PHY604 Lecture 14

October 9, 2025



Today’s lecture:
Curve fitting and PDEs

 Curve fitting

* Partial differential equations



Fitting data

* We have discussed interpolation, now we’ll talk about fitting

* Interpolation seeks to fill in missing information in some small region of the
whole dataset

* Fitting a function to the data seeks to produce a model (guided by physical
intuition) so you can learn more about the global behavior of your data

* Goal is to understand data by finding a simple function that best
represents the data

* Previous discussion on linear algebra and root finding comes into play

* We will follow Garcia (Sec. 5.1)
* Big topic, we’ll just look at the basics



Notation
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General theory of fitting

* We have a dataset of N points (x,y;)

* Would like to “fit” this dataset to a function Y(x,{a;})

* {a;} is a set of M adjustable parameters
* Find the value of these parameters that minimizes the distance between data

points and curve: A; = Y(xi, {aj}) —

* Curve-fitting criteria: Minimize the sum of the squares
N-1

D({a;}) = ZAz > Y (wi,{aj}) — wil?

1=0

e “Least squares fit”
* Not the only way, but the most common



General theory of fitting

 Often data points have estimated error bars/confidence intervals o;
* Modify fit criterion to give less weight to points with the most error

O; o
i=0 ¢ i=0 [

* 2 most used fitting function
* Errors have a Gaussian distribution

* We will not discuss “validation” of curve fitted to data
* i.e., probability that the data is described by a given curve



Linear regression

* Now that we have criteria for a good fit, we need to find {a/}

* First consider the simplest example: fitting data with a straight line
Y(jSa {Cl,o, a/l}) = ap + 41T

* Such that y? is minimized:
N— 1
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Linear regression: Finding coefficients

* Minimize y? with respect to coefficients:

N—1
ag + a1x; — Y;

Yi

i=0 ? — Z
e \We can write as:

CLQS + alZm — Ey — O, aOZx -+ CL12$2 — ny =0

e Where coefficients are known:

1
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Linear regression: Finding coefficients
* Solving for a, and a;:
2, a2 — Sy STy — 2,5,
TS (B0 T 58, - (5,)

* Note that if g; is constant, it will cancel out

* Now let’s define an error bar for the curve-fitting parameter g;

N—1 2
2 Z da 2
O-G,j — a O-’L
1=0 Yi Both independent

» See: https://en.wikipedia.org/wiki/Propagation of uncertainy of y,
* For our linear case (after some algebra):

- 5 . - S
T TSy — (3,027 Cn T\ ST - ()2



https://en.wikipedia.org/wiki/Propagation_of_uncertainty

Linear regression: Errors in coefficients

* |f error bars are constant:

(z2)
: \F (22) = ()

Oq

variance

e Where: N-—1 N—1

1 1

1=0

* |f data does not have error bars, we can estimate o, from the sample
variance (https://en.wikipedia.org/wiki/Variance)

Sample std deviation N—1
E 1

: ogp = S
N-2 since already extracted a0 4) N — 9

and al from data 1=0

— (ao + alxi)]Q



https://en.wikipedia.org/wiki/Variance

Nonlinear regression (with two variables)

* We have been discussing fitting a linear function, but many nonlinear
curve-fitting problems can be transformed into linear problems

* Examples: Z(z,{c, B}) = ae’®

* Rewritewith: InZ =Y, lna=ag, [=a

e Result: Y =apg+a1x



General least squares fit

* No analytic solution to general least squares problem, but can solve
numerically

 Generalize to functions of the form:

M—1
Y(zi,{a;}) = aoYo(z) + aaYi(z) + -+ ap-1Yu-1(z) = ) a;Y;(x)
=0
) 2
aXZ a N—1 1 M—1
* Now minimize y?: = — arpYi(z;) —y;| =0
Haj; ey} = of ,;) _

N1y (g, [M 7
= 3022 > anYe(w) —yi| =0
i=0 it [ k=0 ]




General least-squares fit

* From previous slide, we have:
N—1M-1

~ Vi) Ye(xs) Y;(x:)yi
>4 >4 5 dr = 5
: O : O
1=0 k=0 v 1=0 v

» Set of j equations known as normal equations of the least-squares
problem (Y’s may be nonlinear, but linear in a’s)

