PHY604 Lecture 13

October 7, 2025

Today’s lecture:
FFTs and curve fitting

e Fast Fourier Transforms

e Curve fitting

Review: Discrete Fourier transform

e Assume function evaluated on equally-spaced points n:

2mnk
Fk— anexp<—z N)

* (dropped the 1/N from pervious slide, matter of convention)
* This is the discrete Fourier transform (DFT)
* Does not require us to know the positions x,, of sample points, or even width L

 We can define an inverse discrete Fourier transform to recover the

initial function: N-—1
1 2mnk
Jn= = ,;_O Fi.exp (z 7;\7;)

* (1/N reappears)

* “Exact” (up to rounding errors), even though we used the trapezoid
rule

* see e.g., Newman Sec. 7.2

Example: Fourier transform of monochromatic functions

* f(x)=sin(2 rvyx) with v, =0.2: * f(x)=cos(2 rvyx) with vy =0.2:
* Peak in the imaginary part will appear at * Peak in the real part will appear at the
the characteristic frequency v, characteristic frequency v,
1.0 4 1.0 4
S NVAANAN N
§ 0.0 “g: 0.0
CIVU VUV VY
~1.01 l l l l —1.01 l : : :
0 10 20 30 40 50 0 10 20 30 40 50
20 — Re(Fo >0 — Re(F)
Im(Fy) Will discuss this 40 4 Im(Fy)
Y peak shortly 30
w o I) E:20—
20
10 A
_40_7 0
/0.0(; 0.125 O.ISO 0.175 1.IOO 1.125 1.150 1.175 2.00 0.00 0.125 O.:SO 0.175 1.IOO 1.125 1.:50 1.175 2.00

Peak at 0.2 k k

“Exact” in that inverse DFT gives the same
function back up to rounding errors

5 0.00

F(k)
o

—0.50 A

Real and imaginary parts

* Real parts represent even functions (e.g., Cosine)
* Imaginary parts represent odd functions (e.g., Sine)

* Could also think in terms of amplitude and phase

* For real f,:

N-1 S
Re(Fy) = Z fn COS(7;\7;)
n=0

N-1
Im(Fy) = Z fn sin (27;\7[116)
n=0

Frequencies in DFTs

* In the DFT, the physical coordinate value, x,,, does not enter—instead,
we just look at the index n itself
* Assumes data is regularly gridded

* Many FFT routines will return frequencies in “index” space, e.g., Kfq
=0, 1/N, 2/N, 3/N, ...

* Lowest frequency: 1/L (corresponds largest wavelength, A = L: entire
domain)

* Highest frequency ~ N/L ~ 1/Ax (corresponds to shortest wavelength,
A = Ax)

k=0 is the DC offset

e Real part is the average:
N-—1
Re(Fp) = Z fn coS (
n=0

N-1
Im(Fp) = Z fn sin (
n=0

2T

N

27N
N

-

-

Caveat: DFT exact only for sampled points

(Newman)

N / N\
\ / \
! / ®

2
. \ _ J
\\ /'. . \\/ /
> A ——

N // \
S T D -
\‘____/,‘/ y \ f\‘_,/
l A

Same DFT

* Functions with the same values at the sample points will have the
same DFT

DFTs of real functions

* Works for real or complex functions, but most of the time, we have
real data

* If f, is real, we can simplify further:

1
* Consider F, for k in the upper half of the range: k = N-r where:1 < r < §N

N-1
_ Z I exp (_Z,QT('(N > Z ‘ exp(27?7“71) _
n=0

1
* Therefore, for real functions, only need to calculate F, for 0 < k < 2N

What can we do with the DFT? E.g., filtering

* Can use DFT to remove wither high or low frequency “noise” from a

signal
* E.g., three sine functions:

Remove frequencies in DFT one at a time:

fx)

What can we do with the DFT? E.g., filtering

* Sin function with noise:

—50 4

—100 A

—150 A

—200 A

:
:
§
|

00 05 10 15

2.0
Yk

2.5

1.5 A

1.0 1

0.5 1

0.0 A

—0.5 1

—1.01

—1.5 4

30

40

50

F(k)

