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Today’s lecture: 
Elliptical PDEs

• Relaxation methods

• Spectral methods



Elliptical equations: e.g., Laplace equation
• The PDEs we will discuss here represent boundary-value problems

• Solution is a static field

• Consider Laplace’s equation:

•  is the electrostatic potential 

• As usual it is useful to solve a simple problem analytically so that we 
can benchmark numerical methods



Separation of variables for Laplace’s equation
• Write  as the product:

• Insert into Laplace’s equation and divide by :

• This equation should hold for all x and y, so each term must be a 
constant:

• k is a complex constant 

• Writing constant as k2 to simplify notation later

• Signs can be switched

• Now we have two ODEs



Solution of Laplace’s eq. ODEs
• Solution of these equations are well known:

• Recall that k is complex, so solutions are “symmetric”

• To get the coefficients, we need to specify the boundary conditions



• All boundary values are specified at the outset
• E.g., Laplace’s equation in electrostatics, potential fixed on for sides of spatial 

region

Boundary value problems

Solution determined in this 
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Boundary condition 
needed here
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Solution of Laplace’s eq. ODEs
• Solution of these equations are well known:

• Recall that k is complex, so solutions are “symmetric”

• To get the coefficients, we need to specify the boundary conditions



Solution of Laplace’s eq. ODEs

• Use our boundary conditions:

• So, we have solutions of the form:

• Any linear combination is also a solution, so:



Solution of Laplace’s equation
• Now we use our last boundary condition:

• To solve the equation, multiply both sides by sin(mx/Lx) and 
integrate from 0 to Lx:

• Left-hand side integral:



Solution of Laplace’s equation
• Sum on the right-hand side simplifies because:

• So, we have:

• So:



Solution of Laplace’s equation
• Our final solution of Laplace’s equation with our chosen boundary 

conditions:



Analytical solution to Laplace equation

5 terms in the sum:

50 terms in the sum:

“Gibbs phenomenon,” 
oscillations of Fourier series for 
discontinuous function



Numerical solution of the Laplace equation
• To do this, we’ll go back to the diffusion equation we have solved 

previously, this time in two spatial dimensions:

• Given an initial temperature profile and stationary boundary 
conditions, the solution will eventually relax to some steady state:

• In this state  , so:

• We can think of the Laplace equation as the steady-state of the 
diffusion equation



Relaxation methods
• Methods based on this physical intuition are called relaxation 

methods

• We can use the FTCS method that we have used previously for the 
diffusion equation

• Start with the 2D “diffusion” equation:

Will drop out later

Remember, solving an 
electrostatic problem, so  
does not actually have time 
dependence



Relaxation methods
• Methods based on this physical intuition are called relaxation 

methods

• We can use the FTCS method that we have used previously for the 
diffusion equation

• Start with the 2D “diffusion” equation:

• Discretize:

• n here is not really time, more an improved guess for the solution



Jacobi relaxation method
• Recall that FTCS is stable for

• In 2D the stability criteria is : 

• If hx = hy = h, then the criterion is 

• Since we want to take n to infinity, we choose the largest timestep:



Jacobi method for Laplace equation

• Note that the  has dropped out

• Involves replacing the value of the potential at a point with the 
average value of the four nearest neighbors
• Discrete version of mean-value theorem for the electrostatic potential

• This equation is for the interior points (exterior are set by boundary 
conditions)

• Simple to generalize for Poisson equation



Jacobi method for Laplace equation

Jacobi, 75 stepsAnalytical, 
75 terms



Gauss-Seidel and simultaneous overrelaxation
• Gauss-Seidel: We can improve the convergence over the Jacobi 

method by using updated values of the potential as they are 
calculated:

• Simultaneous overrelaxation: Choose a mixing parameter :

•  < 1 slows convergence,  > 2 is unstable

• Often chosen by trial and error

• E.g., for a square geometry with equal discretization, often a good choice:



Gauss-Seidel for Laplace equation



Simultaneous overrelaxation for Laplace eq.



Recall: Jacobi iterative method
• Starting with a linear system:

• Pick initial guesses xk, solve equation i for ith unknown to get an improved guess:



Recall: Jacobi iterative method
• We can write an element-wise formula for x:

• Or:

• Where D is a diagonal matrix constructed from the diagonal elements of A

• Convergence is guaranteed if matrix is diagonally dominant (but 
works in other cases):



The iterative methods discussed here are the 
same as we used to solve linear systems
• Can interpret  as a vector, so are solving A=b

• Going back to our initial discretization of the Laplace equation (for 
hx=hy):

• Note that A is a banded matrix with 4’s on the diagonal, 1’s on off-
diagonal elements

• This is when the Jacobi method is guaranteed to be accurate 
(diagonally dominated)!

• Same holds for Gauss-Seidel and SOR



Today’s lecture: 
Elliptical PDEs

• Relaxation methods

• Spectral methods



A different way to represent the potential 
• Consider again the Poisson equation:

• For simplicity, square geometry:

• Relaxation methods discretize space and solve for i,j 

• We constructed out analytical solution as in infinite sum of 
trigonometric functions

• Let’s build an approximate solution as a finite sum:



Approximate solution

• To simplify the approximate solution, we take orthogonal trial 
functions:

• Insert into the Poisson equation:

• Where the residual R is:

Error
Approx. 
solution



Obtain coefficients with Galerkin method
• Next step is to obtain coefficients ak

• Galerkin method imposes the condition that the residual is 
orthogonal to all of the trial functions:

• Choice of trial functions motivated by geometry and boundary 
conditions

• Let’s take Neumann boundary conditions:

• Normal component of electric field zero at the boundaries



Trial functions for our geometry and BCs
• Natural set of trial functions:

• Can confirm that these functions are orthogonal:

• Inserting into Poisson equation

• Gives:



Now we need so solve for coefficients

• Apply to both sides of the equation: 

• And use “Galerkin condition”:

• Which gives:



Final solution with Galerkin method:



Ex: charge distribution of 2D dipoles (Garcia Sec. 8.2)

• Where:



Galerkin solution to the dipole potential
• Compare to free dipole:

• Or “ideal” dipole potential (far away):



Comments on the Galerkin method
• Can choose any trial functions that are orthogonal and obey the 

boundary conditions
• In contrast to the separation of variables, where we first found general 

solutions to PDE, the imposed boundary conditions

• Should be interpreted as a spectral transform approach, i.e., 
representing the solution as a Fourier series
• In our example, it was a cosine series because of our boundary conditions

• Did not use a spatial grid
• Convenient if only need the answer at specific points

• Inefficient if we want to map the potential over the whole range, because of 
the computation of the prefactors, especially for a more complex potential 



After class tasks

• Homework 3 due tomorrow Oct. 22

• Homework 4 will be posted soon

• Readings

• Garcia Chapters 7 and 8

• MIke Zingale's notes on computational hydrodynamics

http://bender.astro.sunysb.edu/hydro_by_example/CompHydroTutorial.pdf
http://bender.astro.sunysb.edu/hydro_by_example/CompHydroTutorial.pdf
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