* Define design matrix with elements A; = Y(x;)/ o;:
_YO (CC()) Yl (33‘0)

00 00
A — Yo(z1) Yi(zi1)
T 01 01

* Only depends on independent variables (not ;)



General least-squares ﬁt

M1y Y () N-ly (o
» With design matrix, we can rewrite: S‘ My i Y1) gy = >
4 )
i=0 k=0 73 i
—1M-—1 "
¢ AS' S‘ S: Az]Azka/k — Z A@] - —> (A.TA.)a — A.Tb
1=0 k=0

* Where b=y.,/c;
* Thus: a=(ATA)'A'Db

 Or, we can solve for a via Gaussian elimination




Goodness of fit

e Usually, we have N >> M, the number of data points is much greater
than the number of fitting variables

* Given the error bars, how likely is it that the curve actually describes
the data?

* Rule of thumb: If the fit is good, on average the difference should be
approximately equal to the error bars

yi — Y (x3)| = 0y
* Plugging in gives »? equal to N. Since we know we can have a perfect
fit for M=N, we postulate:

, Y~ N-—-M
e If X* > N — M, probably not an appropriate function (or too small
error bars

o |If x2 < N — M, fitis too good, error bars may be too large



Least squares fitting example:

Linear regression, linear function Polynomial regression (order 2), quadratic function




Comments on general least squares

* In the example, we used polynomials as our functions, but can use
linear combinations of any functions we would like

* We choose functions strategically to get the best least squares fit

e Often choosing orthogonal basis functions in the range of the fit will produce
better fits

* The matrix ATA is notoriously ill conditioned especially for increased
number of basis functions

e Gaussian substitution will have problems solving (numpy solve uses singular-
value decomposition)

* Procedure can be generalized if we also have errors in x



Nonlinear least-squares fitting

* Even in the polynomial case, we were using linear combinations of functions
* We can also directly fit a function whose parameters enter nonlinearly

* Consider the function: f(ag,a1) = age®*”
N
* Want to minimize: () = Z(yz — age®t®i)?
i=1
.- 0Q _ N~ aver( an
* Take derivatives:  fy = B = D¢ “(ape™® —y;) =0,
4o 1=1
N
0
Ji= (?TQ — Z:Eiealx’b (apge™™ —y;) =0
1 4



Nonlinear least-squares fitting

* Produces a nonlinear system—we can use the multivariate root-
finding techniques we learned earlier:
 Compute the Jacobian
e Take an initial guess for unknown coefficients
* Use Newton-Raphson techniques to compute the correction:

da] — do —J_lf

* |[terate

* Can be very difficult to converge, and highly dependent on the initial
guess



Fitting packages

* Fitting is a very sensitive procedure—especially for nonlinear cases

* Lots of minimization packages exist that offer robust fitting
procedures

* MINUIT2: the standard package in high-energy physics (Python
version: PyMinuit and Iminuit)

* MINPACK: Fortran library for solving least squares problems —this is
what is used under the hood for the built in SciPy least squares
routine

e http://www.netlib.org/minpack/

* SciPy optimize:
https://docs.scipy.org/doc/scipy/reference/optimize.html



http://www.netlib.org/minpack/
http://www.netlib.org/minpack/
https://docs.scipy.org/doc/scipy/reference/optimize.html

Today’s lecture:
Curve fitting and PDEs

* Partial differential equations



Partial differential equations (sarcacrs. s-9)

* Previously, we studied ordinary differential equations

* Much of physics is involved in solving partial differential equations
e Schrodinger equation in Quantum mechanics
 Maxwell’s equations in electricity and magnetism
* Wave equation in optics and acoustics

* For ODEs we developed general methods to solve a variety of
problems, e.g., 4t order Runge-Kutta

* For PDEs, we first classify the type of equation, that will tell us what
method to use



Examples of PDE types

* Parabolic equations
e E.g., Time-dependent Schrodinger equation, 1D diffusion equation
* Consider the Fourier equation with temperature T and thermal diffusion

coefficient x: (?T(x, t) aQT(ZU, t)
K

ot Ox?

