PHY604 Lecture 16

October 21, 2025

Today's lecture: Elliptical PDEs

Relaxation methods

Spectral methods

Elliptical equations: e.g., Laplace equation

- The PDEs we will discuss here represent boundary-value problems
 - Solution is a static field
- Consider Laplace's equation: $\frac{\partial^2 \Phi(x,y)}{\partial x^2} + \frac{\partial^2 \Phi(x,y)}{\partial y^2} = 0$
- Φ is the electrostatic potential

 As usual it is useful to solve a simple problem analytically so that we can benchmark numerical methods

Separation of variables for Laplace's equation

- Write Φ as the product: $\Phi(x,y) = X(x)Y(y)$
- Insert into Laplace's equation and divide by Φ :

$$\frac{1}{X(x)}\frac{d^2X}{dx^2} + \frac{1}{Y(y)}\frac{d^2Y}{dy^2} = 0$$

• This equation should hold for all x and y, so each term must be a constant:

1 12 x

$$\frac{1}{X(x)}\frac{d^2X}{dx^2} = -k^2, \qquad \frac{1}{Y(y)}\frac{d^2Y}{dy^2} = k^2$$

- *k* is a complex constant
- Writing constant as k^2 to simplify notation later
- Signs can be switched
- Now we have two ODEs

Solution of Laplace's eq. ODEs

Solution of these equations are well known:

$$X(x) = C_s \sin(kx) + C_c \cos(kx), \qquad Y(y) = C'_s \sinh(ky) + C'_c \cosh(ky)$$

- Recall that k is complex, so solutions are "symmetric"
- To get the coefficients, we need to specify the boundary conditions

Boundary value problems

All boundary values are specified at the outset

• E.g., Laplace's equation in electrostatics, potential fixed on for sides of spatial



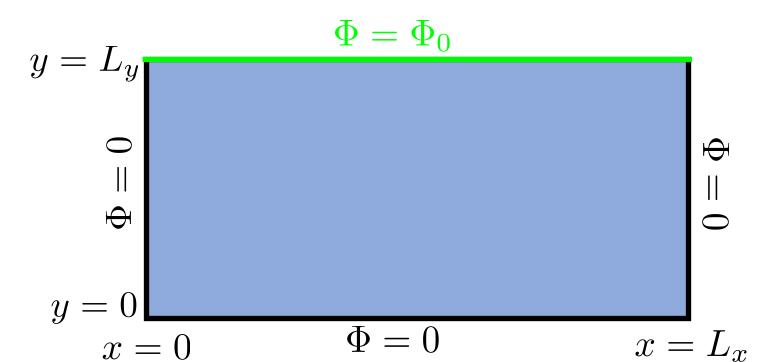
Solution of Laplace's eq. ODEs

Solution of these equations are well known:

$$X(x) = C_s \sin(kx) + C_c \cos(kx), \qquad Y(y) = C'_s \sinh(ky) + C'_c \cosh(ky)$$

- Recall that k is complex, so solutions are "symmetric"
- To get the coefficients, we need to specify the boundary conditions

$$\Phi(x = 0, y) = \Phi(x = L_x, y) = \Phi(x, y = 0) = 0, \quad \Phi(x, y = L_y) = \Phi_0$$



Solution of Laplace's eq. ODEs

$$X(x) = C_s \sin(kx) + C_c \cos(kx), \qquad Y(y) = C_s' \sinh(ky) + C_c' \cosh(ky)$$

Use our boundary conditions:

$$\Phi(x = 0, y) = 0 \implies C_c = 0$$

$$\Phi(x, y = 0) = 0 \implies C'_c = 0$$

$$\Phi(x = L_x, y) = 0 \implies k = \frac{n\pi}{L_x}, n = 1, 2, \dots$$

• So, we have solutions of the form:

$$c_n \sin\left(\frac{n\pi x}{L_x}\right) \sinh\left(\frac{n\pi y}{L_x}\right)$$

Any linear combination is also a solution, so:

$$\Phi(x,y) = \sum_{n=1}^{\infty} c_n \sin\left(\frac{n\pi x}{L_x}\right) \sinh\left(\frac{n\pi y}{L_x}\right)$$

