PHY604 Lecture 13

October 7, 2025

Today's lecture: FFTs and curve fitting

• Fast Fourier Transforms

Curve fitting

Review: Discrete Fourier transform

• Assume function evaluated on equally-spaced points *n*:

$$F_k = \sum_{n=0}^{N-1} f_n \exp\left(-i\frac{2\pi nk}{N}\right)$$

- (dropped the 1/N from pervious slide, matter of convention)
- This is the discrete Fourier transform (DFT)
- Does not require us to know the positions x_n of sample points, or even width L
- We can define an inverse discrete Fourier transform to recover the initial function:

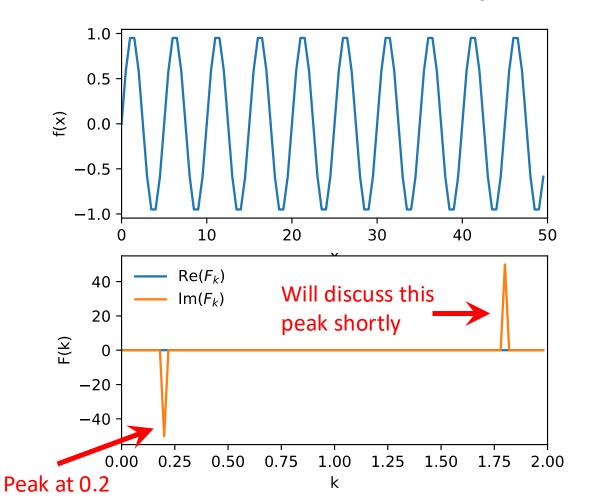
 1 N-1($2\pi n k$)

$$f_n = \frac{1}{N} \sum_{k=0}^{N-1} F_k \exp\left(i\frac{2\pi nk}{N}\right)$$

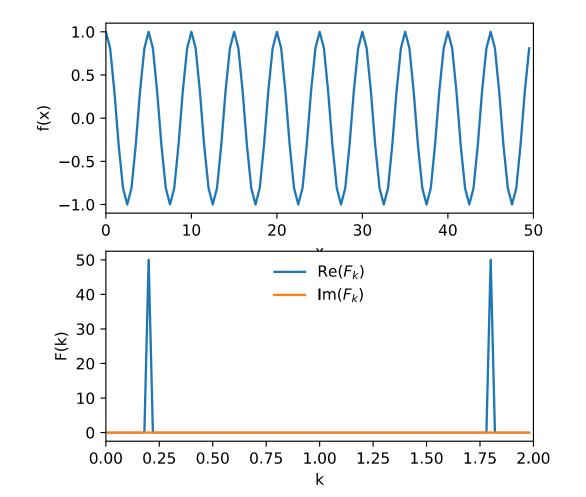
- (1/N reappears)
- "Exact" (up to rounding errors), even though we used the trapezoid rule
 - see e.g., Newman Sec. 7.2

Example: Fourier transform of monochromatic functions

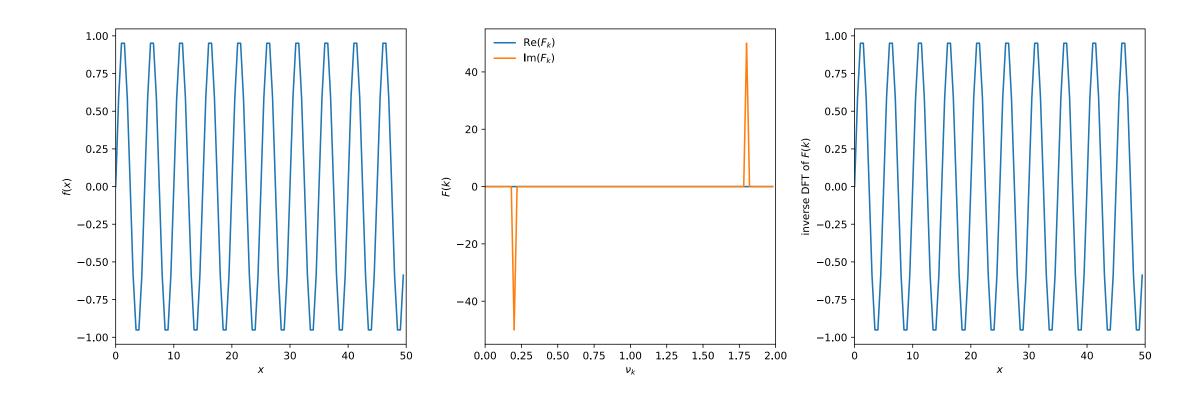
- $f(x) = \sin(2\pi v_0 x)$ with $v_0 = 0.2$:
 - Peak in the imaginary part will appear at the characteristic frequency v_0



