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Today’s lecture: 
PDEs

• Stability analysis of PDEs

• Implicit schemes



Stability analysis of PDEs

• Empirically, we found that stability was a significant problem for PDEs

• In most cases, the stability was conditional on the timestep
• Often related to the spatial discretization

• It is useful to be able to test for stability before running the 
calculation



Stability analysis of the advection equation

• Consider the advection equation discussed previously:

• FTCS was always unstable

• Other methods were unstable for timesteps that were too large compared to 
the spatial discretization h

• Let’s consider a trial solution of the form:

Complex 
amplitude



von Neumann stability analysis
• In discretized form:

• Advancing the solution by one step:

•  is the amplification factor

• von Neumann stability analysis: Insert this trial solution into the 
numerical scheme and solve for amplification factor given h and 
• Unstable if | | > 1



Stability of FTCS for advection equation

• FTCS scheme:

• Insert trial solutions:

• Therefore:



FTCS is not stable for advection equation

• We have that:

• So, the solution in general grows with each timestep, and therefore 
unstable

• Degree to which it is unstable depends on the “mode” k

• Fastest growing mode is when:

• Or:

• Since k=2/:



Divergent modes for FTCS on advection 
equation

Maximum 
divergences



von Neumann stability of the Lax scheme

• Apply the same analysis to the Lax method:

• Plugging in our trial solution:

• So:



Stability of the Lax scheme

• So, we have:

• Example: take k=/4, c=1:

• In general:

• Same as the Courant-Friedrichs-
Lewy stability criterion

 must be less than 
or equal to h



Matrix stability analysis

• von Neumann approach is a simple and popular way to investigate 
the stability of solution scheme

• However, does not take into account the influence of boundary 
conditions

• Recall our discussion of relaxation methods in terms of iteratively 
solving linear equations

• Matrix stability analysis:  Analyze the linear problem to see how 
stable the PDE solution will be



FTCS for diffusion equation

• Consider the FTCS method for the 1D diffusion equation:

• Where:

• For Dirichlet boundary conditions we can write FTCS as:



Matrix form of the diffusion equation

Zero rows so boundary 
points don’t change



Decomposing in eigenvectors
• To determine the stability of the problem Tn+1=ATn consider the 

eigenvalue problem for the matrix A:

• Assuming eigenvectors form a complete basis, initial conditions may 
be written as:

• Then we can get T at a later time by repeatedly applying A:

• Using our eigenvector decomposition



Stability condition on eigenvalues

• We see that we will have divergence if we have any eigenvalues that 
are:

• Spectral radius of A: Magnitude of the largest eigenvalue

• Scheme is matrix stable if the spectral radius is less than or equal to 
unity



Stability of FTCS for diffusion equation 
with timestep

• 61 spatial grid points with unit length,  = 1:



Some comments on stability analysis
• The two stability analyses discussed here are only suitable for linear 

PDEs

• Can use for nonlinear PDEs by linearizing around a reference state

• Often can use physical intuition to estimate stability criteria, as we did 
originally for CFL condition

• Note that we have not tested numerical schemes for unwanted 
dissipation (e.g., in the Lax method) or changes to dispersion 
• Can be studied with extensions of von Neumann analysis



Today’s lecture: 
PDEs

• Stability analysis of PDEs

• Implicit schemes



Example for implicit schemes: Schrödinger 
equation

• Or:

• Formal solution:



Discretizing the Schrödinger equation

• FTCS for the Schrödinger equation:

• Since the Hamiltonian is a linear operator:

• Where:



FTCS steps for Schrödinger equation

• Final FTCS scheme in matrix notation:

• First term in Taylor expansion of the formal solution for one time 
step:



Implicit schemes for the Schrödinger equation 

• We have seen that the FTCS is numerically unstable for time steps 
that are too large

• Alternative approach: Apply the Hamiltonian to the future value of 

• Or:

• Solving for n+1:



Implicit FTCS scheme
• Implicit FTCS:

• Compare with explicit FTCS:

• Equivalent as  goes to 0 since for small :

• Con: Implicit method requires evaluation of matrix inverse, which can 
be costly

• Pro: Unconditionally stable!



More accurate approximations: Crank-Nicholson

• As we saw before, numerically stable does not mean accurate

• More accurate scheme: Crank-Nicholson
• Average of implicit and explicit FTCS:

• In matrix form:

• Isolating the n+1 term:



Properties of Crank-Nicolson

• Unconditionally stable

• Centered in both space and time

• “Páde” approximationfor exponential is  
• See (https://en.wikipedia.org/wiki/Pad%C3%A9_approximant)

• CN can be interpreted as Páde for the formal solution

• Preserves the unitarity of e-z

https://en.wikipedia.org/wiki/Pad%C3%A9_approximant


Example: Numerical solution of the 
Schrödinger equation 
• Initial conditions: Gaussian wave packet

• Localized around x0

• Width of 0

• Average momentum of:

• Which is normalized so that: 

• Also, has the special property that uncertainty produce xp is 
minimized 



Propagation of wave packet in free space

• Wavefunction evolves like:

• So we have:

• And for the probability density:
Remains a Gaussian in 
time



Propagation of wave packet in free space

• By symmetry, max of Gaussian equals its expectation value:

• In time, it moves as: 

• And the wave packet spreads as:



DEMO

• CN_schro.ipynb

• Start with N=30, t=1, r=3
• Looks ok, but only move halfway

• Change t=0.1, r=30
• Still only moves halfway

• Change t=1, N=80, r=3
• Much better!

• Change N=150



DEMO

• Interactive plot for probability density



Why does the rough spatial discretization give 
errors?
• The reason is a poor representation of the initial conditions

• Rough discretization suppresses the higher wave number modes
• Difficult to represent those modes on a coarse grid

• Because of this suppression, the discretized version has a lower 
momentum than (x,t)



Can we avoid the taking the inverse of the 
matrix?
• As usual, we can trade taking the matrix inverse for solving a linear 

system of equations:

• Or:



Crank-Nicolson for tridiagonal matrices

• Now we can solve for the next timestep by solving the linear system:

• And then:

• Recall that for banded matrices, solving linear systems via, e.g., 
Gaussian elimination, is particularly efficient 



DEMO

• CN_schro_no_inv.ipynb



Some comments in implicit schemes

• Recall that the killer app of implicit methods was that they are 
unconditionally stable

• Major downside is that for higher-dimensional problems, matrices 
become very large and difficult to manipulate
• Can use approaches to separately perform implicit steps in different 

dimensions



After class tasks

• Homework 4 is posted, due Nov. 5, 2025

• Readings

• Garcia Chapters 8 and 9

• MIke Zingale's notes on computational hydrodynamics

http://bender.astro.sunysb.edu/hydro_by_example/CompHydroTutorial.pdf
http://bender.astro.sunysb.edu/hydro_by_example/CompHydroTutorial.pdf
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