
PHY604 Lecture 13
October 7, 2025



Today’s lecture: 
FFTs and curve fitting

• Fast Fourier Transforms

• Curve fitting



Review: Discrete Fourier transform
• Assume function evaluated on equally-spaced points n:

• (dropped the 1/N from pervious slide, matter of convention)

• This is the discrete Fourier transform (DFT)

• Does not require us to know the positions xn of sample points, or even width L

• We can define an inverse discrete Fourier transform to recover the 
initial function:

• (1/N reappears)

• “Exact” (up to rounding errors), even though we used the trapezoid 
rule
• see e.g., Newman Sec. 7.2



Example: Fourier transform of monochromatic functions

• f(x)=sin(20x) with 0 = 0.2:
• Peak in the imaginary part will appear at 

the characteristic frequency 0

Peak at 0.2

Will discuss this 
peak shortly

• f(x)=cos(20x) with 0 = 0.2:
• Peak in the real part will appear at the 

characteristic frequency 0 



“Exact” in that inverse DFT gives the same 
function back up to rounding errors



Real and imaginary parts

• Real parts represent even functions (e.g., Cosine)

• Imaginary parts represent odd functions (e.g., Sine)

• Could also think in terms of amplitude and phase

• For real fn:



Frequencies in DFTs

• In the DFT, the physical coordinate value, xn , does not enter—instead, 
we just look at the index n itself
• Assumes data is regularly gridded

• Many FFT routines will return frequencies in “index” space, e.g., kfreq 
= 0, 1/N, 2/N, 3/N, ...

• Lowest frequency: 1/L (corresponds largest wavelength, λ = L: entire 
domain)

• Highest frequency ~ N/L ~ 1/Δx (corresponds to shortest wavelength, 
λ = Δx)



k=0 is the DC offset

• Real part is the average:



Caveat: DFT exact only for sampled points

• Functions with the same values at the sample points will have the 
same DFT

Same DFT

(Newman)



DFTs of real functions

• Works for real or complex functions, but most of the time, we have 
real data

• If fn is real, we can simplify further: 

• Consider Fk for k in the upper half of the range: k = N-r where: 

• Therefore, for real functions, only need to calculate Fk for



What can we do with the DFT? E.g., filtering 

• Can use DFT to remove wither high or low frequency “noise” from a 
signal 

• E.g., three sine functions:

Remove frequencies in DFT one at a time: 



What can we do with the DFT? E.g., filtering 
• Sin function with noise: • Error function with noise:



Two-dimensional Fourier transforms
• Simply transform with respect to one variable and then the other

• Consider function on M x N grid
• 1. Perform DFT on each of the M rows:

• 2.  Take lth coefficient in each of the M rows and DFT:

• Combining these gives:



Cosine transformation (see Newman Sec. 7.3)

• Can also construct Fourier series from using sine and cosine functions instead of 
complex exponentials

• Cosine series: Can only represent functions symmetric about the midpoint of the 
interval
• Can enforce this for any function by mirroring it, and then repeating the mirrored function

• Different ways of writing it (see Newman): 

(Newman)

FunctionMirror



Benefits of the cosine transformation

• Only involves real functions

• Does not assume samples are periodic (i.e., first point and last point 
are the same)
• Avoids discontinuities from  periodically repeating function over interval

• Often preferable for data that is not intrinsically periodic

• Used for compressing images and other media
• JPEG, MPEG

• Can also define a sine transformation
• Requires that function vanish at either end of its range



Fast Fourier transforms
• DFTs shown before have a double sum, so scale something like N2 

operations
• We can do it in much less

• Consider the DFT:

• Take the number of samples to be a power of 2: N = 2m

• Break Fk into n even and n odd. For the even terms:

• Just another Fourier transform, but with N/2 samples



Fast Fourier transforms continued
• For the odd terms:

• Therefore:

• So full DFT is sum of two DFTs with half as many points

• Now repeat the process until we get down to a single sample where:



Procedure for FFT

• 1. Start with (trivial) FT of single samples:

• 2. Combine them in pairs using:

• 3. Continue combining into fours, eights, etc. until the full transform 
on the full set of samples is reconstructed



Speed up
• First “round” we have N samples

• Next round we combine these into pairs to make N/2 transforms with 
two coefficients each: N coefficients

• Next round we combine these into fours to make N/4 transforms with 
four coefficients each: N coefficients

• …

• For 2m samples we have m = log2 N levels, so the number of 
coefficients we have to calculate is N log2 N

• Way better scaling than N2!