- $f(x) = \cos(2\pi v_0 x)$ with $v_0 = 0.2$:
 - Peak in the real part will appear at the characteristic frequency v_0



"Exact" in that inverse DFT gives the same function back up to rounding errors



Real and imaginary parts

- Real parts represent even functions (e.g., Cosine)
- Imaginary parts represent odd functions (e.g., Sine)

Could also think in terms of amplitude and phase

• For real f_n :

$$\operatorname{Re}(F_k) = \sum_{n=0}^{N-1} f_n \cos\left(\frac{2\pi nk}{N}\right)$$

$$\operatorname{Im}(F_k) = \sum_{n=0}^{N-1} f_n \sin\left(\frac{2\pi nk}{N}\right)$$

Frequencies in DFTs

- In the DFT, the physical coordinate value, x_n , does not enter—instead, we just look at the index n itself
 - Assumes data is regularly gridded
- Many FFT routines will return frequencies in "index" space, e.g., $k_{\text{freq}} = 0$, 1/N, 2/N, 3/N, ...
- Lowest frequency: 1/L (corresponds largest wavelength, $\lambda = L$: entire domain)
- Highest frequency $\sim N/L \sim 1/\Delta x$ (corresponds to shortest wavelength, $\lambda = \Delta x$)

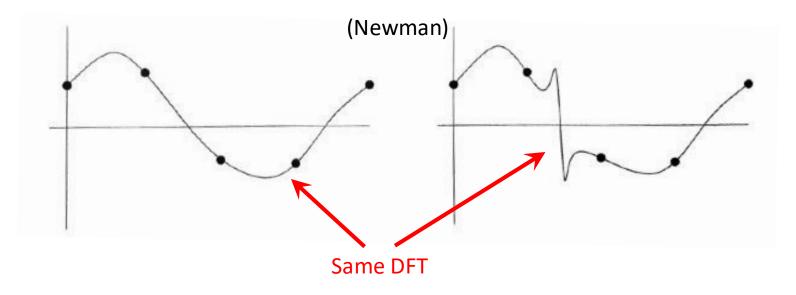
k=0 is the DC offset

Real part is the average:

$$Re(F_0) = \sum_{n=0}^{N-1} f_n \cos\left(\frac{2\pi n0}{N}\right) = \sum_{n=0}^{N-1} f_n$$

$$Im(F_0) = \sum_{n=0}^{N-1} f_n \sin\left(\frac{2\pi n0}{N}\right) = 0$$

Caveat: DFT exact only for sampled points



 Functions with the same values at the sample points will have the same DFT

DFTs of real functions

- Works for real or complex functions, but most of the time, we have real data
- If f_n is real, we can simplify further:
- Consider F_k for k in the upper half of the range: k = N-r where: $1 \le r < \frac{1}{2}N$

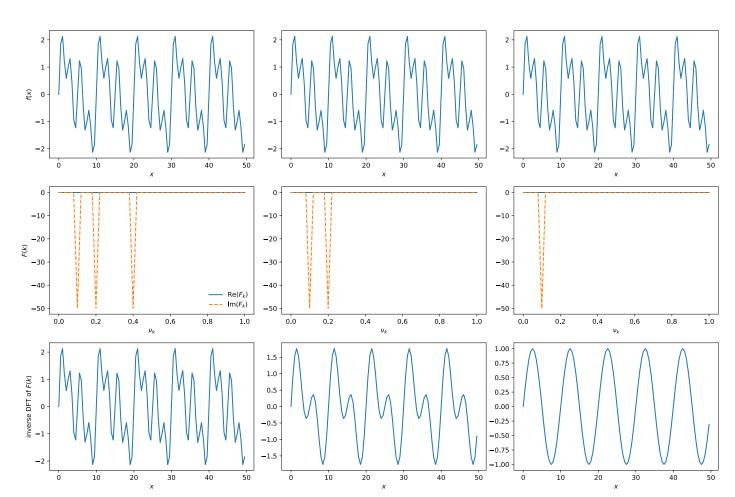
$$F_{N-r} = \sum_{n=0}^{N-1} f_n \exp\left(-i\frac{2\pi(N-r)n}{N}\right) = \sum_{n=0}^{N-1} f_n \exp\left(i\frac{2\pi rn}{N}\right) = F_r^*$$