1.5

1.0 1

0.5

0.0 A

—0.51

—1.0 A1

—-1.5 1

o4

—50 A

—100 A

—150 1

—200 A

0.0

1.0 1

0.5 1

0.0 A

—-0.51

—1.0 A1

o4

F(k)

* Error function wit

—— Erf function with|noise
—— Erf function

150 A

100 A

50

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

F(k)

N noise:

150 A

100 A

50 A

0.75 1.00 1.25 1.50 1.75 2.00
k

0.00 0.25 0.50

2.01

1.51

1.0 1

0.5

0.0 1

f(x)

Two-dimensional Fourier transforms

e Simply transform with respect to one variable and then the other

* Consider function on M x N grid
e 1. Perform DFT on each of the M rOws:

2min
= z fomexp (—1 3")

e 2. Take Ith coefficientin each of the M rows and DFT:
M—1

21k
Fry = Z F! exp (—z 7;\4771)

m=0

* Combining these giveS'
—1N-1

Fip = > >1fmn€XP {—227T<]j\;n | Zj)}

m=0 n=0

COSine tra nSfOrmatiOn (see Newman Sec. 7.3)

(Newman)

| |
IIIIIIIIIII

A

1Y
Mirror Function

e Can also construct Fourier series from using sine and cosine functions instead of
complex exponentials

e Cosine series: Can only represent functions symmetric about the midpoint of the
interval

* Can enforce this for any function by mirroring it, and then repeating the mirrored function
e Different ways of writing it (see Newman):

~— rk(n + 2 — rk(n + 2
Fk_nzofnCOS((N+2)>’ In %ZFkCOS((N—l_Z))

llllll
I 1 T I *

Benefits of the cosine transformation

* Only involves real functions

* Does not assume samples are periodic (i.e., first point and last point
are the same)

e Avoids discontinuities from periodically repeating function over interval
* Often preferable for data that is not intrinsically periodic

* Used for compressing images and other media
* JPEG, MPEG

* Can also define a sine transformation
e Requires that function vanish at either end of its range

Fast Fourier transforms

* DFTs shown before have a double sum, so scale something like N?
operations
* We can do it in much less

— 2mnk
* Consider the DFT: Fj = E:O fnexp (—z N)

* Take the number of samples to be a power of 2: N =27

* Break F, into n even and n odd. For the even terms:
iIN-1 iIN-1

2wk (2r) 2mkr
B = Z Jor €xp (—”L) Z Jor €xp <—Z N/2)

e Just another Fourier transform, but with N/2 samples

Fast Fourier transforms continued

 For the odd terms:

IN—-1
2mk(2r + 1 . 0 |
f27~_|_1 exp <_Z 7 (]\7; +)) _ 6—7,27T]€/N ;:0: f27"—|—1 exp <—Z]\7;/;> :6—127Tk/N

 Therefore:
Fk _ ngen _I_ e—iQWk/NF]g)dd

e So full DFT is sum of two DFTs with half as many points

* Now repeat the process until we get down to a single sample where:

0
ko = Z fne’ = fo
n=0

odd
Fk

Procedure for FFT

e 1. Start with (trivial) FT of single samples:
0
Fo=> fne’ = fo
n=0

e 2. Combine them in pairs using:

—i27k /N podd
Fk:ngen‘F@ 127k / FIS

* 3. Continue combining into fours, eights, etc. until the full transform
on the full set of samples is reconstructed

Speed up

* First “round” we have N samples

* Next round we combine these into pairs to make N/2 transforms with
two coefficients each: N coefficients

* Next round we combine these into fours to make N/4 transforms with
four coefficients each: N coefficients

* For 2™ samples we have m = log, N levels, so the number of
coefficients we have to calculate is N log, N

* Way better scaling than N?!

