PHY604 Lecture 13

October 7, 2025



Today’s lecture:
FFTs and curve fitting

e Fast Fourier Transforms

e Curve fitting



Review: Discrete Fourier transform

e Assume function evaluated on equally-spaced points n:

2mnk
Fk— anexp<—z N )

* (dropped the 1/N from pervious slide, matter of convention)
* This is the discrete Fourier transform (DFT)
* Does not require us to know the positions x,, of sample points, or even width L

 We can define an inverse discrete Fourier transform to recover the

initial function: N-—1
1 2mnk
Jn= = ,;_O Fi.exp (z 7;\7; )

* (1/N reappears)

* “Exact” (up to rounding errors), even though we used the trapezoid
rule

* see e.g., Newman Sec. 7.2



Example: Fourier transform of monochromatic functions

* f(x)=sin(2 rvyx) with v, =0.2: * f(x)=cos(2 rvyx) with vy =0.2:
* Peak in the imaginary part will appear at * Peak in the real part will appear at the
the characteristic frequency v, characteristic frequency v,
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“Exact” in that inverse DFT gives the same
function back up to rounding errors
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Real and imaginary parts

* Real parts represent even functions (e.g., Cosine)
* Imaginary parts represent odd functions (e.g., Sine)

* Could also think in terms of amplitude and phase

* For real f,:

N-1 S
Re(Fy) = Z fn COS( 7;\7; )
n=0

N-1
Im(Fy) = Z fn sin (27;\7[116)
n=0




Frequencies in DFTs

* In the DFT, the physical coordinate value, x,,, does not enter—instead,
we just look at the index n itself
* Assumes data is regularly gridded

* Many FFT routines will return frequencies in “index” space, e.g., Kfq
=0, 1/N, 2/N, 3/N, ...

* Lowest frequency: 1/L (corresponds largest wavelength, A = L: entire
domain)

* Highest frequency ~ N/L ~ 1/Ax (corresponds to shortest wavelength,
A = Ax)



k=0 is the DC offset

e Real part is the average:
N-—1
Re(Fp) = Z fn coS (
n=0

N-1
Im(Fp) = Z fn sin (
n=0
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Caveat: DFT exact only for sampled points

(Newman)
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* Functions with the same values at the sample points will have the
same DFT



DFTs of real functions

* Works for real or complex functions, but most of the time, we have
real data

* If f, is real, we can simplify further:

1
* Consider F, for k in the upper half of the range: k = N-r where:1 < r < §N

N-1
_ Z I exp (_Z,QT('(N > Z ‘ exp( 27?7“71) _
n=0

1
* Therefore, for real functions, only need to calculate F, for 0 < k < 2N




What can we do with the DFT? E.g., filtering

* Can use DFT to remove wither high or low frequency “noise” from a

signal
* E.g., three sine functions:

Remove frequencies in DFT one at a time:




fx)

What can we do with the DFT? E.g., filtering

* Sin function with noise:
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Two-dimensional Fourier transforms

e Simply transform with respect to one variable and then the other

* Consider function on M x N grid
e 1. Perform DFT on each of the M rOws:

2min
= z fomexp (—1 3" )

e 2. Take Ith coefficientin each of the M rows and DFT:
M—1

21k
Fry = Z F!  exp (—z 7;\4771)

m=0

* Combining these giveS'
—1N-1

Fip = > >1fmn€XP {—227T<]j\;n | Zj)}

m=0 n=0




COSine tra nSfOrmatiOn (see Newman Sec. 7.3)

(Newman)
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e Can also construct Fourier series from using sine and cosine functions instead of
complex exponentials

e Cosine series: Can only represent functions symmetric about the midpoint of the
interval

* Can enforce this for any function by mirroring it, and then repeating the mirrored function
e Different ways of writing it (see Newman):

~— rk(n + 2 — rk(n + 2
Fk_nzofnCOS( (N+2)>’ In %ZFkCOS( (N—l_Z))
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Benefits of the cosine transformation

