PHY604 Lecture 12

October 2, 2025



Today’s lecture: (non)Linear Algebra and
Fourier transforms

* Extrema of multivariable functions

 Fourier Transforms



Steepest descent: Extrema of multivariable functions

* Used for finding roots, minima, or maxima of functions of several
variables

* Based on the idea of moving downhill with each iteration, i.e.,
opposite to the gradient
* If current position is x,, next step is:

Tpai1 =Ty — anV f(zy)
 Determine the step size a such that we reach the line minimum in
direction of the gradient:

d

Ef[xn—l—l(an)] = —V[f(@nt1) - Vf(zn) =0

* Find root of function of « :

g(a) = Vflzppi(a)] - Vf(rn) =0



Steepest descent example

(From Stickler and Schachinger: Basic Concepts in Computational Physics)

e Consider the function:

f(x,y) = cos(2x) + sin(4y) + exp(1.5z° + 0.7y") + 2z
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Comments on steepest descent

e Rather slow due to orthogonality of subsequent search directions

e Can only find local minimum closest to starting point
* Not global minimum

 Convergence rate is highly affected by choice of initial position

* Very simple method, works in space of arbitrary dimensions



Conjugate gradients method

* Based on the definition of N orthogonal search directionsin N
dimensional space .

e Consider function in “quadratic” form: f(x) = §XTAX —b'x+c¢

* For functions in this form, CG method will converge in at most N steps
* More steps for general functions, still more efficient than steepest descent

* Formulation is a bit complex, see readings

Previous slide example f(z,y) = 2 + 10y?
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Today’s lecture: (non)Linear Algebra and
Fourier transforms

 Fourier Transforms



Fourier analysis

 Study of the way general functions can be represented by sums of
trigonometric functions

e Applications in: Signal processing, solving of PDEs, interpolations,...

* In condensed matter/solid state physics, we often make use of
reciprocal space because of Bloch’s theorem

* Certain operators like spatial derivatives and convolutions are simpler in
reciprocal space

* Plane waves are often used as a basis to represent functions



Fourier Seriles

e A periodic function defined on aninterval 0 < x < L can be written
as a Fourier series:

Z o cos (27#@:13) Zﬁk . (2775:13)

k=0
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2mikx /L
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k=—o00

* Where:
s(a_p+iB_y) k<O
Y = § Qo if k=0
%(O&k—iﬁk) itk >0



| Actual f outside of
f(' X) ‘ region of interest

Fourier series for nonperiodic functions

~L 0 fin region of interest [, T

(Newman) f periodically repeated

* If function is not periodic, we can take the portion over the range of
interest (O to L) and repeat it

* Fourier series will give correct result from Oto L



Fourier series coefficients

1 [t o
* Formally, the coefficients are: V& = Z/ f(x)e2mike/L
0

e Usually, we are dealing with f(x) that is discrete data
* Use the trapezoid rule to calculate the integral:

1 |1 1 pl orkz, \ |
= 3O+ 570+ X sawen (7 )

* Where sample points are x,=n L/N
 Since we assume periodicity, f(0)=f(L) so:

1 N1 2mkx
=y O faen (—z' " )




Discrete Fourier transform

e Assume function evaluated on equally-spaced points n:

2mnk
Fk— anexp<—z N )

* (dropped the 1/N from pervious slide, matter of convention)
* This is the discrete Fourier transform (DFT)
* Does not require us to know the positions x,, of sample points, or even width L

 We can define an inverse discrete Fourier transform to recover the

initial function: N-—1
1 2mnk
Jn= = ,;_O Fi.exp (z 7;\7; )

* (1/N reappears)

* “Exact” (up to rounding errors), even though we used the trapezoid
rule

* see e.g., Newman Sec. 7.2



Example: Fourier transform of monochromatic functions

* f(x)=sin(2 rvyx) with v, =0.2: * f(x)=cos(2 rvyx) with vy =0.2:
* Peak in the imaginary part will appear at * Peak in the real part will appear at the
the characteristic frequency v, characteristic frequency v,
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“Exact” in that inverse DFT gives the same
function back up to rounding errors
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Real and imaginary parts

* Real parts represent even functions (e.g., Cosine)
* Imaginary parts represent odd functions (e.g., Sine)

* Could also think in terms of amplitude and phase

* For real f,:

N-1 S
Re(Fy) = Z fn COS( 7;\7; )
n=0

N-1
Im(Fy) = Z fn sin (27;\7[116)
n=0




Frequencies in DFTs

* In the DFT, the physical coordinate value, x,,, does not enter—instead,
we just look at the index n itself
* Assumes data is regularly gridded

* Many FFT routines will return frequencies in “index” space, e.g., Kfq
=0, 1/N, 2/N, 3/N, ...