Solution of Laplace's equation

Now we use our last boundary condition:

$$\Phi_0 = \sum_{n=1}^{\infty} c_n \sin\left(\frac{n\pi x}{L_x}\right) \sinh\left(\frac{n\pi L_y}{L_x}\right)$$

• To solve the equation, multiply both sides by $sin(m\pi x/L_x)$ and integrate from 0 to L_x :

$$\int_0^{L_x} dx \Phi_0 \sin\left(\frac{m\pi x}{L_x}\right) = \sum_{n=1}^{\infty} c_n \sinh\left(\frac{n\pi L_y}{L_x}\right) \int_0^{L_x} dx \sin\left(\frac{m\pi x}{L_x}\right) \sin\left(\frac{n\pi x}{L_x}\right)$$

Left-hand side integral:

$$\int_0^{L_x} dx \sin\left(\frac{m\pi x}{L_x}\right) = \begin{cases} 2L_x/m\pi, & m \text{ odd} \\ 0, & m \text{ even} \end{cases}$$

Solution of Laplace's equation

• Sum on the right-hand side simplifies because:

$$\int_0^{L_x} dx \sin\left(\frac{m\pi x}{L_x}\right) \sin\left(\frac{n\pi x}{L_x}\right) = \frac{L_x}{2} \delta_{n,m}$$

• So, we have:

$$\Phi_0 \frac{2L_x}{\pi m} = c_m \sinh\left(\frac{m\pi L_y}{L_x}\right) \frac{L_x}{2}, \quad m = 1, 3, 5, \dots$$

• So:
$$c_m = \frac{4\Phi_0}{\pi m \sinh\left(\frac{m\pi L_y}{L_x}\right)}, \quad m = 1, 3, 5, \dots$$

Solution of Laplace's equation

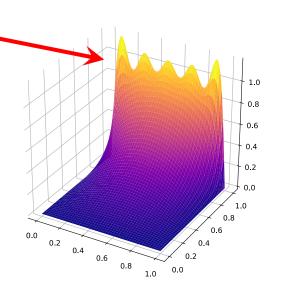
 Our final solution of Laplace's equation with our chosen boundary conditions:

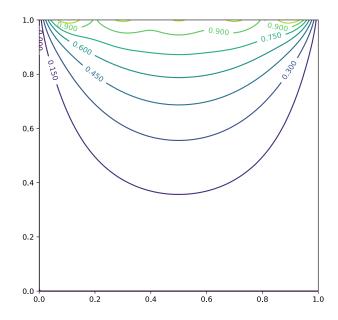
$$\Phi(x,y) = \Phi_0 \sum_{n=1,3,5,\dots}^{\infty} \frac{4}{\pi n} \sin\left(\frac{n\pi x}{L_x}\right) \frac{\sinh\left(\frac{n\pi y}{L_x}\right)}{\sinh\left(\frac{n\pi L_y}{L_x}\right)}$$

Analytical solution to Laplace equation

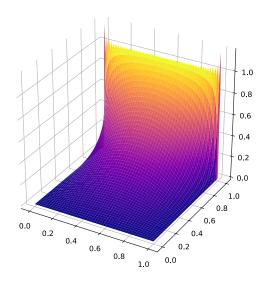
"Gibbs phenomenon," oscillations of Fourier series for discontinuous function

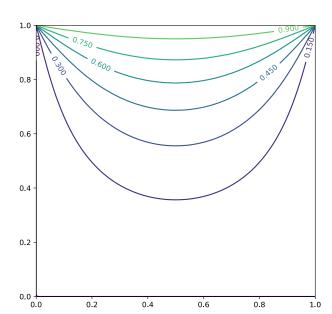
5 terms in the sum:





50 terms in the sum:





Numerical solution of the Laplace equation

• To do this, we'll go back to the *diffusion* equation we have solved previously, this time in two spatial dimensions:

$$\frac{\partial T(x,y,t)}{\partial t} = \kappa \left(\frac{\partial^2 T(x,y,t)}{\partial x^2} + \frac{\partial^2 T(x,y,t)}{\partial y^2} \right)$$

• Given an initial temperature profile and stationary boundary conditions, the solution will eventually relax to some steady state:

$$\lim_{t \to \infty} T(x, y, t) = T_s(x, y)$$

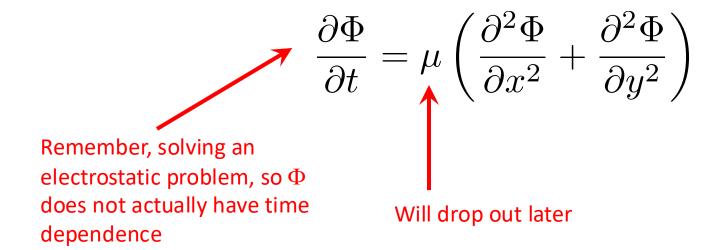
• In this state $\partial T/\partial t=0$, so:

$$\frac{\partial^2 T_s}{\partial x^2} + \frac{\partial^2 T_s}{\partial y^2} = 0$$

 We can think of the Laplace equation as the steady-state of the diffusion equation

Relaxation methods

- Methods based on this physical intuition are called relaxation methods
- We can use the FTCS method that we have used previously for the diffusion equation
- Start with the 2D "diffusion" equation:



Relaxation methods

- Methods based on this physical intuition are called relaxation methods
- We can use the FTCS method that we have used previously for the diffusion equation
- Start with the 2D "diffusion" equation:

$$\frac{\partial \Phi}{\partial t} = \mu \left(\frac{\partial^2 \Phi}{\partial x^2} + \frac{\partial^2 \Phi}{\partial y^2} \right)$$

• Discretize:

$$\Phi_{i,j}^{n+1} = \Phi_{i,j}^{n} + \frac{\mu\tau}{h_x^2} (\Phi_{i+1,j}^{n} + \Phi_{i-1,j}^{n} - 2\Phi_{i,j}^{n})$$

$$+ \frac{\mu\tau}{h_y^2} (\Phi_{i,j+1}^{n} + \Phi_{i,j-1}^{n} - 2\Phi_{i,j}^{n})$$

• n here is not really time, more an improved guess for the solution

Jacobi relaxation method

• Recall that FTCS is stable for $\mu \tau / h^2 \le 1/2$

• In 2D the stability criteria is:

$$\frac{\mu\tau}{h_x^2} + \frac{\mu\tau}{h_y^2} \le \frac{1}{2}$$

• If $h_x = h_y = h$, then the criterion is

$$\frac{\mu\tau}{h^2} \le \frac{1}{4}$$

• Since we want to take *n* to infinity, we choose the largest timestep:

$$\Phi_{i,j}^{n+1} = \frac{1}{4} (\Phi_{i+1,j}^n + \Phi_{i-1,j}^n + \Phi_{i,j+1}^n + \Phi_{i,j-1}^n)$$

Jacobi method for Laplace equation
$$\Phi^{n+1}_{i,j}=\frac{1}{4}(\Phi^n_{i+1,j}+\Phi^n_{i-1,j}+\Phi^n_{i,j+1}+\Phi^n_{i,j-1})$$

