PHY604 Lecture 16

October 21, 2025



Today’s lecture:
Elliptical PDEs

* Relaxation methods

* Spectral methods



Elliptical equations: e.g., Laplace equation

* The PDEs we will discuss here represent boundary-value problems
 Solution is a static field

0*®(z,y) N 0*®(z,y)

e Consider Laplace’s equation:
P ; Ox? 0y?

=0

* @ s the electrostatic potential

e As usual it is useful to solve a simple problem analytically so that we
can benchmark numerical methods



Separation of variables for Laplace’s equation

* Write @ as the product: ®(z,y) = X (z)Y (y)
* Insert into Laplace’s equation and divide by ®:
1 d?X ] d’Y _ 0
X(z) dz? = Y(y) dy?
* This equation should hold for all x and y, so each term must be a

constant: 1 B2X 1 42V 3
X(x) dz? Y(y) dy? N

kQ

— )2

e kis a complex constant
* Writing constant as k? to simplify notation later
* Signs can be switched

e Now we have two ODEs



Solution of Laplace’s eq. ODEs

 Solution of these equations are well known:
X(z) = Cssin(kx) + C. cos(kx), Y (y) = C! sinh(ky) + C'. cosh(ky)

e Recall that k is complex, so solutions are “symmetric”

* To get the coefficients, we need to specify the boundary conditions



Boundary value problems

* All boundary values are specified at the outset

* E.g., Laplace’s equation in electrostatics, potential fixed on for sides of spatial

region Boundary condition
needed here

y p— Ly
Boundary condition
needed here

Boundary Y
condition needed
here

y=20

Boundary condition
needed here



Solution of Laplace’s eq. ODEs

 Solution of these equations are well known:
X (z) = Oy sin(kx) + C,. cos(kx), Y (y) = C. sinh(ky) + C'. cosh(ky)

* Recall that k is complex, so solutions are “symmetric”

* To get the coefficients, we need to specify the boundary conditions
Oz =0,y)=P(x=Ly,y) = (z,y=0)=0, D(z,y=Ly) =D
® =P

y:Ly




Solution of Laplace’s eq. ODEs

X(x) = Cysin(kx) 4+ C. cos(kx), Y (y) = C! sinh(ky) + C’ cosh(ky)

* Use our boundary conditions:
¢(r=0,y) =0 = C.=0

(r,y=0)=0 — (' =0
P(r=L,,y)=0 = k—Z—W,n—12

* So, we have solutions of the form: B

g NI i nmwy
C,, SIN n
L, L,

* Any linear combination is also a solution, so:

<nW$> , (nwy)
Z Cp, SIN sinh 7




Solution of Laplace’s equation

* Now we use our last boundary condition:

- L
by = Z Cy, SIN <TL£T£C> sinh (nzxy)

n=1 X

* To solve the equation, multiply both sides by sin(mx/L,) and
integrate fromOto L,:

L 00 L
x L x
/o dxPg sin <Tf27:13) — Z ¢, sinh (m;%y) /0 dx sin (T,er> sin (ZZJJ)

n=1

 Left-hand side integral:

/Lx , <m7m> (2Lw/m7r, m odd
dx sin 7 = <
0

T 0, m even

\



Solution of Laplace’s equation

 Sum on the right-hand side simplifies because:

La , mmnx\ . NI L.
/ dwsm( )Slﬂ( ) — —0n.m
0 Lx Laj 2 ’

* So, we have:

4P
* So: Crp, = m=1,3,5,...

. mﬂLy !
7T sinh




Solution of Laplace’s equation

* Our final solution of Laplace’s equation with our chosen boundary
conditions:

. s (322)
b (x,y) = Dy Z — sin (mm:) -

z / sinh (mLy)

Ly



Analytical solution to

“Gibbs phenomenon,”
oscillations of Fourier series for
discontinuous function

5 terms in the sum:

50 terms in the sum:

\

nlace equation




Numerical solution of the Laplace equation

* To do this, we’ll go back to the diffusion equation we have solved
previously, this time in two spatial dimensions:

OT(z,y,t) _ (O°T(x,y,t) O°T(x,y,1)
ot B Ox? | 0y?

e Given an initial temperature profile and stationary boundary
conditions, the solution will eventually relax to some steady state:

t1l>I20 T(x,y,t) =Ts(x,y)

* In this state 97'/0t = 0, so:
Ty | 0°Ts .
ox2 Oy

* We can think of the Laplace equation as the steady-state of the
diffusion equation