* Only involves real functions

* Does not assume samples are periodic (i.e., first point and last point
are the same)

e Avoids discontinuities from periodically repeating function over interval
* Often preferable for data that is not intrinsically periodic

* Used for compressing images and other media
* JPEG, MPEG

* Can also define a sine transformation
e Requires that function vanish at either end of its range



Fast Fourier transforms

* DFTs shown before have a double sum, so scale something like N?
operations
* We can do it in much less

— 2mnk
* Consider the DFT: Fj = E:O fnexp (—z N )

* Take the number of samples to be a power of 2: N =27

* Break F, into n even and n odd. For the even terms:
iIN-1 iIN-1

2wk (2r) 2mkr
B = Z Jor €xp (—”L ) Z Jor €xp <—Z N/2 )

e Just another Fourier transform, but with N/2 samples



Fast Fourier transforms continued

 For the odd terms:

IN—-1
2mk(2r + 1 . 0 |
f27~_|_1 exp <_Z 7 (]\7; + )) _ 6—7,27T]€/N ;:0: f27"—|—1 exp <—Z ]\7;/;> :6—127Tk/N

 Therefore:
Fk _ ngen _I_ e—iQWk/NF]g)dd

e So full DFT is sum of two DFTs with half as many points

* Now repeat the process until we get down to a single sample where:

0
ko = Z fne’ = fo
n=0

odd
Fk



Procedure for FFT

e 1. Start with (trivial) FT of single samples:
0
Fo=> fne’ = fo
n=0

e 2. Combine them in pairs using:

—i27k /N podd
Fk:ngen‘F@ 127k / FIS

* 3. Continue combining into fours, eights, etc. until the full transform
on the full set of samples is reconstructed



Speed up

* First “round” we have N samples

* Next round we combine these into pairs to make N/2 transforms with
two coefficients each: N coefficients

* Next round we combine these into fours to make N/4 transforms with
four coefficients each: N coefficients

* For 2™ samples we have m = log, N levels, so the number of
coefficients we have to calculate is N log, N

* Way better scaling than N?!



Speed up of FFT vs DFT
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Libraries for FF

* FFTW (fastest Fourier transform in the west)
e https://www.fftw.org/
e Csubroutine library
* Open source

* Intel MKL (math kernel library)

* https://software.intel.com/content/www/us/en/develop/tools/oneapi/comp
onents/onemkl.html#gs.bu9rfp

Written in C/C++, fortran

Also involves linear algebra routines

Not open source, but freely available

Often very fast, especially on intel processors



https://www.fftw.org/
https://www.fftw.org/
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/onemkl.html#gs.bu9rfp
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/onemkl.html#gs.bu9rfp
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/onemkl.html#gs.bu9rfp

Python’s fft

 numpy.fft: https://numpy.org/doc/stable/reference/routines.fft.html

o fft/ifft: 1-d data

* By design, the k=0, ... N/2 data is first, followed by the negative
frequencies. These later are not relevant for a real-valued f(x)

* k's can be obtained from fftfreq(n)
e fftshift(x) shifts the k=0 to the center of the spectrum

o rfft/irfft: for 1-d real-valued functions. Basically the same as fft/ifft,
but doesn't return the negative frequencies

e 2-d and n-d routines analogously defined


https://numpy.org/doc/stable/reference/routines.fft.html

Today’s lecture:
FFT and Curve fitting

e Curve fitting



Fitting data

* We have discussed interpolation, now we’ll talk about fitting

* Interpolation seeks to fill in missing information in some small region of the
whole dataset

* Fitting a function to the data seeks to produce a model (guided by physical
intuition) so you can learn more about the global behavior of your data

* Goal is to understand data by finding a simple function that best
represents the data

* Previous discussion on linear algebra and root finding comes into play

* We will follow Garcia (Sec. 5.1)
* Big topic, we’ll just look at the basics



Notation

0.0 25 50 7.5 10.0 125 15.0 17.5 20.0



General theory of fitting

* We have a dataset of N points (x,y;)

* Would like to “fit” this dataset to a function Y(x,{a;})

* {a;} is a set of M adjustable parameters
* Find the value of these parameters that minimizes the distance between data

points and curve: A; = Y(xi, {aj}) —

* Curve-fitting criteria: Minimize the sum of the squares
N-1

D({a;}) = ZAz > Y (wi,{aj}) — wil?