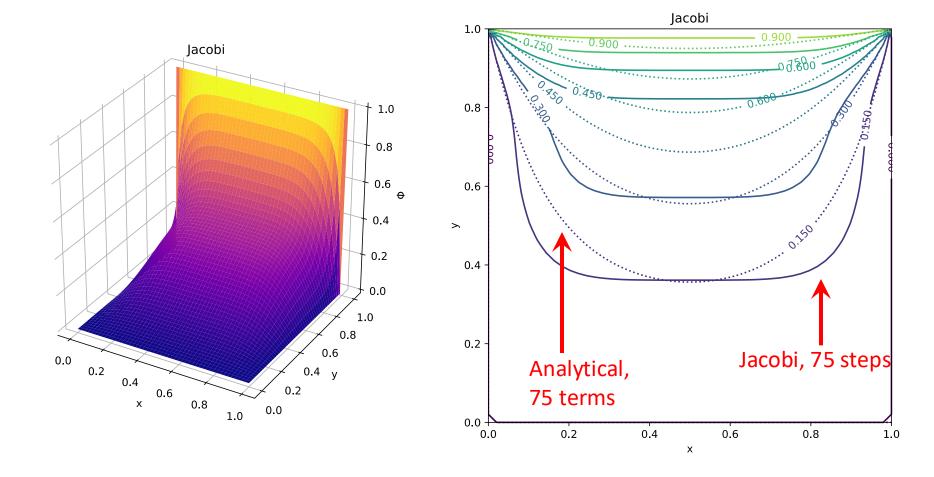
• Note that the μ has dropped out

- Involves replacing the value of the potential at a point with the average value of the four nearest neighbors
 - Discrete version of mean-value theorem for the electrostatic potential

 This equation is for the interior points (exterior are set by boundary) conditions)

Simple to generalize for Poisson equation

Jacobi method for Laplace equation



Gauss-Seidel and simultaneous overrelaxation

 Gauss-Seidel: We can improve the convergence over the Jacobi method by using updated values of the potential as they are calculated:

$$\Phi_{i,j}^{n+1} = \frac{1}{4} (\Phi_{i+1,j}^n + \Phi_{i-1,j}^{n+1} + \Phi_{i,j+1}^n + \Phi_{i,j-1}^{n+1})$$

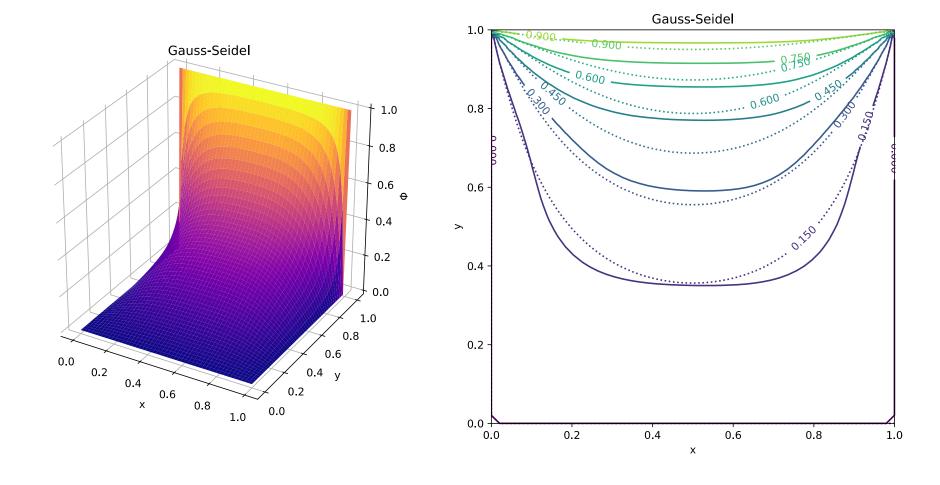
• Simultaneous overrelaxation: Choose a mixing parameter ω :

$$\Phi_{i,j}^{n+1} = (1-\omega)\Phi_{i,j}^n + \frac{\omega}{4}(\Phi_{i+1,j}^n + \Phi_{i-1,j}^{n+1} + \Phi_{i,j+1}^n + \Phi_{i,j-1}^{n+1})$$