Speed up of FFT vs DFT

107 -

1072 5

® DFI b
»
i d
»
® FFT '
»
»
i d
2 i d
..... < N
R
i d
------ « Nlog,N
[
i d
i d
i d
i d
»
L B
»
i d
»
»
»
»
0.
i d
”
, @
» .
¢ “‘
» “
: o
o’ e
i d
[K ,
’ »
,*
i d “
. o.
o .. -
»
»
» s®
’ o .-
” s
.
» »
» '
R .*
i d “
i d »
» P4
» »
.’
i d
» . »*
”
» »*
’ P
4 »
» »
» »
» P
o *
.
»
R
’.
.t
»
T T T T

Number of samples

Libraries for FF

* FFTW (fastest Fourier transform in the west)
e https://www.fftw.org/
e Csubroutine library
* Open source

* Intel MKL (math kernel library)

* https://software.intel.com/content/www/us/en/develop/tools/oneapi/comp
onents/onemkl.html#gs.bu9rfp

Written in C/C++, fortran

Also involves linear algebra routines

Not open source, but freely available

Often very fast, especially on intel processors

https://www.fftw.org/
https://www.fftw.org/
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/onemkl.html#gs.bu9rfp
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/onemkl.html#gs.bu9rfp
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/onemkl.html#gs.bu9rfp

Python’s fft

 numpy.fft: https://numpy.org/doc/stable/reference/routines.fft.html

o fft/ifft: 1-d data

* By design, the k=0, ... N/2 data is first, followed by the negative
frequencies. These later are not relevant for a real-valued f(x)

* k's can be obtained from fftfreq(n)
e fftshift(x) shifts the k=0 to the center of the spectrum

o rfft/irfft: for 1-d real-valued functions. Basically the same as fft/ifft,
but doesn't return the negative frequencies

e 2-d and n-d routines analogously defined

https://numpy.org/doc/stable/reference/routines.fft.html

Today’s lecture:
FFT and Curve fitting

e Curve fitting

Fitting data

* We have discussed interpolation, now we’ll talk about fitting

* Interpolation seeks to fill in missing information in some small region of the
whole dataset

* Fitting a function to the data seeks to produce a model (guided by physical
intuition) so you can learn more about the global behavior of your data

* Goal is to understand data by finding a simple function that best
represents the data

* Previous discussion on linear algebra and root finding comes into play

* We will follow Garcia (Sec. 5.1)
* Big topic, we’ll just look at the basics

Notation

0.0 25 50 7.5 10.0 125 15.0 17.5 20.0

General theory of fitting

* We have a dataset of N points (x,y;)

* Would like to “fit” this dataset to a function Y(x,{a;})

* {a;} is a set of M adjustable parameters
* Find the value of these parameters that minimizes the distance between data

points and curve: A; = Y(xi, {aj}) —

* Curve-fitting criteria: Minimize the sum of the squares
N-1

D({a;}) = ZAz > Y (wi,{aj}) — wil?

1=0

e “Least squares fit”
* Not the only way, but the most common

General theory of fitting

 Often data points have estimated error bars/confidence intervals o;
* Modify fit criterion to give less weight to points with the most error

O; o
i=0 ¢ i=0 [

* 2 most used fitting function
* Errors have a Gaussian distribution

* We will not discuss “validation” of curve fitted to data
* i.e., probability that the data is described by a given curve

Linear regression

* Now that we have criteria for a good fit, we need to find {a/}

* First consider the simplest example: fitting data with a straight line
Y(jSa {Cl,o, a/l}) = ap + 41T

* Such that y? is minimized:
N— 1

Z CL0+CL1£U@ yz_]z

CL(),G,l

1=0 9

Oy? — gl axz
X _ 9 ! —0, Z 0o+ a1
6’@0 O aa() _

N —

1 =0

Linear regression: Finding coefficients

* Minimize y? with respect to coefficients:

N—1
ag + a1x; — Y;

Yi

i=0 ? — Z
e \We can write as:

CLQS + alZm — Ey — O, aOZx -+ CL12$2 — ny =0

e Where coefficients are known:

1

N —
1 B T; B Ui B xzz -
—2 p— E —2 p— —2] Ex2 p— —2] ny p—
g, i=0 g; : 7 :)

=0

Linear regression: Finding coefficients
* Solving for a, and a;:
2, a2 — Sy STy — 2,5,
TS (B0 T 58, - (5,)

