PHY604 Lecture 18

October 28, 2025

Today's lecture: PDEs

• Stability analysis of PDEs

Implicit schemes

Stability analysis of PDEs

• Empirically, we found that stability was a significant problem for PDEs

- In most cases, the stability was conditional on the timestep
 - Often related to the spatial discretization

 It is useful to be able to test for stability before running the calculation

Stability analysis of the advection equation

Consider the advection equation discussed previously:

$$\frac{\partial a}{\partial t} = -c \frac{\partial a}{\partial x}$$

- FTCS was always unstable
- Other methods were unstable for timesteps that were too large compared to the spatial discretization h

Let's consider a trial solution of the form:

$$a(x,t) = A(t)e^{ikx}$$

von Neumann stability analysis

• In discretized form:

$$a_j^n = A^n e^{ikjh}$$

Advancing the solution by one step:

$$a_j^{n+1} = A^{n+1}e^{ikjh} = \xi A^n e^{ikjh}$$

• ξ is the amplification factor

- von Neumann stability analysis: Insert this trial solution into the numerical scheme and solve for amplification factor given h and τ
 - Unstable if $|\xi| > 1$

Stability of FTCS for advection equation

• FTCS scheme:
$$a_i^{n+1} = a_i^n - \frac{c\tau}{2h}(a_{i+1}^n - a_{i-1}^n)$$

• Insert trial solutions: $a_j^n = A^n e^{ikjh}$ $a_j^{n+1} = \xi A^n e^{ikjh}$

$$\xi A^n e^{ikjh} = A^n e^{ikjh} - \frac{c\tau}{2h} \left[A^n e^{ik(j+1)h} - A^n e^{ik(j-1)h} \right]$$

$$= A^n e^{ikjh} \left[1 - \frac{c\tau}{2h} \left(e^{ikh} - e^{-ikh} \right) \right]$$

$$= A^n e^{ikjh} \left[1 - i \frac{c\tau}{h} \sin(kh) \right]$$

• Therefore:

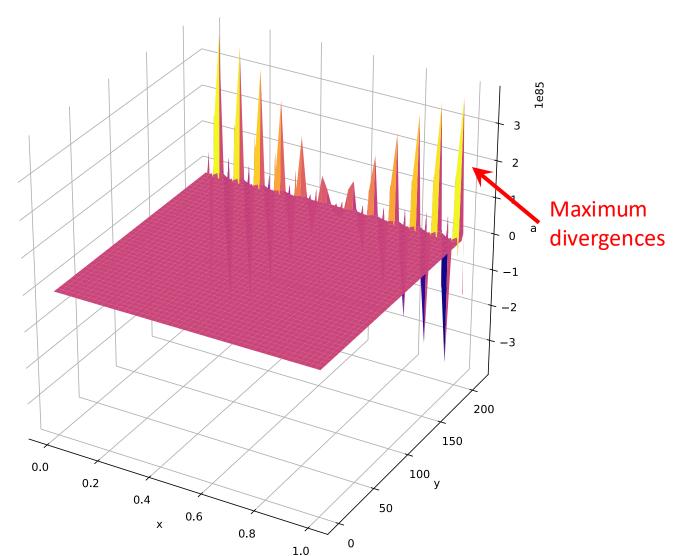
$$|\xi| = \left| 1 - i \frac{c\tau}{h} \sin(kh) \right|$$

FTCS is not stable for advection equation

• We have that:
$$|\xi|=\left|1-i\frac{c\tau}{h}\sin(kh)\right|=\sqrt{1+\left(\frac{c\tau}{h}\right)^2\sin(kh)^2}$$

- So, the solution in general grows with each timestep, and therefore unstable
- Degree to which it is unstable depends on the "mode" k
- Fastest growing mode is when: $\sin^2(k_{\max}h) = 1$
- Or: $k_{\max} = \frac{\pi}{2h}$
- Since $k=2\pi/\lambda$: $\lambda_{\max}=4h$

Divergent modes for FTCS on advection equation



von Neumann stability of the Lax scheme

Apply the same analysis to the Lax method:

$$a_i^{n+1} = \frac{1}{2}(a_{i+1}^n + a_{i-1}^n) - \frac{c\tau}{2h}(a_{i+1}^n - a_{i-1}^n)$$