Speed up of FFT vs DFT



Libraries for FFT
• FFTW (fastest Fourier transform in the west)

• https://www.fftw.org/

• C subroutine library

• Open source

• Intel MKL (math kernel library)
• https://software.intel.com/content/www/us/en/develop/tools/oneapi/comp

onents/onemkl.html#gs.bu9rfp

• Written in C/C++, fortran

• Also involves linear algebra routines 

• Not open source, but freely available

• Often very fast, especially on intel processors

https://www.fftw.org/
https://www.fftw.org/
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/onemkl.html#gs.bu9rfp
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/onemkl.html#gs.bu9rfp
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/onemkl.html#gs.bu9rfp


Python’s fft
• numpy.fft:  https://numpy.org/doc/stable/reference/routines.fft.html

• fft/ifft: 1-d data
• By design, the k=0, ... N/2 data is first, followed by the negative 

frequencies.  These later are not relevant for a real-valued f(x)

• k's can be obtained from fftfreq(n)

• fftshift(x) shifts the k=0 to the center of the spectrum

• rfft/irfft: for 1-d real-valued functions.  Basically the same as fft/ifft, 
but doesn't return the negative frequencies

• 2-d and n-d routines analogously defined

https://numpy.org/doc/stable/reference/routines.fft.html


Today’s lecture: 
FFT and Curve fitting

• Fast Fourier Transforms

• Curve fitting



Fitting data

• We have discussed interpolation, now we’ll talk about fitting
• Interpolation seeks to fill in missing information in some small region of the 

whole dataset

• Fitting a function to the data seeks to produce a model (guided by physical 
intuition) so you can learn more about the global behavior of your data

• Goal is to understand data by finding a simple function that best 
represents the data
• Previous discussion on linear algebra and root finding comes into play

• We will follow Garcia (Sec. 5.1)
• Big topic, we’ll just look at the basics



Notation

i

(xi,yi)

Y(x,{aj})



General theory of fitting
• We have a dataset of N points (xi,yi)

• Would like to “fit” this dataset to a function Y(x,{aj})
• {aj} is a set of M adjustable parameters

• Find the value of these parameters that minimizes the distance between data 
points and curve:

• Curve-fitting criteria: Minimize the sum of the squares

• “Least squares fit”
• Not the only way, but the most common



General theory of fitting

• Often data points have estimated error bars/confidence intervals i

• Modify fit criterion to give less weight to points with the most error

• 2 most used fitting function
• Errors have a Gaussian distribution

• We will not discuss “validation” of curve fitted to data
• i.e., probability that the data is described by a given curve



Linear regression

• Now that we have criteria for a good fit, we need to find {ai}

• First consider the simplest example: fitting data with a straight line

• Such that 2 is minimized:



Linear regression: Finding coefficients
• Minimize 2 with respect to coefficients:

• We can write as:

• Where coefficients are known:



Linear regression: Finding coefficients
• Solving for a0 and a1:

• Note that if i is constant, it will cancel out

• Now let’s define an error bar for the curve-fitting parameter aj

• See: https://en.wikipedia.org/wiki/Propagation_of_uncertainty

• For our linear case (after some algebra):

Both independent 
of yi

https://en.wikipedia.org/wiki/Propagation_of_uncertainty


Linear regression: Errors in coefficients
• If error bars are constant:

• Where: 

• If data does not have error bars, we can estimate 0 from the sample 
variance (https://en.wikipedia.org/wiki/Variance)

variance

N-2 since already extracted a0 
and a1 from data

Sample std deviation

https://en.wikipedia.org/wiki/Variance


Nonlinear regression (with two variables)

• We have been discussing fitting a linear function, but many nonlinear 
curve-fitting problems can be transformed into linear problems

• Examples: 

• Rewrite with:

• Result: 

 



General least squares fit

• No analytic solution to  general least squares problem, but can solve 
numerically

• Generalize to functions of the form:

• Now minimize 2:



General least-squares fit

• From previous slide, we have:

• Set of j equations known as normal equations of the least-squares 
problem (Y’s may be nonlinear, but linear in a’s)

• Define design matrix with elements Aij = Yj(xi)/i:

• Only depends on independent variables (not yi)



General least-squares fit

• With design matrix, we can rewrite:

• As:

• Where bi=yi/i

• Thus:

• Or, we can solve for a via Gaussian elimination



Goodness of fit
• Usually, we have N >> M, the number of data points is much greater 

than the number of fitting variables

• Given the error bars, how likely is it that the curve actually describes 
the data?