* Note that if g; is constant, it will cancel out

* Now let’s define an error bar for the curve-fitting parameter g;

N—1 2
2 Z da 2
O-G,j — a O-’L
1=0 Yi Both independent

» See: https://en.wikipedia.org/wiki/Propagation of uncertainy of y,
* For our linear case (after some algebra):

- 5 . - S
T TSy — (3,027 Cn T\ ST - ()2

https://en.wikipedia.org/wiki/Propagation_of_uncertainty

Linear regression: Errors in coefficients

* |f error bars are constant:

(z2)
: \F (22) = ()

Oq

variance

e Where: N-—1 N—1

1 1

1=0

* |f data does not have error bars, we can estimate o, from the sample
variance (https://en.wikipedia.org/wiki/Variance)

Sample std deviation N—1
E 1

: ogp = S
N-2 since already extracted a0 4) N — 9

and al from data 1=0

— (ao + alxi)]Q

https://en.wikipedia.org/wiki/Variance

Nonlinear regression (with two variables)

* We have been discussing fitting a linear function, but many nonlinear
curve-fitting problems can be transformed into linear problems

* Examples: Z(z,{c, B}) = ae’®

* Rewritewith: InZ =Y, lna=ag, [=a

e Result: Y =apg+a1x

General least squares fit

* No analytic solution to general least squares problem, but can solve
numerically

 Generalize to functions of the form:

M—1
Y(zi,{a;}) = aoYo(z) + aaYi(z) + -+ ap-1Yu-1(z) =) a;Y;(x)
=0
) 2
aXZ a N—1 1 M—1
* Now minimize y?: = — arpYi(z;) —y;| =0
Haj; ey} = of ,;) _

N1y (g, [M 7
= 3022 > anYe(w) —yi| =0
i=0 it [k=0]

General least-squares fit

* From previous slide, we have:
N—1M-1

~ Vi) Ye(xs) Y;(x:)yi
>4 >4 5 dr = 5
: O : O
1=0 k=0 v 1=0 v

» Set of j equations known as normal equations of the least-squares
problem (Y’s may be nonlinear, but linear in a’s)

* Define design matrix with elements A; = Y(x;)/ o;:
_YO (CC()) Yl (33‘0)

00 00
A — Yo(z1) Yi(zi1)
T 01 01

* Only depends on independent variables (not ;)

General least-squares ﬁt

M1y Y () N-ly (o
» With design matrix, we can rewrite: S‘ My i Y1) gy = >
4)
i=0 k=0 73 i
—1M-—1 "
¢ AS' S‘ S: Az]Azka/k — Z A@] - —> (A.TA.)a — A.Tb
1=0 k=0

* Where b=y.,/c;
* Thus: a=(ATA)'A'Db

 Or, we can solve for a via Gaussian elimination

Goodness of fit

e Usually, we have N >> M, the number of data points is much greater
than the number of fitting variables

* Given the error bars, how likely is it that the curve actually describes
the data?

* Rule of thumb: If the fit is good, on average the difference should be
approximately equal to the error bars

yi — Y (x3)| = 0y
* Plugging in gives »? equal to N. Since we know we can have a perfect
fit for M=N, we postulate:

, Y~ N-—-M
e If X* > N — M, probably not an appropriate function (or too small
error bars

o |If x2 < N — M, fitis too good, error bars may be too large

Least squares fitting example:

Linear regression, linear function Polynomial regression (order 2), quadratic function

Comments on general least squares

* In the example, we used polynomials as our functions, but can use
linear combinations of any functions we would like

* We choose functions strategically to get the best least squares fit

e Often choosing orthogonal basis functions in the range of the fit will produce
better fits

* The matrix ATA is notoriously ill conditioned especially for increased
number of basis functions

e Gaussian substitution will have problems solving (numpy solve uses singular-
value decomposition)

* Procedure can be generalized if we also have errors in x

Nonlinear least-squares fitting

* Even in the polynomial case, we were using linear combinations of functions
* We can also directly fit a function whose parameters enter nonlinearly