• Therefore, for real functions, only need to calculate F_{k} for $0 \leq k \leq \frac{1}{2}N$

What can we do with the DFT? E.g., filtering

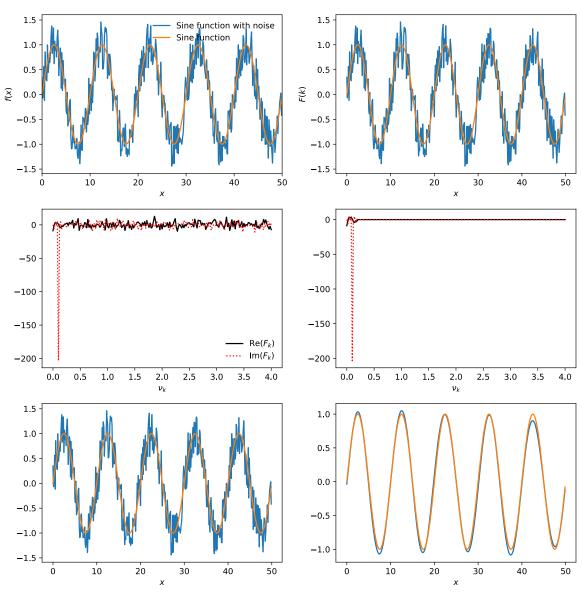
- Can use DFT to remove wither high or low frequency "noise" from a signal
- E.g., three sine functions:

Remove frequencies in DFT one at a time:

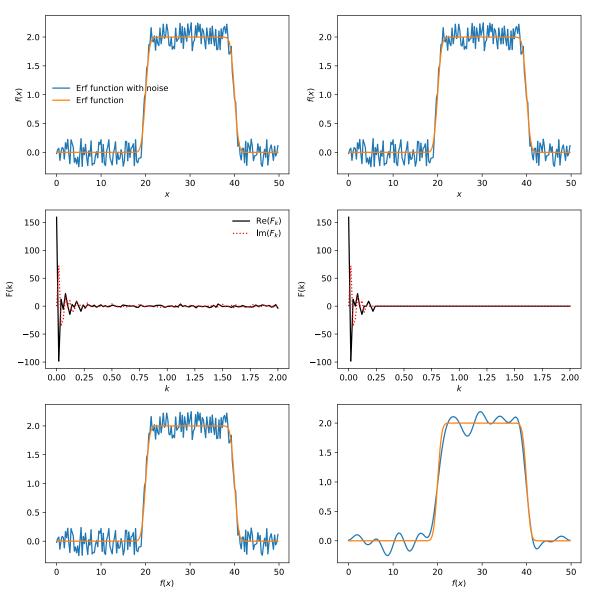


What can we do with the DFT? E.g., filtering

• Sin function with noise:



Error function with noise:



Two-dimensional Fourier transforms

- Simply transform with respect to one variable and then the other
- Consider function on M x N grid
 - 1. Perform DFT on each of the M rows:

$$F'_{ml} = \sum_{n=0}^{N-1} f_{mn} \exp\left(-i\frac{2\pi ln}{N}\right)$$

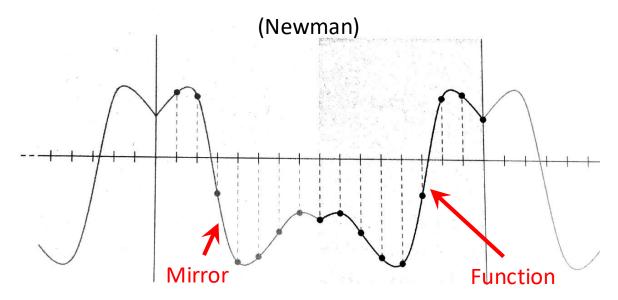
• 2. Take *I*th coefficient in each of the *M* rows and DFT:

$$F_{kl} = \sum_{m=0}^{M-1} F'_{ml} \exp\left(-i\frac{2\pi km}{M}\right)$$

Combining these gives:

$$F_{kl} = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f_{mn} \exp\left[-i2\pi \left(\frac{km}{M} + \frac{ln}{N}\right)\right]$$

