PHY604 Lecture 17

October 23, 2025

Today's lecture: PDEs

• Elliptical PDEs: Spectral methods

Stability analysis of PDEs

A different way to represent the potential

• Consider again the Poisson equation:

$$\nabla^2 \Phi(\mathbf{r}) = -\frac{1}{\epsilon_0} \rho(\mathbf{r})$$

- For simplicity, square geometry: $0 \le x \le L$, $0 \le y \le L$
- Relaxation methods discretize space and solve for $\Phi_{i,j}$
- We constructed out analytical solution as in infinite sum of trigonometric functions
- Let's build an approximate solution as a finite sum:

$$\Phi(x,y) = a_1 f_1(x,y) + a_2 f_2(x,y) + \dots + a_K f_K(x,y) + T(x,y)$$

$$= \sum_{k=1}^K a_k f_k(x,y) + T(x,y)$$

$$= \Phi_a(x,y) + T(x,y)$$

Approximate solution Approx. Solution
$$\Phi(x,y) = \Phi_a(x,y) + T(x,y)$$
 Error

 To simplify the approximate solution, we take orthogonal trial functions:

$$\int_{0}^{L} dx \int_{0}^{L} dy f_{k}(x, y) f_{k'}(x, y) = A_{k} \delta_{k, k'}$$

Insert into the Poisson equation:

$$\nabla^2 \left[\sum_k a_k f_k(x, y) \right] + \frac{1}{\epsilon_0} \rho(x, y) = R(x, y)$$

Where the residual R is:

$$R(x,y) = -\nabla^2 T(x,y)$$

Obtain coefficients with Galerkin method

- Next step is to obtain coefficients a_k
- Galerkin method imposes the condition that the residual is orthogonal to all of the trial functions:

$$\int_0^L dx \int_0^L dy f_k(x, y) R(x, y) = 0$$

- Choice of trial functions motivated by geometry and boundary conditions
- Let's take Neumann boundary conditions:

$$\left. \frac{\partial \Phi}{\partial x} \right|_{x=0} = \left. \frac{\partial \Phi}{\partial x} \right|_{x=L} = \left. \frac{\partial \Phi}{\partial y} \right|_{y=0} = \left. \frac{\partial \Phi}{\partial y} \right|_{y=L} = 0$$

Normal component of electric field zero at the boundaries

Trial functions for our geometry and BCs

Natural set of trial functions:

$$f_{m,n}(x,y) = \cos\left[\frac{m\pi x}{L}\right] \cos\left[\frac{n\pi y}{L}\right]$$

Can confirm that these functions are orthogonal:

$$\int_0^L dx \int_0^L dy f_{m,n}(x,y) f_{m',n'}(x,y) = \frac{L^2}{4} (1 + \delta_{m,0}) (1 + \delta_{n,0}) \delta_{m,m'} \delta_{n,n'}$$

Inserting into Poisson equation

$$\nabla^2 \left[\sum_k a_k f_k(x, y) \right] + \frac{1}{\epsilon_0} \rho(x, y) = R(x, y)$$

• Gives:

$$-\sum_{m=0}^{M-1} \sum_{n=0}^{M-1} a_{m,n} \frac{\pi^2(m^2+n^2)}{L^2} f_{m,n}(x,y) + \frac{1}{\epsilon_0} \rho(x,y) = R(x,y)$$

Now we need so solve for coefficients

Apply to both sides of the equation:

$$\int_{0}^{L} dx \int_{0}^{L} dy f_{m',n'}(x,y)$$

And use "Galerkin condition":

$$\int_0^L dx \int_0^L dy f_k(x,y) R(x,y) = 0$$

Which gives:

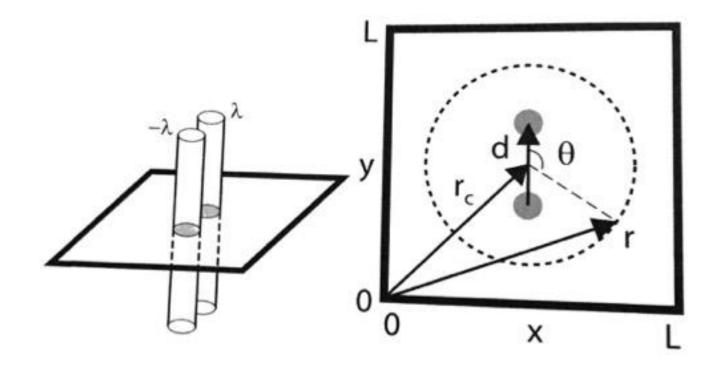
$$a_{m,n} = \frac{4}{\pi^2 \epsilon_0(m^2 + n^2)(1 + \delta_{m,0})(1 + \delta_{n,0})} \int_0^L dx \int_0^L dy \rho(x,y) \cos\left(\frac{m\pi x}{L}\right) \cos\left(\frac{n\pi y}{L}\right)$$