* Consider the function: f(ag,a1) = age®*”
N
* Want to minimize: () = Z(yz — age®t®i)?
i=1
.- 0Q _ N~ aver(an
* Take derivatives: fy = B = D¢ “(ape™® —y;) =0,
4o 1=1
N
0
Ji= (?TQ — Z:Eiealx’b (apge™™ —y;) =0
1 4

Nonlinear least-squares fitting

* Produces a nonlinear system—we can use the multivariate root-
finding techniques we learned earlier:
 Compute the Jacobian
e Take an initial guess for unknown coefficients
* Use Newton-Raphson techniques to compute the correction:

da] — do —J_lf

* |[terate

* Can be very difficult to converge, and highly dependent on the initial
guess

Fitting packages

* Fitting is a very sensitive procedure—especially for nonlinear cases

* Lots of minimization packages exist that offer robust fitting
procedures

* MINUIT2: the standard package in high-energy physics (Python
version: PyMinuit and Iminuit)

* MINPACK: Fortran library for solving least squares problems —this is
what is used under the hood for the built in SciPy least squares
routine

e http://www.netlib.org/minpack/

* SciPy optimize:
https://docs.scipy.org/doc/scipy/reference/optimize.html

http://www.netlib.org/minpack/
http://www.netlib.org/minpack/
https://docs.scipy.org/doc/scipy/reference/optimize.html

After class tasks

* Homework 3 will be posted tomorrow

* Homework 1 is graded, see GRADES.md in your repositories

* Readings
* FFTs:

* Newman Ch.7
* https://en.wikipedia.org/wiki/Discrete Fourier transform

* Linear regression:
» Wikipedia page on varience
* Wikipedia page on propagation of errors
* Garcia Sec. 5.1

https://en.wikipedia.org/wiki/Discrete_Fourier_transform
https://en.wikipedia.org/wiki/Discrete_Fourier_transform
https://en.wikipedia.org/wiki/Variance
https://en.wikipedia.org/wiki/Variance
https://en.wikipedia.org/wiki/Propagation_of_uncertainty
https://en.wikipedia.org/wiki/Propagation_of_uncertainty

	Slide 1: PHY604 Lecture 13
	Slide 2: Today’s lecture: FFTs and curve fitting
	Slide 3: Review: Discrete Fourier transform
	Slide 4: Example: Fourier transform of monochromatic functions
	Slide 5: “Exact” in that inverse DFT gives the same function back up to rounding errors
	Slide 6: Real and imaginary parts
	Slide 7: Frequencies in DFTs
	Slide 8: k=0 is the DC offset
	Slide 9: Caveat: DFT exact only for sampled points
	Slide 10: DFTs of real functions
	Slide 11: What can we do with the DFT? E.g., filtering
	Slide 12: What can we do with the DFT? E.g., filtering
	Slide 13: Two-dimensional Fourier transforms
	Slide 14: Cosine transformation (see Newman Sec. 7.3)
	Slide 15: Benefits of the cosine transformation
	Slide 16: Fast Fourier transforms
	Slide 17: Fast Fourier transforms continued
	Slide 18: Procedure for FFT
	Slide 19: Speed up
	Slide 20: Speed up of FFT vs DFT
	Slide 21: Libraries for FFT
	Slide 22: Python’s fft
	Slide 23: Today’s lecture: FFT and Curve fitting
	Slide 24: Fitting data
	Slide 25: Notation
	Slide 26: General theory of fitting
	Slide 27: General theory of fitting
	Slide 28: Linear regression
	Slide 29: Linear regression: Finding coefficients
	Slide 30: Linear regression: Finding coefficients
	Slide 31: Linear regression: Errors in coefficients
	Slide 32: Nonlinear regression (with two variables)
	Slide 33: General least squares fit
	Slide 34: General least-squares fit
	Slide 35: General least-squares fit
	Slide 36: Goodness of fit
	Slide 37: Least squares fitting example:
	Slide 38: Comments on general least squares
	Slide 39: Nonlinear least-squares fitting
	Slide 40: Nonlinear least-squares fitting
	Slide 41: Fitting packages
	Slide 42: After class tasks