Plugging in our trial solution:

$$\xi A^{n} e^{ikjh} = \frac{1}{2} \left[A^{n} e^{ik(j+1)h} + A^{n} e^{ik(j-1)h} \right] - \frac{c\tau}{2h} \left[A^{n} e^{ik(j+1)h} - A^{n} e^{ik(j-1)h} \right]$$
$$= A^{n} e^{ikjh} \left[\frac{1}{2} \left(e^{ikh} + e^{ikh} \right) - \frac{c\tau}{2h} \left(e^{ikh} - e^{-ikh} \right) \right]$$

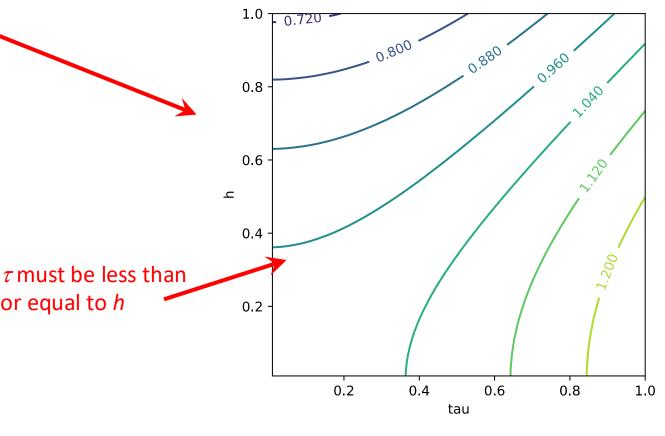
• So:
$$\xi = \cos(kh) - i\frac{c\tau}{h}\sin(kh)$$

Stability of the Lax scheme

• So, we have:
$$|\xi| = \sqrt{\cos^2(kh) + \left(\frac{c\tau}{h}\right)^2 \sin^2(kh)}$$

or equal to h

- Example: take $k=\pi/4$, c=1:
- In general: $\left|\frac{c\tau}{h}\right| \leq 1$
- Same as the Courant-Friedrichs-Lewy stability criterion



Matrix stability analysis

 von Neumann approach is a simple and popular way to investigate the stability of solution scheme

 However, does not take into account the influence of boundary conditions

 Recall our discussion of relaxation methods in terms of iteratively solving linear equations

 Matrix stability analysis: Analyze the linear problem to see how stable the PDE solution will be

FTCS for diffusion equation

Consider the FTCS method for the 1D diffusion equation:

$$T_j^{n+1} = T_j^n + \frac{\tau}{2t_\sigma} (T_{j+1}^n + T_{j-1}^n - 2T_j^n)$$

- Where: $t_{\sigma} = h^2/2\kappa$
- For Dirichlet boundary conditions we can write FTCS as:

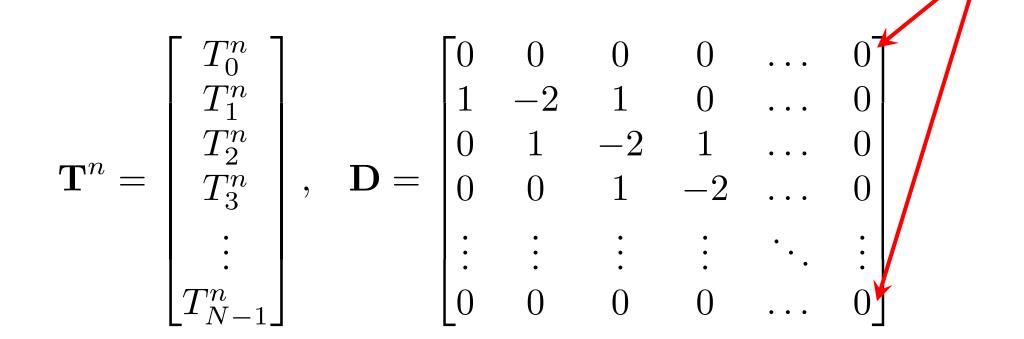
$$\mathbf{T}^{n+1} = \mathbf{T}^n + \frac{\tau}{2t_{\sigma}} \mathbf{D} \mathbf{T}^n$$

$$= \left(\mathbf{I} + \frac{\tau}{2t_{\sigma}} \mathbf{D} \right) \mathbf{T}^n$$

$$= \mathbf{A} \mathbf{T}^n$$

Matrix form of the diffusion equation

$$\mathbf{T}^{n+1} = \left(\mathbf{I} + \frac{\tau}{2t_{\sigma}} \mathbf{D}\right) \mathbf{T}^n$$