Cosine transformation (see Newman Sec. 7.3)



- Can also construct Fourier series from using sine and cosine functions instead of complex exponentials
- Cosine series: Can only represent functions symmetric about the midpoint of the interval
 - Can enforce this for any function by mirroring it, and then repeating the mirrored function
- Different ways of writing it (see Newman):

$$F_k = \sum_{n=0}^{N-1} f_n \cos\left(\frac{\pi k(n+\frac{1}{2})}{N}\right), \quad f_n = \frac{1}{N} \sum_{k=0}^{N-1} F_k \cos\left(\frac{\pi k(n+\frac{1}{2})}{N}\right)$$

Benefits of the cosine transformation

- Only involves real functions
- Does not assume samples are periodic (i.e., first point and last point are the same)
 - Avoids discontinuities from periodically repeating function over interval
 - Often preferable for data that is not intrinsically periodic
- Used for compressing images and other media
 - JPEG, MPEG
- Can also define a sine transformation
 - Requires that function vanish at either end of its range

Fast Fourier transforms

- DFTs shown before have a double sum, so scale something like N^2 operations
 - We can do it in much less

• Consider the DFT:
$$F_k = \sum_{n=0}^{N-1} f_n \exp\left(-i\frac{2\pi nk}{N}\right)$$

- Take the number of samples to be a power of 2: $N = 2^m$
- Break F_k into n even and n odd. For the even terms:

$$F_k^{\text{even}} = \sum_{r=0}^{\frac{1}{2}N-1} f_{2r} \exp\left(-i\frac{2\pi k(2r)}{N}\right) = \sum_{r=0}^{\frac{1}{2}N-1} f_{2r} \exp\left(-i\frac{2\pi kr}{N/2}\right)$$

• Just another Fourier transform, but with N/2 samples

Fast Fourier transforms continued

• For the odd terms:

$$\sum_{r=0}^{\frac{1}{2}N-1} f_{2r+1} \exp\left(-i\frac{2\pi k(2r+1)}{N}\right) = e^{-i2\pi k/N} \sum_{r=0}^{\frac{1}{2}N-1} f_{2r+1} \exp\left(-i\frac{2\pi kr}{N/2}\right) = e^{-i2\pi k/N} F_k^{\text{odd}}$$

• Therefore:

$$F_k = F_k^{\text{even}} + e^{-i2\pi k/N} F_k^{\text{odd}}$$

• So full DFT is sum of two DFTs with half as many points

• Now repeat the process until we get down to a single sample where:

$$F_0 = \sum_{n=0}^{0} f_n e^0 = f_0$$

Procedure for FFT

• 1. Start with (trivial) FT of single samples:

$$F_0 = \sum_{n=0}^{0} f_n e^0 = f_0$$

• 2. Combine them in pairs using:

$$F_k = F_k^{\text{even}} + e^{-i2\pi k/N} F_k^{\text{odd}}$$

• 3. Continue combining into fours, eights, etc. until the full transform on the full set of samples is reconstructed

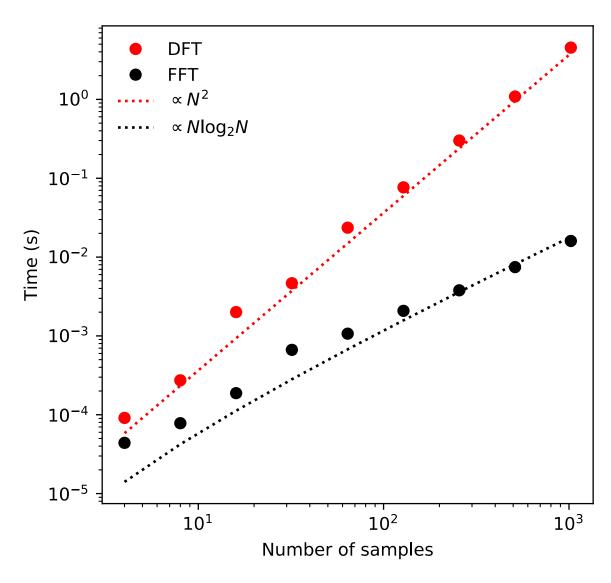
Speed up

- First "round" we have N samples
- Next round we combine these into pairs to make N/2 transforms with two coefficients each: N coefficients
- Next round we combine these into fours to make N/4 transforms with four coefficients each: N coefficients

•

- For 2^m samples we have $m = \log_2 N$ levels, so the number of coefficients we have to calculate is $N \log_2 N$
- Way better scaling than N²!