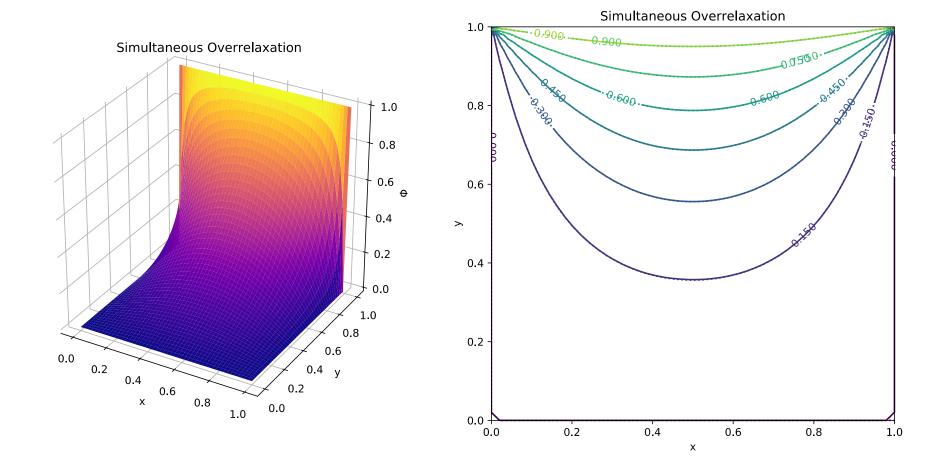
- ω < 1 slows convergence, ω > 2 is unstable
- Often chosen by trial and error
- E.g., for a square geometry with equal discretization, often a good choice:

$$\omega_{\rm opt} = \frac{2}{1 + \sin(\pi/N)}$$

Gauss-Seidel for Laplace equation



Simultaneous overrelaxation for Laplace eq.



Recall: Jacobi iterative method

• Starting with a linear system: $a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1$ $a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2$

$$a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n$$

• Pick initial guesses \mathbf{x}^k , solve equation i for ith unknown to get an improved guess:

$$x_1^{k+1} = -\frac{1}{a_{11}}(a_{12}x_1^k + a_{13}x_2^k + \dots + a_{1n}x_n^k - b_1)$$

$$x_2^{k+1} = -\frac{1}{a_{22}}(a_{21}x_1^k + a_{23}x_2^k + \dots + a_{2n}x_n^k - b_2)$$

$$x_n^{k+1} = -\frac{1}{a_{nn}}(a_{n1}x_1^k + a_{n2}x_2^k + \dots + a_{n,n-1}x_{n-1}^k - b_n)$$

Recall: Jacobi iterative method

• We can write an element-wise formula for x:

$$x_i^{k+1} = \frac{1}{a_{ii}} \left(b_i - \sum_{j \neq i} a_{ij} x_j^k \right)$$

• Or:

$$\mathbf{x}_i^{k+1} = \mathbf{D}^{-1} \left(\mathbf{b} - (\mathbf{A} - \mathbf{D}) \mathbf{x}^k \right)$$

- Where D is a diagonal matrix constructed from the diagonal elements of A
- Convergence is guaranteed if matrix is diagonally dominant (but works in other cases): N

$$a_{ii} > \sum_{j=1, j \neq i}^{\infty} |a_{ij}|$$

The iterative methods discussed here are the same as we used to solve linear systems

- Can interpret Φ as a vector, so are solving $\mathbf{A}\Phi = \mathbf{b}$
- Going back to our initial discretization of the Laplace equation (for

$$h_{x} = h_{y}$$
:
$$\frac{1}{h^{2}} (\Phi_{i+1,j}^{n} + \Phi_{i-1,j}^{n} + \Phi_{i,j+1}^{n} + \Phi_{i,j-1}^{n} - 4\Phi_{i,j}^{n}) = 0$$

- Note that A is a banded matrix with 4's on the diagonal, 1's on offdiagonal elements
- This is when the Jacobi method is guaranteed to be accurate (diagonally dominated)!
- Same holds for Gauss-Seidel and SOR

Today's lecture: Elliptical PDEs

Relaxation methods

Spectral methods

A different way to represent the potential

• Consider again the Poisson equation:

$$\nabla^2 \Phi(\mathbf{r}) = -\frac{1}{\epsilon_0} \rho(\mathbf{r})$$

- For simplicity, square geometry: $0 \le x \le L$, $0 \le y \le L$
- Relaxation methods discretize space and solve for $\Phi_{i,j}$
- We constructed out analytical solution as in infinite sum of trigonometric functions
- Let's build an approximate solution as a finite sum:

$$\Phi(x,y) = a_1 f_1(x,y) + a_2 f_2(x,y) + \dots + a_K f_K(x,y) + T(x,y)$$

$$= \sum_{k=1}^K a_k f_k(x,y) + T(x,y)$$

$$= \Phi_a(x,y) + T(x,y)$$

Approximate solution Approx. Solution
$$\Phi(x,y) = \Phi_a(x,y) + T(x,y)$$
 Error