Zero rows so boundary

points don't change

Decomposing in eigenvectors

• To determine the stability of the problem $T^{n+1}=AT^n$ consider the eigenvalue problem for the matrix A:

$$\mathbf{A}\mathbf{v}_k = \lambda_k \mathbf{v}_k$$

• Assuming eigenvectors form a complete basis, initial conditions may be written as: N-1

$$\mathbf{T}^1 = \sum_{k=0} c_k \mathbf{v}_k$$

• Then we can get **T** at a later time by repeatedly applying **A**:

$$\mathbf{T}^{n+1} = \mathbf{A}\mathbf{T}^n = \mathbf{A}(\mathbf{A}\mathbf{T}^{n-1}) = \mathbf{A}^2(\mathbf{A}\mathbf{T}^{n-2}) = \dots = \mathbf{A}^n\mathbf{T}^1$$

Using our eigenvector decomposition

$$\mathbf{T}^{n+1} = \sum_{k=0}^{N-1} c_k \mathbf{A}^n \mathbf{v}_k = \sum_{k=0}^{N-1} c_k (\lambda_k)^n \mathbf{v}_k$$

Stability condition on eigenvalues

$$\mathbf{T}^{n+1} = \sum_{k=0}^{N-1} c_k (\lambda_k)^n \mathbf{v}_k$$

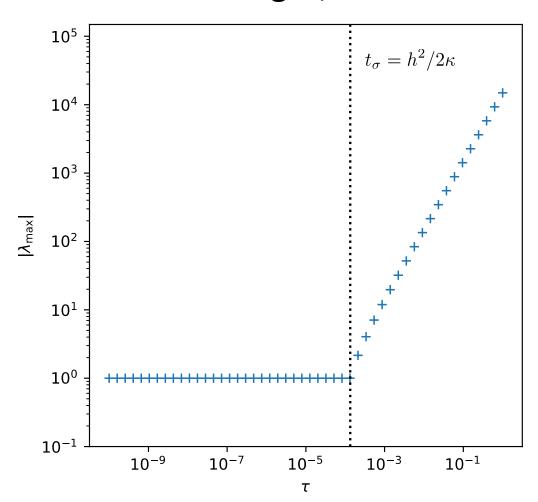
- We see that we will have divergence if we have any eigenvalues that are: $|\lambda_k| > 1$
- Spectral radius of A: Magnitude of the largest eigenvalue

$$\rho(\mathbf{A}) = |\lambda_{\max}|$$

 Scheme is matrix stable if the spectral radius is less than or equal to unity

Stability of FTCS for diffusion equation with timestep

• 61 spatial grid points with unit length, $\kappa = 1$:



Some comments on stability analysis

 The two stability analyses discussed here are only suitable for linear PDEs

Can use for nonlinear PDEs by linearizing around a reference state

 Often can use physical intuition to estimate stability criteria, as we did originally for CFL condition

- Note that we have not tested numerical schemes for unwanted dissipation (e.g., in the Lax method) or changes to dispersion
 - Can be studied with extensions of von Neumann analysis

Today's lecture: PDEs

Stability analysis of PDEs

Implicit schemes

Example for implicit schemes: Schrödinger equation

$$i\hbar \frac{\partial}{\partial t}\psi(x,t) = -\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}\psi(x,t) + V(x)\psi(x,t)$$

• Or:

$$i\hbar \frac{\partial \psi}{\partial t} = \mathcal{H}\psi$$

Formal solution:

$$\psi(x,t) = \exp\left[-\frac{i}{\hbar}\mathcal{H}t\right]\psi(x,0)$$

Discretizing the Schrödinger equation

FTCS for the Schrödinger equation:

$$i\hbar \frac{\psi_j^{n+1} - \psi_j^n}{\tau} = -\frac{\hbar^2}{2m} \frac{\psi_{j+1}^n + \psi_{j-1}^n - 2\psi_j^n}{h^2} + V_j \psi_j^n$$

• Since the Hamiltonian is a linear operator:

$$i\hbar \frac{\psi_j^{n+1} - \psi_j^n}{\tau} = \sum_{k=0}^{N-1} H_{jk} \psi_k^n$$