Speed up of FFT vs DFT



Libraries for FFT

- FFTW (fastest Fourier transform in the west)
 - https://www.fftw.org/
 - C subroutine library
 - Open source

- Intel MKL (math kernel library)
 - https://software.intel.com/content/www/us/en/develop/tools/oneapi/comp onents/onemkl.html#gs.bu9rfp
 - Written in C/C++, fortran
 - Also involves linear algebra routines
 - Not open source, but freely available
 - Often very fast, especially on intel processors

Python's fft

numpy.fft: https://numpy.org/doc/stable/reference/routines.fft.html

- fft/ifft: 1-d data
 - By design, the k=0, ... N/2 data is first, followed by the negative frequencies. These later are not relevant for a real-valued f(x)
 - k's can be obtained from fftfreq(n)
 - fftshift(x) shifts the *k*=0 to the center of the spectrum
- rfft/irfft: for 1-d real-valued functions. Basically the same as fft/ifft, but doesn't return the negative frequencies
- 2-d and n-d routines analogously defined

Today's lecture: FFT and Curve fitting

• Fast Fourier Transforms

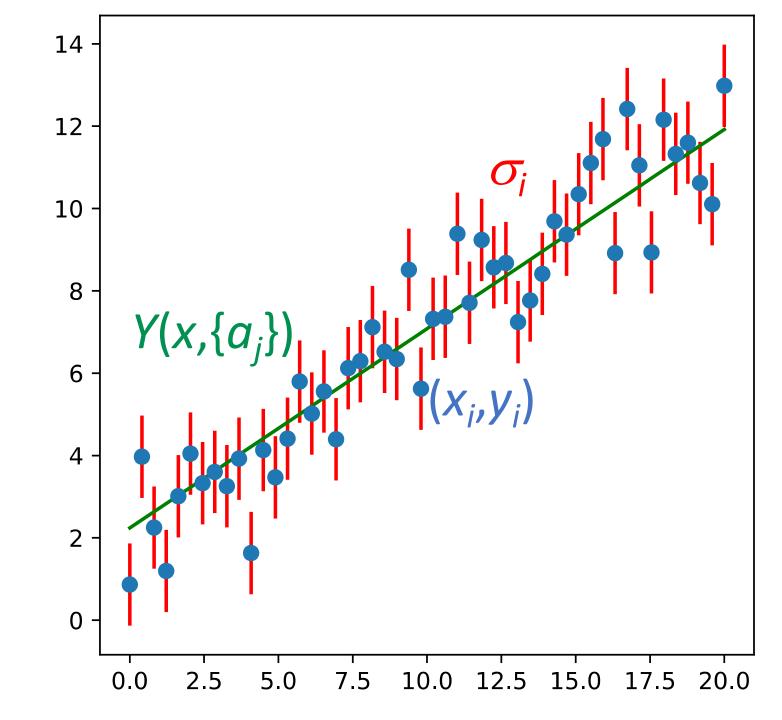
Curve fitting

Fitting data

- We have discussed interpolation, now we'll talk about fitting
 - Interpolation seeks to fill in missing information in some small region of the whole dataset
 - Fitting a function to the data seeks to produce a model (guided by physical intuition) so you can learn more about the global behavior of your data
- Goal is to understand data by finding a simple function that best represents the data
 - Previous discussion on linear algebra and root finding comes into play

- We will follow Garcia (Sec. 5.1)
 - Big topic, we'll just look at the basics

Notation



General theory of fitting

- We have a dataset of N points (x_i, y_i)
- Would like to "fit" this dataset to a function $Y(x,\{a_i\})$
 - $\{a_i\}$ is a set of M adjustable parameters
 - Find the value of these parameters that minimizes the distance between data points and curve: $\Delta_i = Y(x_i, \{a_i\}) y_i$
- Curve-fitting criteria: Minimize the sum of the squares

$$D(\{a_j\}) = \sum_{i=0}^{N-1} \Delta_i^2 = \sum_{i=0}^{N-1} [Y(x_i, \{a_j\}) - y_i]^2$$