* Hyperbolic equations
e E.g., 1D wave equation with amplitude A and speed c:

O*A(x,t) 2 0% A(x,t)

Ot? Ox?
* Elliptic equations
* E.g., Poisson equation:
0°®  9°d 1
02 T o T —gp(w,y)




General classification of PDEs

* Consider a general PDE of two independent variables:

0% A 0% A 0% A 0A 0A
| | | | - fA(x, =
e b@az@y c 0y? d or | oy fAG@,y) +9=0

e Hyperbolicif: b* — 4ac > 0
e Parabolicif: b5* —4ac=0
* Elliptic if: b* — dac < 0

* Most problems involve hybrid systems, including multiple types



Initial value problems

 Diffusion and wave equations usually solved as initial value problems

 Diffusion: Given initial temperature distribution, find temperature distribution
at a later time

e Wave: Start with initial amplitude and velocity of wave pulse and find the
wave pulse at a later time

* Need to specify initial conditions as well as boundary conditions

Boundary
condition needed
Boundary t Solution determined in this / here
condition needed — region of parameter space
here —>



Types of boundary conditions

* Dirichlet boundary conditions: Specify the solution on boundary
* E.g., fix the temperature at the boundaries:

T(x=—-L/2,t)=T,, T(x=L/2,t)="1T
* Neumann boundary conditions: Specify the derivative on the

boundary
* E.g., “insulated” boundaries

dT’ dT’
—h— —F, =0, -k>—|  =F=0
/{d:c /{dx b
x=—L/2 x=L/2

* Periodic boundary conditions: Equate the functions at both ends

dT AT

dz T dx
x=—1L/2 x=L/2

T(x=—-L/2,t) =T(x=L/2,1),




Marching methods for initial value problems

* We first must discretize in time and space:

Ll L L
BESeSEs
1= I-II---I

r=—L/2 r=1L/2

Filled pts are
specified by initial
or boundary
conditions

e Start from the initial condition, move forward in time one timestep at
a time



Boundary value problems

* All boundary values are specified at the outset

* E.g., Laplace’s equation in electrostatics, potential fixed on for sides of spatial

region Boundary condition
needed here

y p— Ly
Boundary condition
needed here

Boundary Y
condition needed
here

y=20

Boundary condition
needed here



Jury methods for boundary value problems

* Discretize in space:

y = Ly
Filled pts are
specified by
Y boundary
conditions
y =0
x =0 h L T = Ly

* Potential in interior is influenced by all the boundary points,
reconciles all the constraints imposed by boundaries



Diffusion equation with FTCS

e Diffusion equation:  9T(z,t) 0°T (x,t)
= K
Ot Ox?
* Discretize in space and time: T;' = T'(x;,t,)

*x;=ih—L/2andt,=nr~
* Take spatial boundary points asi=0andi= N-1, so h =L/(N-1)

e Discretize time derivative with forward difference:
oT (z,t) T/ —T7

4

ot T
 Discretize spatial derivative using central difference:
0T (x,t) T”’ G+ =200
Ox? h?




Diffusion equation with FTCS

* Now the discretized PDE is:
Tin—l—l . Tzn T_|_1 1 Tn . 2Tzn

T h?
* And temperature at future time is:
K
T =T + hg( i 1 — 2T)

* Explicit: Everything that depends on previous timestep n is on RHS

e Discretization is reminiscent of Euler’s method for ODEs



Numerical stability of FTCS method

* The numerical stability of the solution depends on the timestep

* Consider initial conditions of a delta-function peak in T located at N/2
* Discrete approximation, T(x=N/2,t,) = 1/h

e Can show from analytical solutions to this problem that the delta
function will spread into a Gaussian with width:

o(t) = V2xt

* Thus, if t_is the time it takes for o to increase by one grid spacing:

h2
to' —
2K
* Then: Tz'n+1 — T’Iln ™ %(Tﬁl—l - Tin—l o 2Tin)

* Should not use a timestep much larger than t



FCTS method on diffusion equation

Numerically stable: 7= 1e-4 Numerically stable: 7= 1.5e-4




After class tasks

* Homework 3 posted due Oct. 22

* Readings
* Linear regression:

 Wikipedia page on varience
 Wikipedia page on propagation of errors

* Garcia Sec. 5.1

* PDEs
e Garcia Chapters 6 and 7


https://en.wikipedia.org/wiki/Variance
https://en.wikipedia.org/wiki/Variance
https://en.wikipedia.org/wiki/Propagation_of_uncertainty
https://en.wikipedia.org/wiki/Propagation_of_uncertainty
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