• Where:

$$H_{jk} = -\frac{\hbar^2}{2m} \frac{\delta_{j+1,k} + \delta_{j-1,k} - 2\delta_{jk}}{\hbar^2} + V_j \delta_{jk}$$

FTCS steps for Schrödinger equation

Final FTCS scheme in matrix notation:

$$\Psi^{n+1} = \left(\mathbf{I} - \frac{i\tau}{\hbar}\mathbf{H}\right)\Psi^n$$

 First term in Taylor expansion of the formal solution for one time step:

$$\psi(x,t) = \exp\left[-\frac{i}{\hbar}\mathcal{H}t\right]\psi(x,0)$$

Implicit schemes for the Schrödinger equation

- We have seen that the FTCS is numerically unstable for time steps that are too large
- ullet Alternative approach: Apply the Hamiltonian to the future value of ψ

$$i\hbar \frac{\psi_j^{n+1} - \psi_j^n}{\tau} = \sum_{k=0}^{N-1} H_{jk} \psi_k^{n+1}$$

• Or:

$$\Psi^{n+1} = \Psi^n - \frac{i\tau}{\hbar} \mathbf{H} \Psi^{n+1}$$

• Solving for Ψ^{n+1} :

$$\Psi^{n+1} = \left(\mathbf{I} + \frac{i\tau}{\hbar}\mathbf{H}\right)^{-1}\Psi^n$$

Implicit FTCS scheme

• Implicit FTCS:

$$\Psi^{n+1} = \left(\mathbf{I} + \frac{i\tau}{\hbar}\mathbf{H}\right)^{-1} \Psi^n$$

Compare with explicit FTCS:

$$\Psi^{n+1} = \left(\mathbf{I} - rac{i au}{\hbar}\mathbf{H}
ight)\Psi^n$$

• Equivalent as τ goes to 0 since for small ε :

$$\frac{1}{1+\epsilon} \to (1-\epsilon)$$

- Con: Implicit method requires evaluation of matrix inverse, which can be costly
- Pro: Unconditionally stable!

More accurate approximations: Crank-Nicholson

- As we saw before, numerically stable does not mean accurate
- More accurate scheme: Crank-Nicholson
 - Average of implicit and explicit FTCS:

$$i\hbar \frac{\psi_j^{n+1} - \psi_j^n}{\tau} = \frac{1}{2} \sum_{k=0}^{N-1} H_{jk} (\psi_k^n + \psi_k^{n+1})$$

• In matrix form:

$$\Psi^{n+1} = \Psi^n - \frac{i\tau}{2\hbar} \mathbf{H} (\Psi^n + \Psi^{n+1})$$

• Isolating the *n*+1 term:

$$\Psi^{n+1} = \left(\mathbf{I} + \frac{i\tau}{2\hbar}\mathbf{H}\right)^{-1} \left(\mathbf{I} - \frac{i\tau}{2\hbar}\mathbf{H}\right) \Psi^n$$

Properties of Crank-Nicolson

$$\Psi^{n+1} = \left(\mathbf{I} + \frac{i\tau}{2\hbar}\mathbf{H}\right)^{-1} \left(\mathbf{I} - \frac{i\tau}{2\hbar}\mathbf{H}\right) \Psi^n$$

- Unconditionally stable
- Centered in both space and time
- "Páde" approximation for exponential is
 - See (https://en.wikipedia.org/wiki/Pad%C3%A9 approximant)

$$e^{-z} \simeq \frac{1 - z/2}{1 + z/2}$$

- CN can be interpreted as Páde for the formal solution
- Preserves the unitarity of e^{-z}

Example: Numerical solution of the Schrödinger equation

- Initial conditions: Gaussian wave packet
 - Localized around x_0
 - Width of σ_0
 - Average momentum of: $p_0 = \hbar k_0$

$$\psi(x, t = 0) = \frac{1}{\sqrt{\sigma_0 \sqrt{\pi}}} \exp(ik_0 x) \exp\left[-\frac{(x - x_0)^2}{2\sigma_0^2}\right]$$

Which is normalized so that:

$$\int_{-\infty}^{\infty} |\psi|^2 dx = 1$$

• Also, has the special property that uncertainty produce $\Delta x \Delta p$ is minimized $(\hbar/2)$

