PHY604 Lecture 15

October 16, 2025



Today’s lecture:
PDEs

e Parabolic: Diffusion equation

* Hyperbolic: Wave equation



Partial differential equations (sarcacrs. s-9)

* Previously, we studied ordinary differential equations

* Much of physics is involved in solving partial differential equations
e Schrodinger equation in Quantum mechanics
 Maxwell’s equations in electricity and magnetism
* Wave equation in optics and acoustics

* For ODEs we developed general methods to solve a variety of
problems, e.g., 4t order Runge-Kutta

* For PDEs, we first classify the type of equation, that will tell us what
method to use



Examples of PDE types

* Parabolic equations
e E.g., Time-dependent Schrodinger equation, 1D diffusion equation
* Consider the Fourier equation with temperature T and thermal diffusion

coefficient x: (?T(x, t) aQT(ZU, t)
K

ot Ox?

* Hyperbolic equations
e E.g., 1D wave equation with amplitude A and speed c:

O*A(x,t) 2 0% A(x,t)

Ot? Ox?
* Elliptic equations
* E.g., Poisson equation:
0°®  9°d 1
02 T o T —gp(w,y)




General classification of PDEs

* Consider a general PDE of two independent variables:

0% A 0% A 0% A 0A 0A
| | | | - fA(x, =
e b@az@y c 0y? d or | oy fAG@,y) +9=0

e Hyperbolicif: b* — 4ac > 0
e Parabolicif: b5* —4ac=0
* Elliptic if: b* — dac < 0

* Most problems involve hybrid systems, including multiple types



Initial value problems

 Diffusion and wave equations usually solved as initial value problems

 Diffusion: Given initial temperature distribution, find temperature distribution
at a later time

e Wave: Start with initial amplitude and velocity of wave pulse and find the
wave pulse at a later time

* Need to specify initial conditions as well as boundary conditions

Boundary
condition needed
Boundary t Solution determined in this / here
condition needed — region of parameter space
here —>



Types of boundary conditions

* Dirichlet boundary conditions: Specify the solution on boundary
* E.g., fix the temperature at the boundaries:

T(x=—-L/2,t)=T,, T(x=L/2,t)="1T
* Neumann boundary conditions: Specify the derivative on the

boundary
* E.g., “insulated” boundaries

dT’ dT’
—h— —F, =0, -k>—|  =F=0
/{d:c /{dx b
x=—L/2 x=L/2

* Periodic boundary conditions: Equate the functions at both ends

dT AT

dz T dx
x=—1L/2 x=L/2

T(x=—-L/2,t) =T(x=L/2,1),




Marching methods for initial value problems

* We first must discretize in time and space:

Ll L L
BESeSEs
1= I-II---I

r=—L/2 r=1L/2

Filled pts are
specified by initial
or boundary
conditions

e Start from the initial condition, move forward in time one timestep at
a time



Boundary value problems

* All boundary values are specified at the outset

* E.g., Laplace’s equation in electrostatics, potential fixed on for sides of spatial

region Boundary condition
needed here

y p— Ly
Boundary condition
needed here

Boundary Y
condition needed
here

y=20

Boundary condition
needed here



Jury methods for boundary value problems

* Discretize in space:

y = Ly
Filled pts are
specified by
Y boundary
conditions
y =0
x =0 h L T = Ly

* Potential in interior is influenced by all the boundary points,
reconciles all the constraints imposed by boundaries



Diffusion equation with FTCS

e Diffusion equation:  9T(z,t) 0°T (x,t)
= K
Ot Ox?
* Discretize in space and time: T;' = T'(x;,t,)

*x;=ih—L/2andt,=nr~
* Take spatial boundary points asi=0andi= N-1, so h =L/(N-1)

e Discretize time derivative with forward difference:
oT (z,t) T/ —T7

4

ot T
 Discretize spatial derivative using central difference:
0T (x,t) T”’ G+ =200
Ox? h?




Diffusion equation with FTCS

* Now the discretized PDE is:
Tin—l—l . Tzn T_|_1 1 Tn . 2Tzn

T h?
* And temperature at future time is:
K
T =T + hg( i 1 — 2T)

* Explicit: Everything that depends on previous timestep n is on RHS

e Discretization is reminiscent of Euler’s method for ODEs



Numerical stability of FTCS method

* The numerical stability of the solution depends on the timestep

* Consider initial conditions of a delta-function peak in T located at N/2
* Discrete approximation, T(x=N/2,t,) = 1/h

e Can show from analytical solutions to this problem that the delta
function will spread into a Gaussian with width:

o(t) = V2xt

* Thus, if t_is the time it takes for o to increase by one grid spacing:

h2
to' —
2K
* Then: Tz'n+1 — T’Iln ™ %(Tﬁl—l - Tin—l o 2Tin)

