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Today’s lecture: 
Curve fitting and PDEs

• Curve fitting

• Partial differential equations



Fitting data

• We have discussed interpolation, now we’ll talk about fitting
• Interpolation seeks to fill in missing information in some small region of the 

whole dataset

• Fitting a function to the data seeks to produce a model (guided by physical 
intuition) so you can learn more about the global behavior of your data

• Goal is to understand data by finding a simple function that best 
represents the data
• Previous discussion on linear algebra and root finding comes into play

• We will follow Garcia (Sec. 5.1)
• Big topic, we’ll just look at the basics



Notation

i

(xi,yi)

Y(x,{aj})



General theory of fitting
• We have a dataset of N points (xi,yi)

• Would like to “fit” this dataset to a function Y(x,{aj})
• {aj} is a set of M adjustable parameters

• Find the value of these parameters that minimizes the distance between data 
points and curve:

• Curve-fitting criteria: Minimize the sum of the squares

• “Least squares fit”
• Not the only way, but the most common



General theory of fitting

• Often data points have estimated error bars/confidence intervals i

• Modify fit criterion to give less weight to points with the most error

• 2 most used fitting function
• Errors have a Gaussian distribution

• We will not discuss “validation” of curve fitted to data
• i.e., probability that the data is described by a given curve



Linear regression

• Now that we have criteria for a good fit, we need to find {ai}

• First consider the simplest example: fitting data with a straight line

• Such that 2 is minimized:



Linear regression: Finding coefficients
• Minimize 2 with respect to coefficients:

• We can write as:

• Where coefficients are known:



Linear regression: Finding coefficients
• Solving for a0 and a1:

• Note that if i is constant, it will cancel out

• Now let’s define an error bar for the curve-fitting parameter aj

• See: https://en.wikipedia.org/wiki/Propagation_of_uncertainty

• For our linear case (after some algebra):

Both independent 
of yi

https://en.wikipedia.org/wiki/Propagation_of_uncertainty


Linear regression: Errors in coefficients
• If error bars are constant:

• Where: 

• If data does not have error bars, we can estimate 0 from the sample 
variance (https://en.wikipedia.org/wiki/Variance)

variance

N-2 since already extracted a0 
and a1 from data

Sample std deviation

https://en.wikipedia.org/wiki/Variance


Nonlinear regression (with two variables)

• We have been discussing fitting a linear function, but many nonlinear 
curve-fitting problems can be transformed into linear problems

• Examples: 

• Rewrite with:

• Result: 

 



General least squares fit

• No analytic solution to  general least squares problem, but can solve 
numerically

• Generalize to functions of the form:

• Now minimize 2:



General least-squares fit

• From previous slide, we have:

• Set of j equations known as normal equations of the least-squares 
problem (Y’s may be nonlinear, but linear in a’s)

• Define design matrix with elements Aij = Yj(xi)/i:

• Only depends on independent variables (not yi)



General least-squares fit

• With design matrix, we can rewrite:

• As:

• Where bi=yi/i

• Thus:

• Or, we can solve for a via Gaussian elimination



Goodness of fit
• Usually, we have N >> M, the number of data points is much greater 

than the number of fitting variables

• Given the error bars, how likely is it that the curve actually describes 
the data?

• Rule of thumb: If the fit is good, on average the difference should be 
approximately equal to the error bars

• Plugging in gives 2 equal to N. Since we know we can have a perfect 
fit for M=N, we postulate: 

• If           , probably not an appropriate function (or too small 
error bars

• If           , fit is too good, error bars may be too large



Least squares fitting example:
Linear regression, linear function

Linear regression, quadratic function

Polynomial regression (order 2), quadratic function

Polynomial regression (order 10), quadratic function



Comments on general least squares

• In the example, we used polynomials as our functions, but can use 
linear combinations of any functions we would like

• We choose functions strategically to get the best least squares fit
• Often choosing orthogonal basis functions in the range of the fit will produce 

better fits

• The matrix ATA is notoriously ill conditioned especially for increased 
number of basis functions
• Gaussian substitution will have problems solving (numpy solve uses singular-

value decomposition)

• Procedure can be generalized if we also have errors in x



Nonlinear least-squares fitting
• Even in the polynomial case, we were using linear combinations of functions

• We can also directly fit a function whose parameters enter nonlinearly 

• Consider the function: 

• Want to minimize:

• Take derivatives:



Nonlinear least-squares fitting

• Produces a nonlinear system—we can use the multivariate root-
finding techniques we learned earlier:
• Compute the Jacobian

• Take an initial guess for unknown coefficients

• Use Newton-Raphson techniques to compute the correction:

• Iterate

• Can be very difficult to converge, and highly dependent on the initial 
guess



Fitting packages

• Fitting is a very sensitive procedure—especially for nonlinear cases

• Lots of minimization packages exist that offer robust fitting 
procedures

• MINUIT2: the standard package in high-energy physics (Python 
version: PyMinuit and Iminuit)

• MINPACK: Fortran library for solving least squares problems—this is 
what is used under the hood for the built in SciPy least squares 
routine

• http://www.netlib.org/minpack/

• SciPy optimize: 
https://docs.scipy.org/doc/scipy/reference/optimize.html

http://www.netlib.org/minpack/
http://www.netlib.org/minpack/
https://docs.scipy.org/doc/scipy/reference/optimize.html


Today’s lecture: 
Curve fitting and PDEs

• Curve fitting

• Partial differential equations



Partial differential equations (Garcia Chs. 6-9)

• Previously, we studied ordinary differential equations

• Much of physics is involved in solving partial differential equations
• Schrodinger equation in Quantum mechanics

• Maxwell’s equations in electricity and magnetism

• Wave equation in optics and acoustics

• For ODEs we developed general methods to solve a variety of 
problems, e.g., 4th order Runge-Kutta

• For PDEs, we first classify the type of equation, that will tell us what 
method to use



Examples of PDE types
• Parabolic equations

• E.g., Time-dependent Schrodinger equation, 1D diffusion equation

• Consider the Fourier equation with temperature T and thermal diffusion 
coefficient :

• Hyperbolic equations
• E.g., 1D wave equation with amplitude A and speed c:

• Elliptic equations
• E.g., Poisson equation:



General classification of PDEs
• Consider a general PDE of two independent variables:

• Hyperbolic if:

• Parabolic if: 

• Elliptic if:

• Most problems involve hybrid systems, including multiple types



• Diffusion and wave equations usually solved as initial value problems
• Diffusion: Given initial temperature distribution, find temperature distribution 

at a later time

• Wave: Start with initial amplitude and velocity of wave pulse and find the 
wave pulse at a later time

• Need to specify initial conditions as well as boundary conditions

Initial value problems

Boundary 
condition needed 
hereBoundary 

condition needed 
here

Solution determined in this 
region of parameter space



Types of boundary conditions
• Dirichlet boundary conditions: Specify the solution on boundary

• E.g., fix the temperature at the boundaries:

• Neumann boundary conditions: Specify the derivative on the 
boundary
• E.g., “insulated” boundaries

• Periodic boundary conditions: Equate the functions at both ends



Marching methods for initial value problems

• We first must discretize in time and space:

• Start from the initial condition, move forward in time one timestep at 
a time

h



Filled pts are 
specified by initial 
or boundary 
conditions



• All boundary values are specified at the outset
• E.g., Laplace’s equation in electrostatics, potential fixed on for sides of spatial 

region

Boundary value problems

Solution determined in this 
region of parameter spaceBoundary 

condition needed 
here

Boundary condition 
needed here

Boundary condition 
needed here

Boundary condition 
needed here



Jury methods for boundary value problems
• Discretize in space:

• Potential in interior is influenced by all the boundary points, 
reconciles all the constraints imposed by boundaries

h



Filled pts are 
specified by 
boundary 
conditions



Diffusion equation with FTCS
• Diffusion equation:

• Discretize in space and time:
• xi = i h – L/2 and tn = n 

• Take spatial boundary points as i = 0 and i = N-1, so h = L/(N-1)

• Discretize time derivative with forward difference:

• Discretize spatial derivative using central difference: 



Diffusion equation with FTCS
• Now the discretized PDE is:

• And temperature at future time is:

• Explicit: Everything that depends on previous timestep n is on RHS

• Discretization is reminiscent of Euler’s method for ODEs



Numerical stability of FTCS method

• The numerical stability of the solution depends on the timestep

• Consider initial conditions of a delta-function peak in T located at N/2
• Discrete approximation, T(x=N/2,t0) = 1/h

• Can show from analytical solutions to this problem that the delta 
function will spread into a Gaussian with width: 

• Thus, if t is the time it takes for  to increase by one grid spacing:

• Then:

• Should not use a timestep much larger than t



FCTS method on diffusion equation 

Numerically stable:  = 1e-4 Numerically stable:  = 1.5e-4



After class tasks

• Homework 3 posted due Oct. 22

• Readings
• Linear regression:

• Wikipedia page on varience

• Wikipedia page on propagation of errors

• Garcia Sec. 5.1

• PDEs
• Garcia Chapters 6 and 7

https://en.wikipedia.org/wiki/Variance
https://en.wikipedia.org/wiki/Variance
https://en.wikipedia.org/wiki/Propagation_of_uncertainty
https://en.wikipedia.org/wiki/Propagation_of_uncertainty
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