- "Least squares fit"
 - Not the only way, but the most common

General theory of fitting

- Often data points have estimated error bars/confidence intervals σ_i
- Modify fit criterion to give less weight to points with the most error

$$\chi^{2}(\{a_{j}\}) = \sum_{i=0}^{N-1} \left(\frac{\Delta_{i}}{\sigma_{i}}\right)^{2} = \sum_{i=0}^{N-1} \frac{[Y(x_{i}, \{a_{j}\}) - y_{i}]^{2}}{\sigma_{i}^{2}}$$

- χ^2 most used fitting function
 - Errors have a Gaussian distribution

- We will not discuss "validation" of curve fitted to data
 - i.e., probability that the data is described by a given curve

Linear regression

• Now that we have criteria for a good fit, we need to find $\{a_i\}$

• First consider the simplest example: fitting data with a straight line

$$Y(x_i, \{a_0, a_1\}) = a_0 + a_1 x$$

• Such that χ^2 is minimized:

$$\chi^{2}(a_{0}, a_{1}) = \sum_{i=0}^{N-1} \frac{[a_{0} + a_{1}x_{i} - y_{i}]^{2}}{\sigma_{i}^{2}}$$

Linear regression: Finding coefficients

• Minimize χ^2 with respect to coefficients:

$$\frac{\partial \chi^2}{\partial a_0} = 2 \sum_{i=0}^{N-1} \frac{a_0 + a_1 x_i - y_i}{\sigma_i^2} = 0, \qquad \frac{\partial \chi^2}{\partial a_0} = 2 \sum_{i=0}^{N-1} x_i \frac{a_0 + a_1 x_i - y_i}{\sigma_i^2} = 0$$

• We can write as:

$$a_0 S + a_1 \Sigma_x - \Sigma_y = 0,$$
 $a_0 \Sigma_x + a_1 \Sigma_{x^2} - \Sigma_{xy} = 0$

• Where coefficients are known:

$$S \equiv \sum_{i=0}^{N-1} \frac{1}{\sigma_i^2}, \quad \Sigma_x \equiv \sum_{i=0}^{N-1} \frac{x_i}{\sigma_i^2}, \quad \Sigma_y \equiv \sum_{i=0}^{N-1} \frac{y_i}{\sigma_i^2}, \quad \Sigma_{x^2} \equiv \sum_{i=0}^{N-1} \frac{x_i^2}{\sigma_i^2}, \quad \Sigma_{xy} \equiv \sum_{i=0}^{N-1} \frac{x_i y_i}{\sigma_i^2}$$

Linear regression: Finding coefficients

• Solving for a_0 and a_1 :

$$a_0 = \frac{\Sigma_y \Sigma_{x^2} - \Sigma_x \Sigma_{xy}}{S\Sigma_{x^2} - (\Sigma_x)^2}, \qquad a_1 = \frac{S\Sigma_{xy} - \Sigma_y \Sigma_x}{S\Sigma_{x^2} - (\Sigma_x)^2}$$

- Note that if σ_i is constant, it will cancel out
- Now let's define an error bar for the curve-fitting parameter a_i

$$\sigma_{a_j}^2 = \sum_{i=0}^{N-1} \left(\frac{\partial a_j}{\partial y_i}\right)^2 \sigma_i^2$$

Both independent

- See: https://en.wikipedia.org/wiki/Propagation_of_uncertainty
- For our linear case (after some algebra):

$$\sigma_{a_0} = \sqrt{\frac{\Sigma_{x^2}}{S\Sigma_{x^2} - (\Sigma_x)^2}}, \qquad \sigma_{a_1} = \sqrt{\frac{S}{S\Sigma_{x^2} - (\Sigma_x)^2}}$$

Linear regression: Errors in coefficients

• If error bars are constant:

$$\sigma_{a_0} = \frac{\sigma_0}{\sqrt{N}} \sqrt{\frac{\langle x^2 \rangle}{\langle x^2 \rangle - \langle x \rangle^2}},$$

$$\sigma_{a_0} = \frac{\sigma_0}{\sqrt{N}} \sqrt{\frac{\langle x^2 \rangle}{\langle x^2 \rangle - \langle x \rangle^2}}, \qquad \sigma_{a_1} = \frac{\sigma_0}{\sqrt{N}} \sqrt{\frac{1}{\langle x^2 \rangle - \langle x \rangle^2}}$$