* Should not use a timestep much larger than t



FCTS method on diffusion equation

Numerically stable: 7= 1e-4 Numerically unstable: 7= 1.5e-4




Wave and advection equations

2 2
* Wave equation: 0"A(x,t) _ Cz(9 Az, 1)

Ot? Ox?
* When we discussed ODEs we used the trick to turn 2" order
equations into systems of 1t order equations with auxiliary variables

e Use a similar trick for wave PDE:
_ 0A 0A

257 Q:Cax

* So, we have the pair of equations:

OP 0Q) 0Q) OP
= Cc— = C—=—

Ot ox’ ot ox

* Or:



Advection equation

* Thus, we see that there is a simpler hyperbolic equation, the
advection equation: Sa Sa
= —C—

ot ox

» Describes the evolution of some scalar field a carried by a flow of
velocity ¢

* Also known as linear convection equation

* Waves move only in one direction (to the right if ¢ > 0), unlike the wave
equation

* “Flux conservation” equation
 E.g., continuity equation in electrodynamics/quantum mechanics:

o _

5 = VI



Advection equation is easy to solve analytically
e For initial condition: a(x,t = 0) = fo(x)

e Solution is: a(x,t) = fo(x — ct)

* Consider a wavepacket of the form:

(. = 0) = cosfi(z — an)] exp |20

((z —ct) - xo)Q}

202

e Solution: a(x,t) = cos|k((x — ct) — xp)] exp {—

H ct
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Why study such a simple equation?

» Excellent test case for numerical methods since we know exactly what
we should get

* Let’s start with the FTCS methods we used for the diffusion equation:

da \ a?“ —ay da \ a;' 1 — a4
ot T ’ Oz 2h
* So, the FTCS equation is:
n+1 cT , .

a; T =a; — %(%H —a;_q)

* We will use periodic boundary conditions for this case



FTCS method clearly fails for the advection
equation using this timestep
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How can we do a better job?

* We could try to adjust numerical parameters, but it will not work!

* FTCS is unstable for any 7! (will come back to this later on)
* Can delay the problems but not get rid of them

e Stability problem can be fixed with a simple modification: The Lax
method:

a, = §(ai+1 +ai 1) — %(%H —a; 1)

e Simply replacing the first term with the average of the left and right
neighbors



Stability of the Lax method

* It can be shown that the Lax method is numerically stable (i.e., does

not diverge) if:
ge) T <1
S
h
¢ SO Tmax = —

* Courant-Friedrighs-Lewy (CFL) condition
* We will discuss more on stability conditions later
 If we want a finer grid in space, we need a finer timestep



Stability of the Lax method

* It can be shown that the Lax method is numerically stable (i.e., does

not diverge) if:
ge) % <1

h

e SO: Tmax — —

C

* Courant-Friedrighs-Lewy (CFL) condition

* We will discuss more on stability conditions later on
* |If we want a finer grid in space, we need a finer timestep

* Too large of a timestep: Numerically unstable

* Too small of a timestep: Amplitude suppressed
* Averaging term introduces and artificial viscosity, proportional to 7



Lax-Wendroff scheme for hyperbolic PDEs

e Lax-Wedroff is second-order finite difference scheme

* Take the Taylor expansion in time:
da | 2 0%a |

a(x,t+7)=a(x,t) Tat Sarv O(1?)
Generally, for a flux-conserving equations Ja 9 F(a)
. , - . —=——F(a
Y 5 =1 ot Ox

* F(a) = ca for advection equations

2
e Differentiate both sides: @ — — 0 6’F(a)

Ot? or Ot

OF  dF Oa oa OF
« Chainrule: “—— — — Flla) 2 = —F'(a)—
Chain rule 5 oy F(a)at F'(a) 5




Second order expansion

OF (a 2 0 OF (a
* So, we have: a(x,t+7) ~a(x,t) — T 6’:53 ) + 5 [F’(a) 6’:53 >]
* Now we discretize derivatives:
w1 on P —Fia om0 ( ,  Fga—F o Fi i
a;  =a; — 7T oh "o \ it1/2 7 i—1/2 h
* Where:  F; = F(ai), Fiii),=F(al +ai')/2]
Discretized
* For advection equations, F; = ca,’, &1/2 =C /ZGCQHT_ :
n-+1 cT , c?12

a; " =a; — %(%H —a; 1) 5h2 (aiy1 +aiy — 2a})



After class tasks

* Homework 2 has been graded (see GRADES.md in your repos)
e Homework 3 due Oct 22

* Readings

e Garcia Chapters 6 and 7
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