Propagation of wave packet in free space

Wavefunction evolves like:

$$x \to x - \frac{p_0 t}{2m}, \qquad \sigma_0^2 \to \alpha^2 \equiv \sigma_0^2 + \frac{i\hbar t}{m}$$

So we have:

$$\psi(x,t) = \frac{1}{\sqrt{\sigma_0 \sqrt{\pi}}} \frac{\sigma_0}{\alpha} \exp\left[ik_0 \left(x - \frac{p_0 t}{2m}\right)\right] \exp\left[-\frac{(x - x_0 - \frac{p_0 t}{2m})^2}{2\alpha^2}\right]$$

And for the probability density:

Remains a Gaussian in

$$P(x,t) = |\psi(x,t)|^2 = \frac{\sigma_0}{|\alpha|^2 \sqrt{\pi}} \exp \left[-\left(\frac{\sigma_0}{|\alpha|}\right)^4 \frac{(x - x_0 - \frac{p_0 t}{m})^2}{\sigma_0^2} \right]$$

Propagation of wave packet in free space

By symmetry, max of Gaussian equals its expectation value:

$$\langle x \rangle = \int_{-\infty}^{\infty} x P(x, t) dx$$

• In time, it moves as:
$$\langle x \rangle = x_0 + \frac{p_0 t}{m}$$

And the wave packet spreads as:

$$\sigma(t) = \sigma_0 \sqrt{1 + \frac{\hbar^2 t^2}{m^2 \sigma_0^4}}$$

DEMO

- CN_schro.ipynb
- Start with N=30, t=1, r=3
 - Looks ok, but only move halfway
- Change t=0.1, r=30
 - Still only moves halfway

- Change t=1, N=80, r=3
 - Much better!

• Change N=150

DEMO

• Interactive plot for probability density

Why does the rough spatial discretization give errors?

The reason is a poor representation of the initial conditions

- Rough discretization suppresses the higher wave number modes
 - Difficult to represent those modes on a coarse grid
- Because of this suppression, the discretized version has a lower momentum than $\psi(x,t)$

Can we avoid the taking the inverse of the matrix?

• As usual, we can trade taking the matrix inverse for solving a linear system of equations:

$$\Psi^{n+1} = \left(\mathbf{I} + \frac{i\tau}{2\hbar}\mathbf{H}\right)^{-1} \left(\mathbf{I} - \frac{i\tau}{2\hbar}\mathbf{H}\right) \Psi^{n}$$

$$= \left(\mathbf{I} + \frac{i\tau}{2\hbar}\mathbf{H}\right)^{-1} \left[2\mathbf{I} - \left(\mathbf{I} + \frac{i\tau}{2\hbar}\mathbf{H}\right)\right] \Psi^{n}$$

$$= \left[2\left(\mathbf{I} + \frac{i\tau}{2\hbar}\mathbf{H}\right)^{-1} - \mathbf{I}\right] \Psi^{n}$$

• Or:

$$\Psi^{n+1} = \mathbf{Q}^{-1}\Psi^n - \Psi^n, \quad \mathbf{Q} = \frac{1}{2} \left| \mathbf{I} + \frac{i\tau}{2\hbar} \mathbf{H} \right|$$

Crank-Nicolson for tridiagonal matrices

$$\Psi^{n+1} = \mathbf{Q}^{-1}\Psi^n - \Psi^n, \quad \mathbf{Q} = \frac{1}{2} \left| \mathbf{I} + \frac{i\tau}{2\hbar} \mathbf{H} \right|$$

Now we can solve for the next timestep by solving the linear system:

$$\mathbf{Q}\chi = \Psi^n$$

• And then:

$$\Psi^{n+1} = \chi - \Psi^n$$

Recall that for banded matrices, solving linear systems via, e.g.,
 Gaussian elimination, is particularly efficient

DEMO

• CN_schro_no_inv.ipynb

Some comments in implicit schemes

 Recall that the killer app of implicit methods was that they are unconditionally stable

- Major downside is that for higher-dimensional problems, matrices become very large and difficult to manipulate
 - Can use approaches to separately perform implicit steps in different dimensions

After class tasks

• Homework 4 is posted, due Nov. 5, 2025

- Readings
 - Garcia Chapters 8 and 9
 - MIke Zingale's notes on computational hydrodynamics