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Today’s lecture: 
PDEs

• Elliptical PDEs: Spectral methods

• Stability analysis of PDEs



A different way to represent the potential 
• Consider again the Poisson equation:

• For simplicity, square geometry:

• Relaxation methods discretize space and solve for i,j

• We constructed out analytical solution as in infinite sum of 
trigonometric functions

• Let’s build an approximate solution as a finite sum:



Approximate solution

• To simplify the approximate solution, we take orthogonal trial 
functions:

• Insert into the Poisson equation:

• Where the residual R is:

Error
Approx. 
solution



Obtain coefficients with Galerkin method
• Next step is to obtain coefficients ak
• Galerkin method imposes the condition that the residual is 

orthogonal to all of the trial functions:

• Choice of trial functions motivated by geometry and boundary 
conditions

• Let’s take Neumann boundary conditions:

• Normal component of electric field zero at the boundaries



Trial functions for our geometry and BCs
• Natural set of trial functions:

• Can confirm that these functions are orthogonal:

• Inserting into Poisson equation

• Gives:



Now we need so solve for coefficients

• Apply to both sides of the equation: 

• And use “Galerkin condition”:

• Which gives:



Final solution with Galerkin method:



Ex: charge distribution of 2D dipoles (Garcia Sec. 8.2)

• Where:



Galerkin solution to the dipole potential
• Compare to free dipole:

• Or “ideal” dipole potential (far away):



Comments on the Galerkin method
• Can choose any trial functions that are orthogonal and obey the 

boundary conditions
• In contrast to the separation of variables, where we first found general 

solutions to PDE, the imposed boundary conditions

• Should be interpreted as a spectral transform approach, i.e., 
representing the solution as a Fourier series
• In our example, it was a cosine series because of our boundary conditions

• Did not use a spatial grid
• Convenient if only need the answer at specific points

• Inefficient if we want to map the potential over the whole range, because of 
the computation of the prefactors, especially for a more complex potential 



Multiple Fourier transform method
• The Galerkin method involved taking a cosine DFT:

• And then the inverse:

• Let’s do this instead with FFTs
• Cosine transformation good for Neumann boundary conditions

• Sine transformation good for Dirichlet boundary conditions (with =0)

• Standard FFT is good for periodic boundary conditions



Fourier transform of the Poisson equation
• We first discretize in 2D:

• Now define the 2D Fourier transform of the potential and charge 
density:

• With reverse transform:



Fourier transform of the Poisson equation 

• So, for the transformed Poisson equation:

•  Solving for the F matrix:

• To get the potential, we just need to take the inverse FFT:



DEMO

• spectral_dipole.ipynb



Ex: charge distribution of 2D dipole (Garcia Sec. 8.2)

Potential: Field direction:



Today’s lecture: 
PDEs

• Elliptical PDEs: Spectral methods

• Stability analysis of PDEs



Stability analysis of PDEs

• Empirically, we found that stability was a significant problem for PDEs

• In most cases, the stability was conditional on the timestep
• Often related to the spatial discretization

• It is useful to be able to test for stability before running the 
calculation



Stability analysis of the advection equation

• Consider the advection equation discussed previously:

• FTCS was always unstable

• Other methods were unstable for timesteps that were too large compared to 
the spatial discretization h

• Let’s consider a trial solution of the form:

Complex 
amplitude



von Neumann stability analysis
• In discretized form:

• Advancing the solution by one step:

•  is the amplification factor

• von Neumann stability analysis: Insert this trial solution into the 
numerical scheme and solve for amplification factor given h and 
• Unstable if | | > 1



Stability of FTCS for advection equation

• FTCS scheme:

• Insert trial solutions:

• Therefore:



FTCS is not stable for advection equation

• We have that:

• So, the solution in general grows with each timestep, and therefore 
unstable

• Degree to which it is unstable depends on the “mode” k

• Fastest growing mode is when:

• Or:

• Since k=2/:



Divergent modes for FTCS on advection 
equation

Maximum 
divergences



von Neumann stability of the Lax scheme

• Apply the same analysis to the Lax method:

• Plugging in our trial solution:

• So:



Stability of the Lax scheme

• So, we have:

• Example: take k=/4, c=1:

• In general:

• Same as the Courant-Friedrichs-
Lewy stability criterion

 must be less than 
or equal to h



Matrix stability analysis

• von Neumann approach is a simple and popular way to investigate 
the stability of solution scheme

• However, does not take into account the influence of boundary 
conditions

• Recall our discussion of relaxation methods in terms of iteratively 
solving linear equations

• Matrix stability analysis:  Analyze the linear problem to see how 
stable the PDE solution will be



FTCS for diffusion equation

• Consider the FTCS method for the 1D diffusion equation:

• Where:

• For Dirichlet boundary conditions we can write FTCS as:



Matrix form of the diffusion equation

Zero rows so boundary 
points don’t change



Decomposing in eigenvectors
• To determine the stability of the problem Tn+1=ATn consider the 

eigenvalue problem for the matrix A:

• Assuming eigenvectors form a complete basis, initial conditions may 
be written as:

• Then we can get T at a later time by repeatedly applying A:

• Using our eigenvector decomposition



Stability condition on eigenvalues

• We see that we will have divergence if we have any eigenvalues that 
are:

• Spectral radius of A: Magnitude of the largest eigenvalue

• Scheme is matrix stable if the spectral radius is less than or equal to 
unity



Stability of FTCS for diffusion equation 
with timestep

• 61 spatial grid points with unit length,  = 1:



Some comments on stability analysis
• The two stability analyses discussed here are only suitable for linear 

PDEs

• Can use for nonlinear PDEs by linearizing around a reference state

• Often can use physical intuition to estimate stability criteria, as we did 
originally for CFL condition

• Note that we have not tested numerical schemes for unwanted 
dissipation (e.g., in the Lax method) or changes to dispersion 
• Can be studied with extensions of von Neumann analysis



After class tasks

• Homework 4 is posted, due Nov. 5, 2025

• Readings

• Garcia Chapters 8 and 9

• MIke Zingale's notes on computational hydrodynamics

http://bender.astro.sunysb.edu/hydro_by_example/CompHydroTutorial.pdf
http://bender.astro.sunysb.edu/hydro_by_example/CompHydroTutorial.pdf
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