Final solution with Galerkin method:

$$\Phi_a(x,y) = \sum_{m=0}^{M-1} \sum_{n=0}^{M-1} a_{m,n} \cos\left(\frac{m\pi x}{L}\right) \cos\left(\frac{n\pi y}{L}\right)$$

$$a_{m,n} = \frac{4}{\pi^2 \epsilon_0(m^2 + n^2)(1 + \delta_{m,0})(1 + \delta_{n,0})} \int_0^L dx \int_0^L dy \rho(x,y) \cos\left(\frac{m\pi x}{L}\right) \cos\left(\frac{n\pi y}{L}\right)$$

Ex: charge distribution of 2D dipoles (Garcia Sec. 8.2)



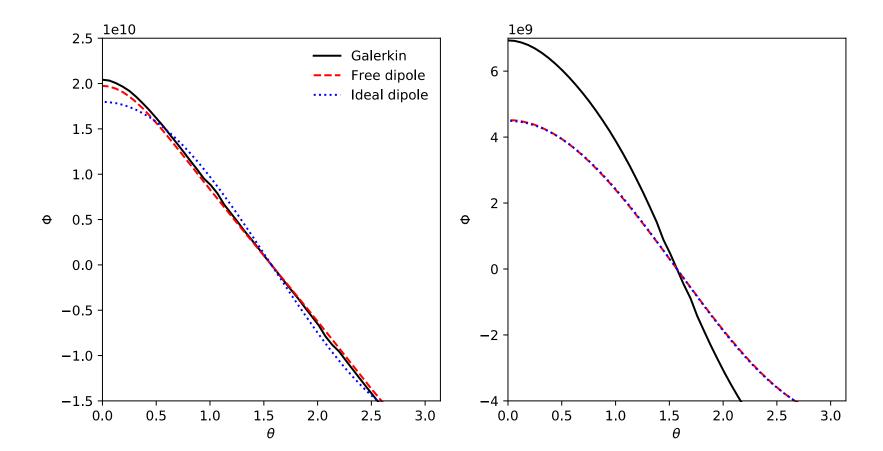
$$\rho(\mathbf{r}) = \lambda [\delta(\mathbf{r} - \mathbf{r}_{+}) - \delta(\mathbf{r} - \mathbf{r}_{-})]$$

• Where:

$$\mathbf{r}_{\pm} = \mathbf{r}_c \pm \frac{1}{2}\mathbf{d}$$

Galerkin solution to the dipole potential

- Compare to free dipole: $\Phi^{\rm free}({f r})=-rac{\lambda}{2\pi\epsilon_0}[\ln|{f r}-{f r}_+|-\ln|{f r}-{f r}_-|]$
- Or "ideal" dipole potential (far away): $\Phi^{\mathrm{ideal}}(\mathbf{r}) = \frac{\lambda}{2\pi\epsilon_0} \frac{|\mathbf{d}|}{|\mathbf{r} \mathbf{r}_c|} \cos\theta$



Comments on the Galerkin method

- Can choose any trial functions that are orthogonal and obey the boundary conditions
 - In contrast to the separation of variables, where we first found general solutions to PDE, the imposed boundary conditions

- Should be interpreted as a spectral transform approach, i.e., representing the solution as a Fourier series
 - In our example, it was a cosine series because of our boundary conditions
- Did not use a spatial grid
 - Convenient if only need the answer at specific points
 - Inefficient if we want to map the potential over the whole range, because of the computation of the prefactors, especially for a more complex potential

Multiple Fourier transform method

The Galerkin method involved taking a cosine DFT:

$$a_{m,n} = \frac{4}{\pi^2 \epsilon_0(m^2 + n^2)(1 + \delta_{m,0})(1 + \delta_{n,0})} \int_0^L dx \int_0^L dy \rho(x, y) \cos\left(\frac{m\pi x}{L}\right) \cos\left(\frac{n\pi y}{L}\right)$$