 To simplify the approximate solution, we take orthogonal trial functions:

$$\int_{0}^{L} dx \int_{0}^{L} dy f_{k}(x, y) f_{k'}(x, y) = A_{k} \delta_{k, k'}$$

Insert into the Poisson equation:

$$\nabla^2 \left[\sum_k a_k f_k(x, y) \right] + \frac{1}{\epsilon_0} \rho(x, y) = R(x, y)$$

Where the residual R is:

$$R(x,y) = -\nabla^2 T(x,y)$$

Obtain coefficients with Galerkin method

- Next step is to obtain coefficients a_k
- Galerkin method imposes the condition that the residual is orthogonal to all of the trial functions:

$$\int_0^L dx \int_0^L dy f_k(x, y) R(x, y) = 0$$

- Choice of trial functions motivated by geometry and boundary conditions
- Let's take Neumann boundary conditions:

$$\left. \frac{\partial \Phi}{\partial x} \right|_{x=0} = \left. \frac{\partial \Phi}{\partial x} \right|_{x=L} = \left. \frac{\partial \Phi}{\partial y} \right|_{y=0} = \left. \frac{\partial \Phi}{\partial y} \right|_{y=L} = 0$$

Normal component of electric field zero at the boundaries

Trial functions for our geometry and BCs

Natural set of trial functions:

$$f_{m,n}(x,y) = \cos\left[\frac{m\pi x}{L}\right] \cos\left[\frac{n\pi y}{L}\right]$$

Can confirm that these functions are orthogonal:

$$\int_0^L dx \int_0^L dy f_{m,n}(x,y) f_{m',n'}(x,y) = \frac{L^2}{4} (1 + \delta_{m,0}) (1 + \delta_{n,0}) \delta_{m,m'} \delta_{n,n'}$$

Inserting into Poisson equation

$$\nabla^2 \left[\sum_k a_k f_k(x, y) \right] + \frac{1}{\epsilon_0} \rho(x, y) = R(x, y)$$

• Gives:

$$-\sum_{m=0}^{M-1} \sum_{n=0}^{M-1} a_{m,n} \frac{\pi^2(m^2+n^2)}{L^2} f_{m,n}(x,y) + \frac{1}{\epsilon_0} \rho(x,y) = R(x,y)$$

Now we need so solve for coefficients

Apply to both sides of the equation:

$$\int_{0}^{L} dx \int_{0}^{L} dy f_{m',n'}(x,y)$$

And use "Galerkin condition":

$$\int_0^L dx \int_0^L dy f_k(x,y) R(x,y) = 0$$

Which gives:

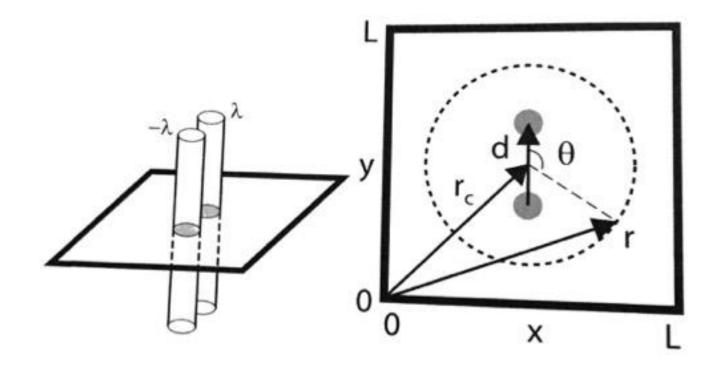
$$a_{m,n} = \frac{4}{\pi^2 \epsilon_0(m^2 + n^2)(1 + \delta_{m,0})(1 + \delta_{n,0})} \int_0^L dx \int_0^L dy \rho(x,y) \cos\left(\frac{m\pi x}{L}\right) \cos\left(\frac{n\pi y}{L}\right)$$