1=0

e “Least squares fit”
* Not the only way, but the most common



General theory of fitting

 Often data points have estimated error bars/confidence intervals o;
* Modify fit criterion to give less weight to points with the most error

O; o
i=0 ¢ i=0 [

* 2 most used fitting function
* Errors have a Gaussian distribution

* We will not discuss “validation” of curve fitted to data
* i.e., probability that the data is described by a given curve



Linear regression

* Now that we have criteria for a good fit, we need to find {a/}

* First consider the simplest example: fitting data with a straight line
Y(jSa {Cl,o, a/l}) = ap + 41T

* Such that y? is minimized:
N— 1

Z CL0+CL1£U@ yz_]z

CL(),G,l

1=0 9



Oy? — gl axz
X _ 9 ! —0, Z 0o+ a1
6’@0 O aa() _

N —

1 =0

Linear regression: Finding coefficients

* Minimize y? with respect to coefficients:

N—1
ag + a1x; — Y;

Yi

i=0 ? — Z
e \We can write as:

CLQS + alZm — Ey — O, aOZx -+ CL12$2 — ny =0

e Where coefficients are known:

1

N —
1 B T; B Ui B xzz -
—2 p— E —2 p— —2 ] Ex2 p— —2 ] ny p—
g, i=0 g; : 7 : )

=0




Linear regression: Finding coefficients
* Solving for a, and a;:
2, a2 — Sy STy — 2,5,
TS (B0 T 58, - (5,)

* Note that if g; is constant, it will cancel out

* Now let’s define an error bar for the curve-fitting parameter g;

N—1 2
2 Z da 2
O-G,j — a O-’L
1=0 Yi Both independent

» See: https://en.wikipedia.org/wiki/Propagation of uncertainy of y,
* For our linear case (after some algebra):

- 5 . - S
T TSy — (3,027 Cn T\ ST - ()2



https://en.wikipedia.org/wiki/Propagation_of_uncertainty

Linear regression: Errors in coefficients

* |f error bars are constant:

(z2)
: \F (22) = ()

Oq

variance

e Where: N-—1 N—1

1 1

1=0

* |f data does not have error bars, we can estimate o, from the sample
variance (https://en.wikipedia.org/wiki/Variance)

Sample std deviation N—1
E 1

: ogp = S
N-2 since already extracted a0 4) N — 9

and al from data 1=0

— (ao + alxi)]Q



https://en.wikipedia.org/wiki/Variance

Nonlinear regression (with two variables)

* We have been discussing fitting a linear function, but many nonlinear
curve-fitting problems can be transformed into linear problems

* Examples: Z(z,{c, B}) = ae’®

* Rewritewith: InZ =Y, lna=ag, [=a

e Result: Y =apg+a1x



General least squares fit

* No analytic solution to general least squares problem, but can solve
numerically

 Generalize to functions of the form:

M—1
Y(zi,{a;}) = aoYo(z) + aaYi(z) + -+ ap-1Yu-1(z) = ) a;Y;(x)
=0
) 2
aXZ a N—1 1 M—1
* Now minimize y?: = — arpYi(z;) —y;| =0
Haj; ey} = of ,;) _

N1y (g, [M 7
= 3022 > anYe(w) —yi| =0
i=0 it [ k=0 ]




General least-squares fit

* From previous slide, we have:
N—1M-1

~ Vi) Ye(xs) Y;(x:)yi
>4 >4 5 dr = 5
: O : O
1=0 k=0 v 1=0 v

» Set of j equations known as normal equations of the least-squares
problem (Y’s may be nonlinear, but linear in a’s)

* Define design matrix with elements A; = Y(x;)/ o;:
_YO (CC()) Yl (33‘0)