And then the inverse:

$$\Phi_a(x,y) = \sum_{m=0}^{M-1} \sum_{n=0}^{M-1} a_{m,n} \cos\left(\frac{m\pi x}{L}\right) \cos\left(\frac{n\pi y}{L}\right)$$

- Let's do this instead with FFTs
 - Cosine transformation good for Neumann boundary conditions
 - Sine transformation good for Dirichlet boundary conditions (with Φ =0)
 - Standard FFT is good for periodic boundary conditions

Fourier transform of the Poisson equation

We first discretize in 2D:

$$\frac{1}{h^2} \left[\Phi_{j+1,k} + \Phi_{j-1,k} - 2\Phi_{j,k} \right] + \frac{1}{h^2} \left[\Phi_{j,k+1} + \Phi_{j,k-1} - 2\Phi_{j,k} \right] = -\frac{1}{\epsilon_0} \rho_{j,k}$$

 Now define the 2D Fourier transform of the potential and charge density:

$$F_{m,n} = \sum_{j=0}^{N-1} \sum_{k=0}^{N-1} \Phi_{j,k} \exp\left(-\frac{i2\pi jm}{N}\right) \exp\left(-\frac{i2\pi kn}{N}\right), \quad R_{m,n} = \sum_{j=0}^{N-1} \sum_{k=0}^{N-1} \rho_{j,k} \exp\left(-\frac{i2\pi jm}{N}\right) \exp\left(-\frac{i2\pi kn}{N}\right)$$

With reverse transform:

$$\Phi_{j,k} = \frac{1}{N^2} \sum_{m=0}^{N-1} \sum_{n=0}^{N-1} F_{m,n} \exp\left(\frac{i2\pi jm}{N}\right) \exp\left(\frac{i2\pi kn}{N}\right), \quad \rho_{j,k} = \frac{1}{N^2} \sum_{m=0}^{N-1} \sum_{n=0}^{N-1} R_{m,n} \exp\left(\frac{i2\pi jm}{N}\right) \exp\left(\frac{i2\pi kn}{N}\right)$$

Fourier transform of the Poisson equation

• So, for the transformed Poisson equation:

$$\left[\exp\left(\frac{-i2\pi m}{N}\right) + \exp\left(\frac{i2\pi m}{N}\right) + \exp\left(\frac{-i2\pi n}{N}\right) + \exp\left(\frac{i2\pi n}{N}\right) - 4\right]F_{m,n} = -\frac{h^2}{\epsilon_0}R_{m,n}$$

• Solving for the **F** matrix:

$$F_{m,n} = -\frac{h^2}{2\epsilon_0(\cos(2\pi m/N) + \cos(2\pi n/N) - 2)} R_{m,n}$$

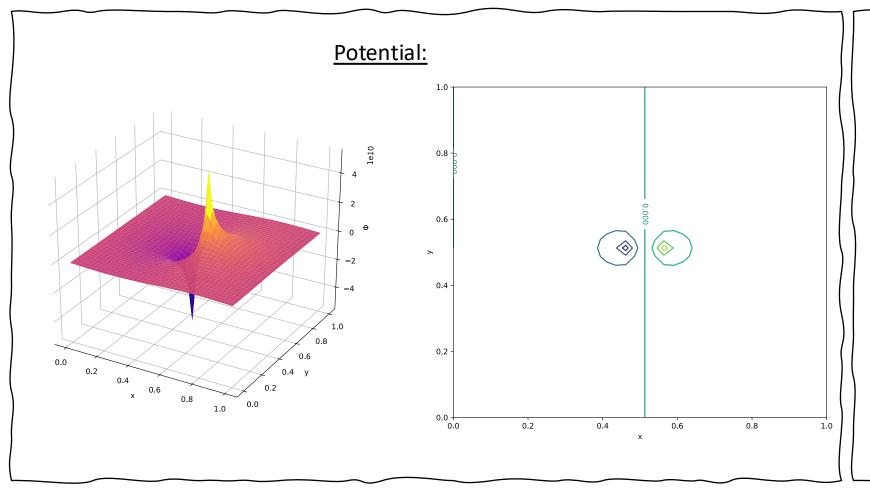
• To get the potential, we just need to take the inverse FFT:

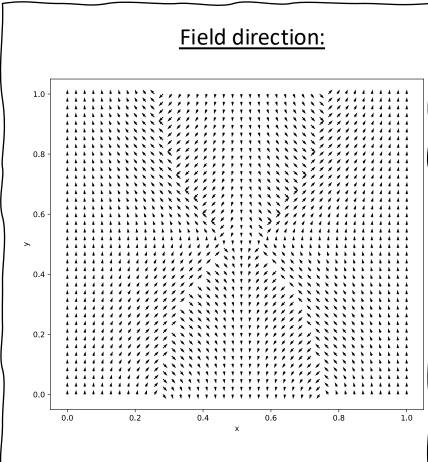
$$\Phi_{j,k} = \frac{1}{N^2} \sum_{m=0}^{N-1} \sum_{n=0}^{N-1} F_{m,n} \exp\left(\frac{i2\pi jm}{N}\right) \exp\left(\frac{i2\pi kn}{N}\right)$$

DEMO

• spectral_dipole.ipynb

Ex: charge distribution of 2D dipole (Garcia Sec. 8.2)





Today's lecture: PDEs

• Elliptical PDEs: Spectral methods

Stability analysis of PDEs

Stability analysis of PDEs

• Empirically, we found that stability was a significant problem for PDEs

- In most cases, the stability was conditional on the timestep
 - Often related to the spatial discretization

 It is useful to be able to test for stability before running the calculation

Stability analysis of the advection equation

Consider the advection equation discussed previously:

$$\frac{\partial a}{\partial t} = -c \frac{\partial a}{\partial x}$$

- FTCS was always unstable
- Other methods were unstable for timesteps that were too large compared to the spatial discretization h

Let's consider a trial solution of the form:

$$a(x,t) = A(t)e^{ikx}$$

von Neumann stability analysis

• In discretized form:

$$a_j^n = A^n e^{ikjh}$$

Advancing the solution by one step:

$$a_j^{n+1} = A^{n+1}e^{ikjh} = \xi A^n e^{ikjh}$$

• ξ is the amplification factor

- von Neumann stability analysis: Insert this trial solution into the numerical scheme and solve for amplification factor given h and τ
 - Unstable if $|\xi| > 1$

Stability of FTCS for advection equation

• FTCS scheme:
$$a_i^{n+1} = a_i^n - \frac{c\tau}{2h}(a_{i+1}^n - a_{i-1}^n)$$

• Insert trial solutions: $a_j^n = A^n e^{ikjh}$ $a_j^{n+1} = \xi A^n e^{ikjh}$

$$\xi A^n e^{ikjh} = A^n e^{ikjh} - \frac{c\tau}{2h} \left[A^n e^{ik(j+1)h} - A^n e^{ik(j-1)h} \right]$$

$$= A^n e^{ikjh} \left[1 - \frac{c\tau}{2h} \left(e^{ikh} - e^{-ikh} \right) \right]$$

$$= A^n e^{ikjh} \left[1 - i \frac{c\tau}{h} \sin(kh) \right]$$

• Therefore:

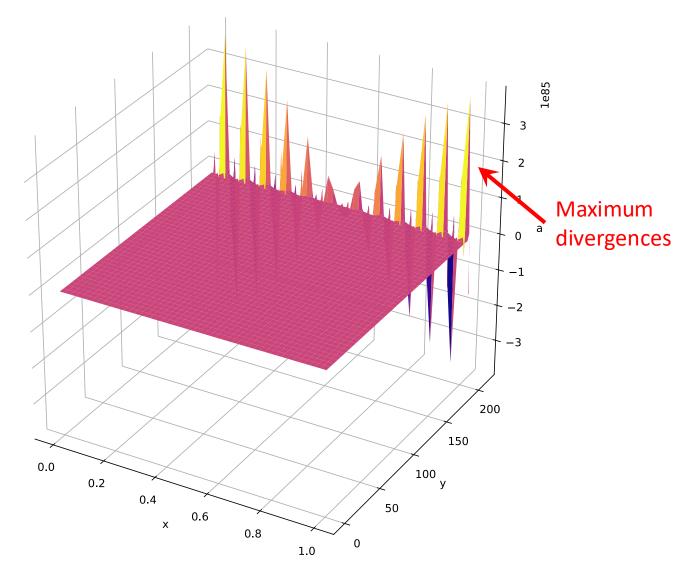
$$|\xi| = \left| 1 - i \frac{c\tau}{h} \sin(kh) \right|$$