Where:

$$\langle x \rangle = \frac{1}{N} \sum_{i=0}^{N-1} x_i, \quad \langle x^2 \rangle = \frac{1}{N} \sum_{i=0}^{N-1} x_i^2$$

• If data does not have error bars, we can estimate σ_0 from the sample variance (https://en.wikipedia.org/wiki/Variance)

Sample std deviation
$$\sigma_0 \cong s^2 = \frac{1}{N-2} \sum_{i=0}^{N-1} \left[y_i - (a_0 + a_1 x_i) \right]^2$$
 and a1 from data

Nonlinear regression (with two variables)

 We have been discussing fitting a linear function, but many nonlinear curve-fitting problems can be transformed into linear problems

• Examples:
$$Z(x,\{\alpha,\beta\})=\alpha e^{\beta x}$$

• Rewrite with:
$$\ln Z = Y$$
, $\ln \alpha = a_0$, $\beta = a_1$

• Result:
$$Y = a_0 + a_1 x$$

General least squares fit

- No analytic solution to general least squares problem, but can solve numerically
- Generalize to functions of the form:

$$Y(x_i, \{a_j\}) = a_0 Y_0(x) + a_1 Y_1(x) + \dots + a_{M-1} Y_{M-1}(x) = \sum_{j=0}^{\infty} a_j Y_j(x)$$

• Now minimize χ^2 : $\frac{\partial \chi^2}{\partial \{a_j\}} = \frac{\partial}{\partial \{a_j\}} \sum_{i=0}^{N-1} \frac{1}{\sigma_i^2} \left[\sum_{k=0}^{M-1} a_k Y_k(x_i) - y_i \right]^2 = 0$

$$= \sum_{i=0}^{N-1} \frac{Y_j(x_i)}{\sigma_i^2} \left[\sum_{k=0}^{M-1} a_k Y_k(x_i) - y_i \right] = 0$$

General least-squares fit

• From previous slide, we have:

$$\sum_{i=0}^{N-1} \sum_{k=0}^{M-1} \frac{Y_j(x_i)Y_k(x_i)}{\sigma_i^2} a_k = \sum_{i=0}^{N-1} \frac{Y_j(x_i)y_i}{\sigma_i^2}$$

- Set of j equations known as normal equations of the least-squares problem (Y's may be nonlinear, but linear in a's)
- Define design matrix with elements $A_{ij} = Y_i(x_i)/\sigma_i$:

$$\mathbf{A} = \begin{bmatrix} \frac{Y_0(x_0)}{\sigma_0} & \frac{Y_1(x_0)}{\sigma_0} & \dots \\ \frac{Y_0(x_1)}{\sigma_1} & \frac{Y_1(x_1)}{\sigma_1} & \dots \\ \vdots & \vdots & \ddots \end{bmatrix}$$

• Only depends on independent variables (not y_i)

General least-squares fit

• With design matrix, we can rewrite:
$$\sum_{i=0}^{N-1}\sum_{k=0}^{M-1}\frac{Y_j(x_i)Y_k(x_i)}{\sigma_i^2}a_k=\sum_{i=0}^{N-1}\frac{Y_j(x_i)y_i}{\sigma_i^2}$$

$$\bullet \text{ As:} \qquad \sum_{i=0}^{N-1} \sum_{k=0}^{M-1} A_{ij} A_{ik} a_k = \sum_{i=0}^{N-1} A_{ij} \frac{y_i}{\sigma_i} \quad \Longrightarrow \quad (\mathbf{A}^{\mathrm{T}} \mathbf{A}) \mathbf{a} = \mathbf{A}^{\mathrm{T}} \mathbf{b}$$

- Where $b_i = y_i / \sigma_i$
- Thus: $\mathbf{a} = (\mathbf{A}^{\mathrm{T}}\mathbf{A})^{-1}\mathbf{A}^{\mathrm{T}}\mathbf{b}$