00 00
A — Yo(z1) Yi(zi1)
T 01 01

* Only depends on independent variables (not ;)



General least-squares ﬁt

M1y Y () N-ly (o
» With design matrix, we can rewrite: S‘ My i Y1) gy = >
4 )
i=0 k=0 73 i
—1M-—1 "
¢ AS' S‘ S: Az]Azka/k — Z A@] - —> (A.TA.)a — A.Tb
1=0 k=0

* Where b=y.,/c;
* Thus: a=(ATA)'A'Db

 Or, we can solve for a via Gaussian elimination




Goodness of fit

e Usually, we have N >> M, the number of data points is much greater
than the number of fitting variables

* Given the error bars, how likely is it that the curve actually describes
the data?

* Rule of thumb: If the fit is good, on average the difference should be
approximately equal to the error bars

yi — Y (x3)| = 0y
* Plugging in gives »? equal to N. Since we know we can have a perfect
fit for M=N, we postulate:

, Y~ N-—-M
e If X* > N — M, probably not an appropriate function (or too small
error bars

o |If x2 < N — M, fitis too good, error bars may be too large



Least squares fitting example:

Linear regression, linear function Polynomial regression (order 2), quadratic function




Comments on general least squares

* In the example, we used polynomials as our functions, but can use
linear combinations of any functions we would like

* We choose functions strategically to get the best least squares fit

e Often choosing orthogonal basis functions in the range of the fit will produce
better fits

* The matrix ATA is notoriously ill conditioned especially for increased
number of basis functions

e Gaussian substitution will have problems solving (numpy solve uses singular-
value decomposition)

* Procedure can be generalized if we also have errors in x



Nonlinear least-squares fitting

* Even in the polynomial case, we were using linear combinations of functions
* We can also directly fit a function whose parameters enter nonlinearly

* Consider the function: f(ag,a1) = age®*”
N
* Want to minimize: () = Z(yz — age®t®i)?
i=1
.- 0Q _ N~ aver( an
* Take derivatives:  fy = B = D¢ “(ape™® —y;) =0,
4o 1=1
N
0
Ji= (?TQ — Z:Eiealx’b (apge™™ —y;) =0
1 4



Nonlinear least-squares fitting

* Produces a nonlinear system—we can use the multivariate root-
finding techniques we learned earlier:
 Compute the Jacobian
e Take an initial guess for unknown coefficients
* Use Newton-Raphson techniques to compute the correction:

da] — do —J_lf

* |[terate

* Can be very difficult to converge, and highly dependent on the initial
guess



Fitting packages

* Fitting is a very sensitive procedure—especially for nonlinear cases

* Lots of minimization packages exist that offer robust fitting
procedures

* MINUIT2: the standard package in high-energy physics (Python
version: PyMinuit and Iminuit)

* MINPACK: Fortran library for solving least squares problems —this is
what is used under the hood for the built in SciPy least squares
routine

e http://www.netlib.org/minpack/

* SciPy optimize:
https://docs.scipy.org/doc/scipy/reference/optimize.html



http://www.netlib.org/minpack/
http://www.netlib.org/minpack/
https://docs.scipy.org/doc/scipy/reference/optimize.html

After class tasks

* Homework 3 will be posted tomorrow

* Homework 1 is graded, see GRADES.md in your repositories

* Readings
* FFTs:

* Newman Ch.7
* https://en.wikipedia.org/wiki/Discrete Fourier transform

* Linear regression:
» Wikipedia page on varience
* Wikipedia page on propagation of errors
* Garcia Sec. 5.1



https://en.wikipedia.org/wiki/Discrete_Fourier_transform
https://en.wikipedia.org/wiki/Discrete_Fourier_transform
https://en.wikipedia.org/wiki/Variance
https://en.wikipedia.org/wiki/Variance
https://en.wikipedia.org/wiki/Propagation_of_uncertainty
https://en.wikipedia.org/wiki/Propagation_of_uncertainty
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