• Rule of thumb: If the fit is good, on average the difference should be 
approximately equal to the error bars

• Plugging in gives 2 equal to N. Since we know we can have a perfect 
fit for M=N, we postulate: 

• If           , probably not an appropriate function (or too small 
error bars

• If           , fit is too good, error bars may be too large



Least squares fitting example:
Linear regression, linear function

Linear regression, quadratic function

Polynomial regression (order 2), quadratic function

Polynomial regression (order 10), quadratic function



Comments on general least squares

• In the example, we used polynomials as our functions, but can use 
linear combinations of any functions we would like

• We choose functions strategically to get the best least squares fit
• Often choosing orthogonal basis functions in the range of the fit will produce 

better fits

• The matrix ATA is notoriously ill conditioned especially for increased 
number of basis functions
• Gaussian substitution will have problems solving (numpy solve uses singular-

value decomposition)

• Procedure can be generalized if we also have errors in x



Nonlinear least-squares fitting
• Even in the polynomial case, we were using linear combinations of functions

• We can also directly fit a function whose parameters enter nonlinearly 

• Consider the function: 

• Want to minimize:

• Take derivatives:



Nonlinear least-squares fitting

• Produces a nonlinear system—we can use the multivariate root-
finding techniques we learned earlier:
• Compute the Jacobian

• Take an initial guess for unknown coefficients

• Use Newton-Raphson techniques to compute the correction:

• Iterate

• Can be very difficult to converge, and highly dependent on the initial 
guess



Fitting packages

• Fitting is a very sensitive procedure—especially for nonlinear cases

• Lots of minimization packages exist that offer robust fitting 
procedures

• MINUIT2: the standard package in high-energy physics (Python 
version: PyMinuit and Iminuit)

• MINPACK: Fortran library for solving least squares problems—this is 
what is used under the hood for the built in SciPy least squares 
routine

• http://www.netlib.org/minpack/

• SciPy optimize: 
https://docs.scipy.org/doc/scipy/reference/optimize.html

http://www.netlib.org/minpack/
http://www.netlib.org/minpack/
https://docs.scipy.org/doc/scipy/reference/optimize.html


After class tasks

• Homework 3 will be posted tomorrow

• Homework 1 is graded, see GRADES.md in your repositories

• Readings
• FFTs:

• Newman Ch. 7

• https://en.wikipedia.org/wiki/Discrete_Fourier_transform

• Linear regression:
• Wikipedia page on varience

• Wikipedia page on propagation of errors

• Garcia Sec. 5.1

https://en.wikipedia.org/wiki/Discrete_Fourier_transform
https://en.wikipedia.org/wiki/Discrete_Fourier_transform
https://en.wikipedia.org/wiki/Variance
https://en.wikipedia.org/wiki/Variance
https://en.wikipedia.org/wiki/Propagation_of_uncertainty
https://en.wikipedia.org/wiki/Propagation_of_uncertainty

	Slide 1: PHY604 Lecture 13
	Slide 2: Today’s lecture:  FFTs and curve fitting
	Slide 3: Review: Discrete Fourier transform
	Slide 4: Example: Fourier transform of monochromatic functions
	Slide 5: “Exact” in that inverse DFT gives the same function back up to rounding errors
	Slide 6: Real and imaginary parts
	Slide 7: Frequencies in DFTs
	Slide 8: k=0 is the DC offset
	Slide 9: Caveat: DFT exact only for sampled points
	Slide 10: DFTs of real functions
	Slide 11: What can we do with the DFT? E.g., filtering 
	Slide 12: What can we do with the DFT? E.g., filtering 
	Slide 13: Two-dimensional Fourier transforms
	Slide 14: Cosine transformation (see Newman Sec. 7.3)
	Slide 15: Benefits of the cosine transformation
	Slide 16: Fast Fourier transforms
	Slide 17: Fast Fourier transforms continued
	Slide 18: Procedure for FFT
	Slide 19: Speed up
	Slide 20: Speed up of FFT vs DFT
	Slide 21: Libraries for FFT
	Slide 22: Python’s fft
	Slide 23: Today’s lecture:  FFT and Curve fitting
	Slide 24: Fitting data
	Slide 25: Notation
	Slide 26: General theory of fitting
	Slide 27: General theory of fitting
	Slide 28: Linear regression
	Slide 29: Linear regression: Finding coefficients
	Slide 30: Linear regression: Finding coefficients
	Slide 31: Linear regression: Errors in coefficients
	Slide 32: Nonlinear regression (with two variables)
	Slide 33: General least squares fit
	Slide 34: General least-squares fit
	Slide 35: General least-squares fit
	Slide 36: Goodness of fit
	Slide 37: Least squares fitting example:
	Slide 38: Comments on general least squares
	Slide 39: Nonlinear least-squares fitting
	Slide 40: Nonlinear least-squares fitting
	Slide 41: Fitting packages
	Slide 42: After class tasks