Final solution with Galerkin method:

$$\Phi_a(x,y) = \sum_{m=0}^{M-1} \sum_{n=0}^{M-1} a_{m,n} \cos\left(\frac{m\pi x}{L}\right) \cos\left(\frac{n\pi y}{L}\right)$$

$$a_{m,n} = \frac{4}{\pi^2 \epsilon_0(m^2 + n^2)(1 + \delta_{m,0})(1 + \delta_{n,0})} \int_0^L dx \int_0^L dy \rho(x,y) \cos\left(\frac{m\pi x}{L}\right) \cos\left(\frac{n\pi y}{L}\right)$$

Ex: charge distribution of 2D dipoles (Garcia Sec. 8.2)



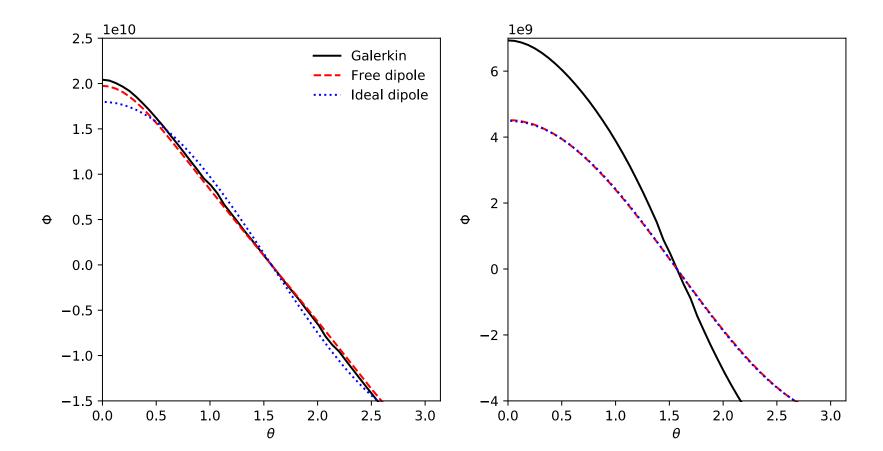
$$\rho(\mathbf{r}) = \lambda [\delta(\mathbf{r} - \mathbf{r}_{+}) - \delta(\mathbf{r} - \mathbf{r}_{-})]$$

• Where:

$$\mathbf{r}_{\pm} = \mathbf{r}_c \pm \frac{1}{2}\mathbf{d}$$

Galerkin solution to the dipole potential

- Compare to free dipole: $\Phi^{\rm free}({f r})=-rac{\lambda}{2\pi\epsilon_0}[\ln|{f r}-{f r}_+|-\ln|{f r}-{f r}_-|]$
- Or "ideal" dipole potential (far away): $\Phi^{\mathrm{ideal}}(\mathbf{r}) = \frac{\lambda}{2\pi\epsilon_0} \frac{|\mathbf{d}|}{|\mathbf{r} \mathbf{r}_c|} \cos\theta$



Comments on the Galerkin method

- Can choose any trial functions that are orthogonal and obey the boundary conditions
 - In contrast to the separation of variables, where we first found general solutions to PDE, the imposed boundary conditions

- Should be interpreted as a spectral transform approach, i.e., representing the solution as a Fourier series
 - In our example, it was a cosine series because of our boundary conditions
- Did not use a spatial grid
 - Convenient if only need the answer at specific points
 - Inefficient if we want to map the potential over the whole range, because of the computation of the prefactors, especially for a more complex potential

After class tasks

- Homework 3 due tomorrow Oct. 22
- Homework 4 will be posted soon

- Readings
 - Garcia Chapters 7 and 8
 - MIke Zingale's notes on computational hydrodynamics