* Lowest frequency: 1/L (corresponds largest wavelength, A = L: entire
domain)

* Highest frequency ~ N/L ~ 1/Ax (corresponds to shortest wavelength,
A = Ax)



k=0 is the DC offset

e Real part is the average:
N-—1
Re(Fp) = Z fn coS (
n=0

N-1
Im(Fp) = Z fn sin (
n=0
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Caveat: DFT exact only for sampled points

(Newman)
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Same DFT

* Functions with the same values at the sample points will have the
same DFT



DFTs of real functions

* Works for real or complex functions, but most of the time, we have
real data

* If f, is real, we can simplify further:

1
* Consider F, for k in the upper half of the range: k = N-r where:1 < r < §N

N-1
_ Z I exp (_Z,QT('(N > Z ‘ exp( 27?7“71) _
n=0

1
* Therefore, for real functions, only need to calculate F, for 0 < k < 2N




What can we do with the DFT? E.g., filtering

* Can use DFT to remove wither high or low frequency “noise” from a

signal
* E.g., three sine functions:

Remove frequencies in DFT one at a time:




fx)

What can we do with the DFT? E.g., filtering

* Sin function with noise:
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Two-dimensional Fourier transforms

e Simply transform with respect to one variable and then the other

* Consider function on M x N grid
e 1. Perform DFT on each of the M rOws:

2min
= z fomexp (—1 3" )

e 2. Take Ith coefficientin each of the M rows and DFT:
M—1

21k
Fry = Z F!  exp (—z 7;\4771)

m=0

* Combining these giveS'
—1N-1

Fip = > >1fmn€XP {—227T<]j\;n | Zj)}

m=0 n=0




COSine tra nSfOrmatiOn (see Newman Sec. 7.3)

(Newman)
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e Can also construct Fourier series from using sine and cosine functions instead of
complex exponentials

e Cosine series: Can only represent functions symmetric about the midpoint of the
interval

* Can enforce this for any function by mirroring it, and then repeating the mirrored function
e Different ways of writing it (see Newman):

~— rk(n + 2 — rk(n + 2
Fk_nzofnCOS( (N+2)>’ In %ZFkCOS( (N—l_Z))
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Benefits of the cosine transformation

* Only involves real functions

* Does not assume samples are periodic (i.e., first point and last point
are the same)

e Avoids discontinuities from periodically repeating function over interval
* Often preferable for data that is not intrinsically periodic

* Used for compressing images and other media
* JPEG, MPEG

* Can also define a sine transformation
e Requires that function vanish at either end of its range



Fast Fourier transforms

* DFTs shown before have a double sum, so scale something like N?
operations
* We can do it in much less

— 2mnk
* Consider the DFT: Fj = E:O fnexp (—z N )

* Take the number of samples to be a power of 2: N =27

* Break F, into n even and n odd. For the even terms:
iIN-1 iIN-1

2wk (2r) 2mkr
B = Z Jor €xp (—”L ) Z Jor €xp <—Z N/2 )

e Just another Fourier transform, but with N/2 samples



Fast Fourier transforms continued

 For the odd terms:

IN—-1
2mk(2r + 1 . 0 |
f27~_|_1 exp <_Z 7 (]\7; + )) _ 6—7,27T]€/N ;:0: f27"—|—1 exp <—Z ]\7;/;> :6—127Tk/N

 Therefore:
Fk _ ngen _I_ e—iQWk/NF]g)dd

e So full DFT is sum of two DFTs with half as many points

* Now repeat the process until we get down to a single sample where:

0
ko = Z fne’ = fo
n=0

odd
Fk



Procedure for FFT

e 1. Start with (trivial) FT of single samples:
0
Fo=> fne’ = fo
n=0

e 2. Combine them in pairs using:

—i27k /N podd
Fk:ngen‘F@ 127k / FIS

* 3. Continue combining into fours, eights, etc. until the full transform
on the full set of samples is reconstructed



Speed up

* First “round” we have N samples

* Next round we combine these into pairs to make N/2 transforms with
two coefficients each: N coefficients

* Next round we combine these into fours to make N/4 transforms with
four coefficients each: N coefficients

* For 2™ samples we have m = log, N levels, so the number of
coefficients we have to calculate is N log, N

* Way better scaling than N?!



Speed up of FFT vs DFT
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Libraries for FF

* FFTW (fastest Fourier transform in the west)
e https://www.fftw.org/
e Csubroutine library
* Open source

* Intel MKL (math kernel library)

* https://software.intel.com/content/www/us/en/develop/tools/oneapi/comp
onents/onemkl.html#gs.bu9rfp

Written in C/C++, fortran

Also involves linear algebra routines

Not open source, but freely available

Often very fast, especially on intel processors



https://www.fftw.org/
https://www.fftw.org/
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/onemkl.html#gs.bu9rfp
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/onemkl.html#gs.bu9rfp
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/onemkl.html#gs.bu9rfp

Python’s fft

 numpy.fft: https://numpy.org/doc/stable/reference/routines.fft.html

o fft/ifft: 1-d data

* By design, the k=0, ... N/2 data is first, followed by the negative
frequencies. These later are not relevant for a real-valued f(x)

* k's can be obtained from fftfreq(n)
e fftshift(x) shifts the k=0 to the center of the spectrum

o rfft/irfft: for 1-d real-valued functions. Basically the same as fft/ifft,
but doesn't return the negative frequencies

e 2-d and n-d routines analogously defined


https://numpy.org/doc/stable/reference/routines.fft.html

After class tasks

* Homework 3 will be posted next week

* Readings

* Readings:
* Optimization:

* “An Introduction to the Conjugate Gradient Method Without the Agonizing Pain,”
Jonathan Richard Shewchuk

 DFT/FFT:
* Newman Ch.7
e https://en.wikipedia.org/wiki/Discrete Fourier transform



https://en.wikipedia.org/wiki/Discrete_Fourier_transform
https://en.wikipedia.org/wiki/Discrete_Fourier_transform
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