Or, we can solve for a via Gaussian elimination

Goodness of fit

- Usually, we have N >> M, the number of data points is much greater than the number of fitting variables
- Given the error bars, how likely is it that the curve actually describes the data?
- Rule of thumb: If the fit is good, on average the difference should be approximately equal to the error bars

$$|y_i - Y(x_i)| \simeq \sigma_i$$

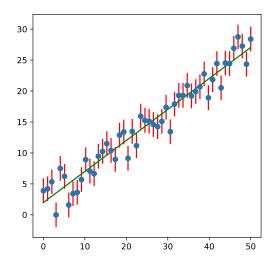
• Plugging in gives χ^2 equal to N. Since we know we can have a perfect fit for M=N, we postulate:

$$\chi^2 \simeq N - M$$

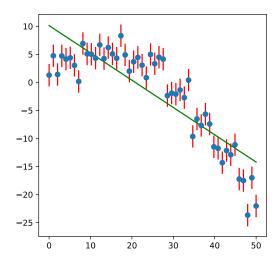
- If $\chi^2 \gg N-M$, probably not an appropriate function (or too small error bars
- If $\chi^2 \ll N-M$, fit is too good, error bars may be too large

Least squares fitting example:

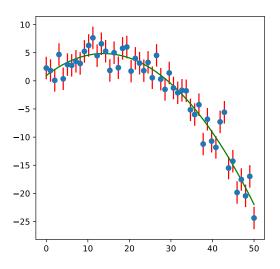
Linear regression, linear function



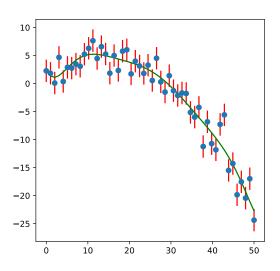
Linear regression, quadratic function



Polynomial regression (order 2), quadratic function



Polynomial regression (order 10), quadratic function



Comments on general least squares

• In the example, we used polynomials as our functions, but can use linear combinations of any functions we would like

- We choose functions strategically to get the best least squares fit
 - Often choosing orthogonal basis functions in the range of the fit will produce better fits

- The matrix A^TA is notoriously ill conditioned especially for increased number of basis functions
 - Gaussian substitution will have problems solving (numpy solve uses singularvalue decomposition)
- Procedure can be generalized if we also have errors in x

Nonlinear least-squares fitting

- Even in the polynomial case, we were using linear combinations of functions
- We can also directly fit a function whose parameters enter nonlinearly
- Consider the function: $f(a_0, a_1) = a_0 e^{a_1 x}$
- Want to minimize: $Q \equiv \sum_{i=1}^{N} (y_i a_0 e^{a_1 x_i})^2$

• Take derivatives:
$$f_0 = \frac{\partial Q}{\partial a_0} = \sum_{i=1}^N e^{a_1 x_i} (a_0 e^{a_1 x_i} - y_i) = 0,$$

$$f_1 = \frac{\partial Q}{\partial a_1} = \sum_{i=1}^{N} x_i e^{a_1 x_i} (a_0 e^{a_1 x_i} - y_i) = 0$$

Nonlinear least-squares fitting

- Produces a nonlinear system—we can use the multivariate rootfinding techniques we learned earlier:
 - Compute the Jacobian
 - Take an initial guess for unknown coefficients
 - Use Newton-Raphson techniques to compute the correction:

$$\mathbf{a}_1 = \mathbf{a}_0 - \mathbf{J}^{-1} \mathbf{f}$$

Iterate

 Can be very difficult to converge, and highly dependent on the initial guess

Fitting packages

- Fitting is a very sensitive procedure—especially for nonlinear cases
- Lots of minimization packages exist that offer robust fitting procedures

- MINUIT2: the standard package in high-energy physics (Python version: PyMinuit and Iminuit)
- MINPACK: Fortran library for solving least squares problems—this is what is used under the hood for the built in SciPy least squares routine
 - http://www.netlib.org/minpack/
- SciPy optimize: https://docs.scipy.org/doc/scipy/reference/optimize.html

After class tasks

- Homework 3 will be posted tomorrow
- Homework 1 is graded, see GRADES.md in your repositories

- Readings
 - FFTs:
 - Newman Ch. 7
 - https://en.wikipedia.org/wiki/Discrete Fourier transform
 - Linear regression:
 - Wikipedia page on varience
 - Wikipedia page on propagation of errors
 - Garcia Sec. 5.1