Relaxation methods

* Methods based on this physical intuition are called relaxation
methods

* We can use the FTCS method that we have used previously for the
diffusion equation

 Start with the 2D “diffusion” equation:
82<I> 82
12

0P
/ EIA 8:1:2 '
Remember, solving an T

electrostatic problem, so @
does not actually have time Will drop out later
dependence




Relaxation methods

* Methods based on this physical intuition are called relaxation
methods

* We can use the FTCS method that we have used previously for the
diffusion equation

 Start with the 2D “diffusion” equation:

0P (82613 82<I>>
— =0 -

Ot oz?  0y?
* Discretize: T
n+1 _ F£n n
(I)z’,j — (I) —I_ ﬁ( 1+1,7 + (I)z 1,7 zq)i,j)
,u

h2 (q)n;.7+1 T (I) i,j—1 2(1)23')

* n here is not really time, more an improved guess for the solution



Jacobi relaxation method
» Recall that FTCS is stable for u7r/h? < 1/2

* In 2D the stability criteria is :
i
h

 Since we want to take n to infinity, we choose the largest timestep:

n 1 mn
(I),;rl_4( z+1,3+q)z 1,J_|_(I) J—|-1_|_(I),] 1)



Jacobi method for Laplace equation
n 1 n
(I)i,;!_l 4( 1+1,9 T (I)z 1,7 + D, 1,7+1 T (I) 1,7 — 1)

* Note that the i has dropped out

* Involves replacing the value of the potential at a point with the
average value of the four nearest neighbors

* Discrete version of mean-value theorem for the electrostatic potential

* This equation is for the interior points (exterior are set by boundary
conditions)

e Simple to generalize for Poisson equation



Jacobi method for Laplace equation

Jacobi

.’
.’

0.2
Analytical, Jacobi, 75 steps
75 terms
0.0 ™ ; ; ; ; 4
0.0 0.2 0.4 0.6 0.8 1.0



Gauss-Seidel and simultaneous overrelaxation

* Gauss-Seidel: We can improve the convergence over the Jacobi
method by using updated values of the potential as they are
calculated: 1

e = Z (o7
4

n—+1 n—+1
1+1,9 - (I)z 1,9 T (I)z ,7+1 -+ (I) 1,7 — 1)

e Simultaneous overrelaxation: Choose a mixing parameter w:

n n W mn mn
e, H = (1 -w)®, + 4( it1; T P +11,g + Qi1 + @, ,}H1)

* w<1slows convergence, @ > 2 is unstable
e Often chosen by trial and error
e E.g., for a square geometry with equal discretization, often a good choice:

2
“oPt = 1 Sin(n/N)




Gauss-Seidel for Laplace equation

Gauss-Seidel

Gauss-Seidel

0.2




Simultaneous overrelaxation for Laplace eq.

Simultaneous Overrelaxation

1.0 p—r :

gg6°%’

Simultaneous Overrelaxation

0.8

annn

0.6

0.4

0.2

0.0 ™ 4




Recall: Jacobi iterative method

* Starting with a linear system: 41171+ a12Z2 + -+ + a1nZpn = b
a21%1 + A22%2 + * -+ + A2p Ty = b2

Ap1T1 + Ap2T2 + -+ AppTp = bn

* Pick initial guesses xX, solve equation i for ith unknown to get an improved guess:

1
k1l k k k
2 = — = (a102% + arzzE 4+ - + arnz® — by)
a1
1
k+1 k k k
Ty = = ——/(a217] + ao3x5 + -+ - + agnx, — bo)
a22
1
k1l k k k
Ty = —— (@177 + ap2Ty + -+ Q17,1 — by)

a”n?’L



Recall: Jacobi iterative method

* We can write an element-wise formula for x:

1
it = — b — Zaijaz?
a..
" j#i
* Or:
xt = p~! (b — (A — D)x")
* Where D is a diagonal matrix constructed from the diagonal elements of A

e Convergence is guaranteed if matrix is diagonally dominant (but
works in other cases): N
ai > ) ]

j=1,j71



The iterative methods discussed here are the
same as we used to solve linear systems

* Can interpret ® as a vector, so are solving A®=b
e Going back to our initial discretization of the Laplace equation (for
h,=h,):
y

1 mn n mn
13 (@, + P+ P P, —49),) =0

* Note that A is a banded matrix with 4’s on the diagonal, 1’s on off-
diagonal elements

* This is when the Jacobi method is guaranteed to be accurate
(diagonally dominated)!

e Same holds for Gauss-Seidel and SOR



Today’s lecture:
Elliptical PDEs

e Spectral methods



A different way to represent the potential

* Consider again the Poisson equation: .