FTCS is not stable for advection equation

• We have that:
$$|\xi|=\left|1-i\frac{c\tau}{h}\sin(kh)\right|=\sqrt{1+\left(\frac{c\tau}{h}\right)^2\sin(kh)^2}$$

- So, the solution in general grows with each timestep, and therefore unstable
- Degree to which it is unstable depends on the "mode" k
- Fastest growing mode is when: $\sin^2(k_{\max}h) = 1$
- Or: $k_{\max} = \frac{\pi}{2h}$
- Since $k=2\pi/\lambda$: $\lambda_{\max}=4h$

Divergent modes for FTCS on advection equation



von Neumann stability of the Lax scheme

Apply the same analysis to the Lax method:

$$a_i^{n+1} = \frac{1}{2}(a_{i+1}^n + a_{i-1}^n) - \frac{c\tau}{2h}(a_{i+1}^n - a_{i-1}^n)$$

Plugging in our trial solution:

$$\xi A^{n} e^{ikjh} = \frac{1}{2} \left[A^{n} e^{ik(j+1)h} + A^{n} e^{ik(j-1)h} \right] - \frac{c\tau}{2h} \left[A^{n} e^{ik(j+1)h} - A^{n} e^{ik(j-1)h} \right]$$
$$= A^{n} e^{ikjh} \left[\frac{1}{2} \left(e^{ikh} + e^{ikh} \right) - \frac{c\tau}{2h} \left(e^{ikh} - e^{-ikh} \right) \right]$$

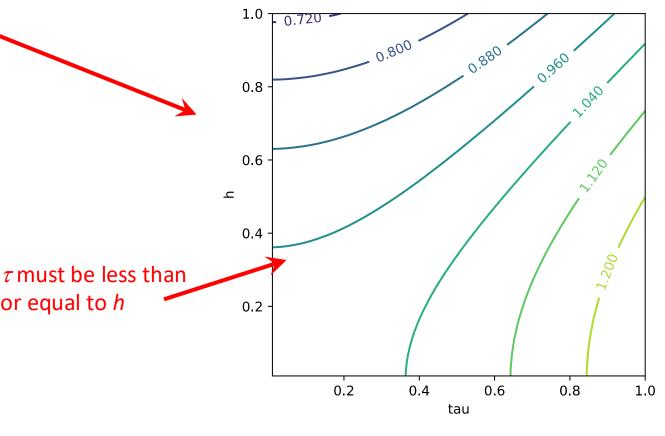
• So:
$$\xi = \cos(kh) - i\frac{c\tau}{h}\sin(kh)$$

Stability of the Lax scheme

• So, we have:
$$|\xi| = \sqrt{\cos^2(kh) + \left(\frac{c\tau}{h}\right)^2 \sin^2(kh)}$$

or equal to h

- Example: take $k=\pi/4$, c=1:
- In general: $\left|\frac{c\tau}{h}\right| \leq 1$
- Same as the Courant-Friedrichs-Lewy stability criterion



Matrix stability analysis

 von Neumann approach is a simple and popular way to investigate the stability of solution scheme

 However, does not take into account the influence of boundary conditions

 Recall our discussion of relaxation methods in terms of iteratively solving linear equations

 Matrix stability analysis: Analyze the linear problem to see how stable the PDE solution will be

FTCS for diffusion equation

Consider the FTCS method for the 1D diffusion equation:

$$T_j^{n+1} = T_j^n + \frac{\tau}{2t_\sigma} (T_{j+1}^n + T_{j-1}^n - 2T_j^n)$$

- Where: $t_{\sigma} = h^2/2\kappa$
- For Dirichlet boundary conditions we can write FTCS as:

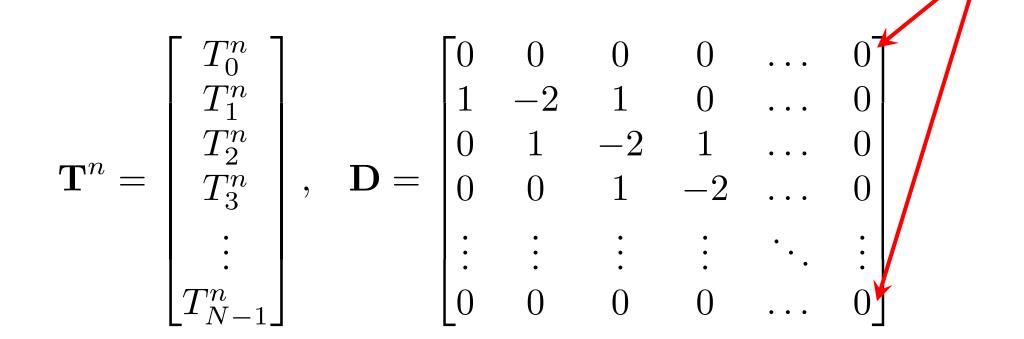
$$\mathbf{T}^{n+1} = \mathbf{T}^n + \frac{\tau}{2t_{\sigma}} \mathbf{D} \mathbf{T}^n$$

$$= \left(\mathbf{I} + \frac{\tau}{2t_{\sigma}} \mathbf{D} \right) \mathbf{T}^n$$

$$= \mathbf{A} \mathbf{T}^n$$

Matrix form of the diffusion equation

$$\mathbf{T}^{n+1} = \left(\mathbf{I} + \frac{\tau}{2t_{\sigma}} \mathbf{D}\right) \mathbf{T}^n$$



Zero rows so boundary

points don't change

Decomposing in eigenvectors

• To determine the stability of the problem $T^{n+1}=AT^n$ consider the eigenvalue problem for the matrix A:

$$\mathbf{A}\mathbf{v}_k = \lambda_k \mathbf{v}_k$$

• Assuming eigenvectors form a complete basis, initial conditions may be written as: N-1

$$\mathbf{T}^1 = \sum_{k=0} c_k \mathbf{v}_k$$

• Then we can get **T** at a later time by repeatedly applying **A**:

$$\mathbf{T}^{n+1} = \mathbf{A}\mathbf{T}^n = \mathbf{A}(\mathbf{A}\mathbf{T}^{n-1}) = \mathbf{A}^2(\mathbf{A}\mathbf{T}^{n-2}) = \dots = \mathbf{A}^n\mathbf{T}^1$$

Using our eigenvector decomposition

$$\mathbf{T}^{n+1} = \sum_{k=0}^{N-1} c_k \mathbf{A}^n \mathbf{v}_k = \sum_{k=0}^{N-1} c_k (\lambda_k)^n \mathbf{v}_k$$

Stability condition on eigenvalues

$$\mathbf{T}^{n+1} = \sum_{k=0}^{N-1} c_k (\lambda_k)^n \mathbf{v}_k$$

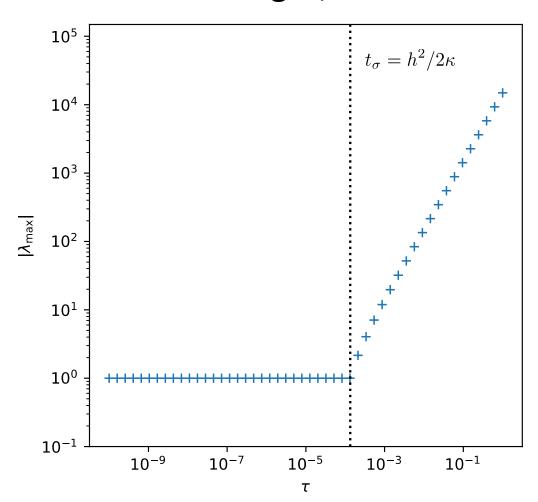
- We see that we will have divergence if we have any eigenvalues that are: $|\lambda_k| > 1$
- Spectral radius of A: Magnitude of the largest eigenvalue

$$\rho(\mathbf{A}) = |\lambda_{\max}|$$

 Scheme is matrix stable if the spectral radius is less than or equal to unity

Stability of FTCS for diffusion equation with timestep

• 61 spatial grid points with unit length, $\kappa = 1$:



Some comments on stability analysis

 The two stability analyses discussed here are only suitable for linear PDEs

Can use for nonlinear PDEs by linearizing around a reference state

 Often can use physical intuition to estimate stability criteria, as we did originally for CFL condition

- Note that we have not tested numerical schemes for unwanted dissipation (e.g., in the Lax method) or changes to dispersion
 - Can be studied with extensions of von Neumann analysis

After class tasks

• Homework 4 is posted, due Nov. 5, 2025

- Readings
 - Garcia Chapters 8 and 9
 - MIke Zingale's notes on computational hydrodynamics