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Today’s lecture: 
PDEs

• Parabolic: Diffusion equation

• Hyperbolic: Wave equation



Partial differential equations (Garcia Chs. 6-9)

• Previously, we studied ordinary differential equations

• Much of physics is involved in solving partial differential equations
• Schrodinger equation in Quantum mechanics

• Maxwell’s equations in electricity and magnetism

• Wave equation in optics and acoustics

• For ODEs we developed general methods to solve a variety of 
problems, e.g., 4th order Runge-Kutta

• For PDEs, we first classify the type of equation, that will tell us what 
method to use



Examples of PDE types
• Parabolic equations

• E.g., Time-dependent Schrodinger equation, 1D diffusion equation

• Consider the Fourier equation with temperature T and thermal diffusion 
coefficient :

• Hyperbolic equations
• E.g., 1D wave equation with amplitude A and speed c:

• Elliptic equations
• E.g., Poisson equation:



General classification of PDEs
• Consider a general PDE of two independent variables:

• Hyperbolic if:

• Parabolic if: 

• Elliptic if:

• Most problems involve hybrid systems, including multiple types



• Diffusion and wave equations usually solved as initial value problems
• Diffusion: Given initial temperature distribution, find temperature distribution 

at a later time

• Wave: Start with initial amplitude and velocity of wave pulse and find the 
wave pulse at a later time

• Need to specify initial conditions as well as boundary conditions

Initial value problems

Boundary 
condition needed 
hereBoundary 

condition needed 
here

Solution determined in this 
region of parameter space



Types of boundary conditions
• Dirichlet boundary conditions: Specify the solution on boundary

• E.g., fix the temperature at the boundaries:

• Neumann boundary conditions: Specify the derivative on the 
boundary
• E.g., “insulated” boundaries

• Periodic boundary conditions: Equate the functions at both ends



Marching methods for initial value problems

• We first must discretize in time and space:

• Start from the initial condition, move forward in time one timestep at 
a time

h



Filled pts are 
specified by initial 
or boundary 
conditions



• All boundary values are specified at the outset
• E.g., Laplace’s equation in electrostatics, potential fixed on for sides of spatial 

region

Boundary value problems
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region of parameter spaceBoundary 
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Jury methods for boundary value problems
• Discretize in space:

• Potential in interior is influenced by all the boundary points, 
reconciles all the constraints imposed by boundaries

h



Filled pts are 
specified by 
boundary 
conditions



Diffusion equation with FTCS
• Diffusion equation:

• Discretize in space and time:
• xi = i h – L/2 and tn = n 

• Take spatial boundary points as i = 0 and i = N-1, so h = L/(N-1)

• Discretize time derivative with forward difference:

• Discretize spatial derivative using central difference: 



Diffusion equation with FTCS
• Now the discretized PDE is:

• And temperature at future time is:

• Explicit: Everything that depends on previous timestep n is on RHS

• Discretization is reminiscent of Euler’s method for ODEs



Numerical stability of FTCS method

• The numerical stability of the solution depends on the timestep

• Consider initial conditions of a delta-function peak in T located at N/2
• Discrete approximation, T(x=N/2,t0) = 1/h

• Can show from analytical solutions to this problem that the delta 
function will spread into a Gaussian with width: 

• Thus, if t is the time it takes for  to increase by one grid spacing:

• Then:

• Should not use a timestep much larger than t



FCTS method on diffusion equation 

Numerically stable:  = 1e-4 Numerically unstable:  = 1.5e-4



Wave and advection equations
• Wave equation:

• When we discussed ODEs we used the trick to turn 2nd order 
equations into systems of 1st order equations with auxiliary variables

• Use a similar trick for wave PDE:

• So, we have the pair of equations:

• Or:



Advection equation
• Thus, we see that there is a simpler hyperbolic equation, the 

advection equation:

• Describes the evolution of some scalar field a carried by a flow of 
velocity c
• Also known as linear convection equation

• Waves move only in one direction (to the right if c > 0), unlike the wave 
equation

• “Flux conservation” equation
• E.g., continuity equation in electrodynamics/quantum mechanics:



Advection equation is easy to solve analytically 
• For initial condition:

• Solution is: 

• Consider a wavepacket of the form:

• Solution:

ct



Why study such a simple equation? 
• Excellent test case for numerical methods since we know exactly what 

we should get

• Let’s start with the FTCS methods we used for the diffusion equation:

• So, the FTCS equation is:

• We will use periodic boundary conditions for this case



FTCS method clearly fails for the advection 
equation using this timestep

t = 0

t after one period



How can we do a better job?
• We could try to adjust numerical parameters, but it will not work!

• FTCS is unstable for any  ! (will come back to this later on)

• Can delay the problems but not get rid of them

• Stability problem can be fixed with a simple modification: The Lax 
method:

• Simply replacing the first term with the average of the left and right 
neighbors



Stability of the Lax method
• It can be shown that the Lax method is numerically stable (i.e., does 

not diverge) if:

• So:

• Courant-Friedrighs-Lewy (CFL) condition
• We will discuss more on stability conditions later

• If we want a finer grid in space, we need a finer timestep



Stability of the Lax method
• It can be shown that the Lax method is numerically stable (i.e., does 

not diverge) if:

• So:

• Courant-Friedrighs-Lewy (CFL) condition
• We will discuss more on stability conditions later on

• If we want a finer grid in space, we need a finer timestep

• Too large of a timestep: Numerically unstable

• Too small of a timestep: Amplitude suppressed
• Averaging term introduces and artificial viscosity, proportional to 



Lax-Wendroff scheme for hyperbolic PDEs
• Lax-Wedroff is second-order finite difference scheme

• Take the Taylor expansion in time:

• Generally, for a flux-conserving equations:
• F(a) = ca for advection equations

• Differentiate both sides:

• Chain rule:



Second order expansion 
• So, we have:

• Now we discretize derivatives: 

• Where:

• For advection equations, 
Discretized 
second 
derivative of a



After class tasks

• Homework 2 has been graded (see GRADES.md in your repos)

• Homework 3 due Oct 22

• Readings

• Garcia Chapters 6 and 7
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