq(n)

• fftshift(x) shifts the k=0 to the center of the spectrum

• rfft/irfft: for 1-d real-valued functions. Basically the same as fft/ifft,
but doesn't return the negative frequencies

• 2-d and n-d routines analogously defined

https://numpy.org/doc/stable/reference/routines.fft.html

After class tasks

• Homework 3 will be posted next week

• Readings

• Readings:
• Optimization:

• “An Introduction to the Conjugate Gradient Method Without the Agonizing Pain,”
Jonathan Richard Shewchuk

• DFT/FFT:
• Newman Ch. 7

• https://en.wikipedia.org/wiki/Discrete_Fourier_transform

https://en.wikipedia.org/wiki/Discrete_Fourier_transform
https://en.wikipedia.org/wiki/Discrete_Fourier_transform

	Slide 1: PHY604 Lecture 12
	Slide 2: Today’s lecture: (non)Linear Algebra and Fourier transforms
	Slide 3: Steepest descent: Extrema of multivariable functions
	Slide 4: Steepest descent example (From Stickler and Schachinger: Basic Concepts in Computational Physics)
	Slide 5: Comments on steepest descent
	Slide 6: Conjugate gradients method
	Slide 7: Today’s lecture: (non)Linear Algebra and Fourier transforms
	Slide 8: Fourier analysis
	Slide 9: Fourier Series
	Slide 10: Fourier series for nonperiodic functions
	Slide 11: Fourier series coefficients
	Slide 12: Discrete Fourier transform
	Slide 13: Example: Fourier transform of monochromatic functions
	Slide 14: “Exact” in that inverse DFT gives the same function back up to rounding errors
	Slide 15: Real and imaginary parts
	Slide 16: Frequencies in DFTs
	Slide 17: k=0 is the DC offset
	Slide 18: Caveat: DFT exact only for sampled points
	Slide 19: DFTs of real functions
	Slide 20: What can we do with the DFT? E.g., filtering
	Slide 21: What can we do with the DFT? E.g., filtering
	Slide 22: Two-dimensional Fourier transforms
	Slide 23: Cosine transformation (see Newman Sec. 7.3)
	Slide 24: Benefits of the cosine transformation
	Slide 25: Fast Fourier transforms
	Slide 26: Fast Fourier transforms continued
	Slide 27: Procedure for FFT
	Slide 28: Speed up
	Slide 29: Speed up of FFT vs DFT
	Slide 30: Libraries for FFT
	Slide 31: Python’s fft
	Slide 32: After class tasks

