PHY604 Lecture 17/

October 23, 2025



Today’s lecture:
PDEs

* Elliptical PDEs: Spectral methods

e Stability analysis of PDEs



A different way to represent the potential

* Consider again the Poisson equation: .

V2(r) = ——p(r)
€0
 For simplicity, square geometry: 0 <z <L, 0<y <L
* Relaxation methods discretize space and solve for @, ;

* We constructed out analytical solution as in infinite sum of
trigonometric functions

* Let’s build an approximate solution as a finite sum:
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Approximate solution i P
®(z,y) = Pu(z,y) + T(z,y)

* To simplify the approximate solution, we take orthogonal trial

functions: L L
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* Insert into the Poisson equation:
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e Where the residual R is:
R(SIZ‘, y) — —VQT(SI}, y)



Obtain coefficients with Galerkin method

* Next step is to obtain coefficients a,

* Galerkin method imposes the condition that the residual is

orthogonal to all of the trial functions:

conditions

L L
/ dx / dy frx(z,y)R(x,y) =0
0 0

* Choice of trial functions motivated by geometry and boundary

* Let’s take Neumann boundary conditions:
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* Normal component of electric field zero at the boundaries



Trial functions for our geometry and BCs

 Natural set of trial functions:

fm.n(x,y) = cos {mzx} coS [%}

e Can confirm that these functions are orthogonal:
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* Inserting into Poisson equation

V| aufi@y)| + —ple.y) = Ria,y)
* Gives: - )
—1 M 11 m2 n2 1
- > > a ua L; )fm,n(:v,y) + gp(m,y) = R(z,y)

m=0 n=0



Now we need so solve for coefficients

* Apply to both sides of the equation:
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/ da / 0y s (2, 1)
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 And use “Galerkin condition”:
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* Which gives:

A L L mmrx nmy
1T w2 (m2 4 n2)(1+ Om0) (1 + 0n o) /o dxfo duple,y) oS ( L ) o (T)




Final solution with Galerkin method:
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Ex: charge distribution of 2D dipoles (carciasec 52

e Where:




Galerkin solution to the dipole potential

 Compare to free dipole: CIDfI'ee(r) —
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Comments on the Galerkin method

* Can choose any trial functions that are orthogonal and obey the
boundary conditions

* In contrast to the separation of variables, where we first found general
solutions to PDE, the imposed boundary conditions

* Should be interpreted as a spectral transform approach, i.e.,
representing the solution as a Fourier series

* In our example, it was a cosine series because of our boundary conditions

* Did not use a spatial grid
e Convenient if only need the answer at specific points

* |Inefficient if we want to map the potential over the whole range, because of
the computation of the prefactors, especially for a more complex potential



Multiple Fourier transform method

* The Galerkin method involved taking a cosine DFT:

a ! / dx/ dyp(x,y) cos (mﬁx) C (_mry)
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e And then the inverse:
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* Let’s do this instead with FFTs
e Cosine transformation good for Neumann boundary conditions
 Sine transformation good for Dirichlet boundary conditions (with ®=0)
e Standard FFT is good for periodic boundary conditions



Fourier transform of the Poisson equation

e We first discretize in 2D:
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* Now define the 2D Fourier transform of the potential and charge
density:
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Fourier transform of the Poisson equation

* So, for the transformed Poisson equation:
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e Solving for the F matrix:
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* To get the potential, we just need to take the inverse FFT:
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Today’s lecture:
PDEs

e Stability analysis of PDEs



Stability analysis of PDEs

* Empirically, we found that stability was a significant problem for PDEs

* In most cases, the stability was conditional on the timestep
* Often related to the spatial discretization

* It is useful to be able to test for stability before running the
calculation



Stability analysis of the advection equation

* Consider the advection equation discussed previously:

da da
_— —C——

ot Ox

e FTCS was always unstable

* Other methods were unstable for timesteps that were too large compared to
the spatial discretization h

e Let’s consider a trial solution of the form:
a(z,t) = A(t)e™ ™

\ Complex

amplitude



von Neumann stability analysis

 |n discretized form: a? — ANetkih

* Advancing the solution by one step:

n+l __ An—l—leikjh _ fAnGikjh

4

* £is the amplification factor

* von Neumann stability analysis: Insert this trial solution into the
numerical scheme and solve for amplification factor given hand ¢
* Unstableif |£]|>1



Stability of FTCS for advection equation

CT
* FTCS scheme: a?’“ = a, — %(aﬁrl —ar )
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e Therefore:
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FTCS is not stable for advection equation

2
+ We have that: [¢] = |1 — z—sin kh) ‘ — \/ ( ) sin(kh)?2

* So, the solution in general grows with each timestep, and therefore
unstable

* Degree to which it is unstable depends on the “mode” k
* Fastest growing mode is when: sin®(kpaxh) = 1

-
e Or: kpax = —
2h

e Since k=27/A: Apax = 4h



Divergent modes for FTCS on advection
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von Neumann stability of the Lax scheme

* Apply the same analysis to the Lax method:

a?“ = §(ai—|—1 +a;_ 1) — %(%H —a;_q)

* Plugging in our trial solution:
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Stability of the Lax scheme

cT\? . o
* So, we have:  |£| = 1/cos?(kh) (h) sin”(kh)

* Example: take k=7/4, c=1: o
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Matrix stability analysis

 von Neumann approach is a simple and popular way to investigate
the stability of solution scheme

* However, does not take into account the influence of boundary
conditions

* Recall our discussion of relaxation methods in terms of iteratively
solving linear equations

* Matrix stability analysis: Analyze the linear problem to see how
stable the PDE solution will be



FTCS for diffusion equation

* Consider the FTCS method for the 1D diffusion equation:

n+1 _ mn n n
T =T +E(T+1+T | — 277

* Where: t, = h*/2k
* For Dirichlet boundary conditions we can write FTCS as:
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Matrix form of the diffusion equation
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Decomposing In eigenvectors

* To determine the stability of the problem T"*'=AT" consider the
eigenvalue problem for the matrix A:

1AV;€ — )\kvk
* Assuming eigenvectors form a complete basis, initial conditions may

be written as: N—-1
r].“1 — Z CLV[
k=0
* Then we can get T at a later time by repeatedly applying A:
T = AT" = A(AT" 1) = A*(AT" %) =... = A"T!

* Using our eigenvector decomposition
N-1 N-1

Tn-l—l — Z CkAnd — Z ck()\k)”vk



Stability condition on eigenvalues

N—-1

T = (W) Vi
k=0

* We see that we will have divergence if we have any eigenvalues that
are: |Ax| > 1

* Spectral radius of A: Magnitude of the largest eigenvalue
P(A) = [Amax|

* Scheme is matrix stable if the spectral radius is less than or equal to
unity
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Some comments on stability analysis

* The two stability analyses discussed here are only suitable for linear
PDEs

e Can use for nonlinear PDEs by linearizing around a reference state

e Often can use physical intuition to estimate stability criteria, as we did
originally for CFL condition

* Note that we have not tested numerical schemes for unwanted
dissipation (e.g., in the Lax method) or changes to dispersion

* Can be studied with extensions of von Neumann analysis



After class tasks

e Homework 4 is posted, due Nov. 5, 2025

* Readings

e Garcia Chapters 8 and 9
e Mlke Zingale's notes on computational hydrodynamics



http://bender.astro.sunysb.edu/hydro_by_example/CompHydroTutorial.pdf
http://bender.astro.sunysb.edu/hydro_by_example/CompHydroTutorial.pdf
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