V2(r) = ——p(r)
€0
 For simplicity, square geometry: 0 <z <L, 0<y <L
* Relaxation methods discretize space and solve for @, ;

* We constructed out analytical solution as in infinite sum of
trigonometric functions

* Let’s build an approximate solution as a finite sum:

(I)(:Uay) — alfl(xay) T a2f2($7y) T T aKfK(ajvy) + T(Qf,y)
K

— Ckak(ZU,y)‘FT(CU,y)
k

S (z,y) +T(v,y)



Approximate solution i P
®(z,y) = Pu(z,y) + T(z,y)

* To simplify the approximate solution, we take orthogonal trial

functions: L L
/ daj/ dyfk(xay)fk’(x7y) — Ak(gkok/
0 0

* Insert into the Poisson equation:

V2 | S anfila) | + —play) = Ry

|k _

e Where the residual R is:
R(SIZ‘, y) — —VQT(SI}, y)



Obtain coefficients with Galerkin method

* Next step is to obtain coefficients a,

* Galerkin method imposes the condition that the residual is

orthogonal to all of the trial functions:

conditions

L L
/ dx / dy frx(z,y)R(x,y) =0
0 0

* Choice of trial functions motivated by geometry and boundary

* Let’s take Neumann boundary conditions:

8_<I>
ox

=0

_ 02
- Ox

r=1L

_ 02
-

y=L

=0

* Normal component of electric field zero at the boundaries



Trial functions for our geometry and BCs

 Natural set of trial functions:

fm.n(x,y) = cos {mzx} coS [%}

e Can confirm that these functions are orthogonal:

L L L2
/ daz/ AY fr.n (T, Y) frr o (2,y) = Z(l + 0m.0)(1 + 60.0)0m m/On n
0 0

* Inserting into Poisson equation

V| aufi@y)| + —ple.y) = Ria,y)
* Gives: - )
—1 M 11 m2 n2 1
- > > a ua L; )fm,n(:v,y) + gp(m,y) = R(z,y)

m=0 n=0



Now we need so solve for coefficients

* Apply to both sides of the equation:

L L
/ da / 0y s (2, 1)
0 0

 And use “Galerkin condition”:

L L
/ iz / dy fi(, y)R(z,y) = 0
0 0

* Which gives:

A L L mmrx nmy
1T w2 (m2 4 n2)(1+ Om0) (1 + 0n o) /o dxfo duple,y) oS ( L ) o (T)




Final solution with Galerkin method:

D
-

—1

b, (x,y) = Q. COS (mzw) cos (%)

i
o
S
|
o

4 /Ld /Ld (z.1) (mﬁx) (mry)
o, = x X, 1) CoS cos | ——
’ m2eg(m? +n?)(1 + dpm,0)(1 +dn0) Jo 0 I L L



Ex: charge distribution of 2D dipoles (carciasec 52

e Where:




Galerkin solution to the dipole potential

 Compare to free dipole: CIDfI'ee(r) —

Injr—ry|—Injr—r_||

2T€Q
(" TNT : ideal A ‘d’
* Or “ideal” dipole potential (far away): ®'““*(r) = cos 0
2meg |r — .
25 lelO 1e9
—— Galerkin
20 -~ Free dipole 6 1
B O Ideal dipole
1.5 1 Al TN .
1.0 - )
2_
& 05 o
0.0 1 0-
~0.5 \
-2 -
~1.0- \
-1.5 —4 , \.\\
0.0 3.0 00 05 10 15 20 25 3.0




Comments on the Galerkin method

* Can choose any trial functions that are orthogonal and obey the
boundary conditions

* In contrast to the separation of variables, where we first found general
solutions to PDE, the imposed boundary conditions

* Should be interpreted as a spectral transform approach, i.e.,
representing the solution as a Fourier series

* In our example, it was a cosine series because of our boundary conditions

* Did not use a spatial grid
e Convenient if only need the answer at specific points

* |Inefficient if we want to map the potential over the whole range, because of
the computation of the prefactors, especially for a more complex potential



After class tasks

* Homework 3 due tomorrow Oct. 22
* Homework 4 will be posted soon
* Readings

e Garcia Chapters 7and 8
e Mlke Zingale's notes on computational hydrodynamics



http://bender.astro.sunysb.edu/hydro_by_example/CompHydroTutorial.pdf
http://bender.astro.sunysb.edu/hydro_by_example/CompHydroTutorial.pdf
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