PHY604 Lecture 18

October 28, 2025



Today’s lecture:
PDEs

 Stability analysis of PDEs

* Implicit schemes



Stability analysis of PDEs

* Empirically, we found that stability was a significant problem for PDEs

* In most cases, the stability was conditional on the timestep
* Often related to the spatial discretization

* It is useful to be able to test for stability before running the
calculation



Stability analysis of the advection equation

* Consider the advection equation discussed previously:

da da
_— —C——

ot Ox

e FTCS was always unstable

* Other methods were unstable for timesteps that were too large compared to
the spatial discretization h

e Let’s consider a trial solution of the form:
a(z,t) = A(t)e™ ™

\ Complex

amplitude



von Neumann stability analysis

 |n discretized form: a? — ANetkih

* Advancing the solution by one step:

n+l __ An—l—leikjh _ fAnGikjh

4

* £is the amplification factor

* von Neumann stability analysis: Insert this trial solution into the
numerical scheme and solve for amplification factor given hand ¢
* Unstableif |£]|>1



Stability of FTCS for advection equation

CT
* FTCS scheme: a?’“ = a, — %(aﬁrl —ar )

. . n An 1kjh n+1 An 1kjh
* Insert trial solutions: a; = A"¢ a; " =EA"e

EATEiRIR — Angikih _ CT [An ik(j+1)h Aneik(j—l)h]

2h
n _ikjh CT / ikh —ikh
= A"e"™/ _1 ~ 57 (e —e )]
— A"etkih 1 — z% Sin(kh)}

e Therefore:

£| = ‘1 il sin(kh)|



FTCS is not stable for advection equation

2
+ We have that: [¢] = |1 — z—sin kh) ‘ — \/ ( ) sin(kh)?2

* So, the solution in general grows with each timestep, and therefore
unstable

* Degree to which it is unstable depends on the “mode” k
* Fastest growing mode is when: sin®(kpaxh) = 1

-
e Or: kpax = —
2h

e Since k=27/A: Apax = 4h



Divergent modes for FTCS on advection

eguation
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von Neumann stability of the Lax scheme

* Apply the same analysis to the Lax method:

a?“ = §(ai—|—1 +a;_ 1) — %(%H —a;_q)

* Plugging in our trial solution:

cAmeRIh — 1 [Aneik(j+1)h Aneik(j—l)h] B 0_7]; [Aneik(j—l—l)h _ AP eik(i—1)h
2
_ gnikih B (ez’kh . eikh) . g_; (eikh . e—ikh)}
. S0: ¢ = cos(kh) — i— sin(kh)

h



Stability of the Lax scheme

cT\? . o
* So, we have:  |£| = 1/cos?(kh) (h) sin”(kh)

* Example: take k=7/4, c=1: o
) \ -
* Ingeneral: |—| <1 |

h
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e Same as the Courant-Friedrichs-
Lewy stability criterion
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Matrix stability analysis

 von Neumann approach is a simple and popular way to investigate
the stability of solution scheme

* However, does not take into account the influence of boundary
conditions

* Recall our discussion of relaxation methods in terms of iteratively
solving linear equations

* Matrix stability analysis: Analyze the linear problem to see how
stable the PDE solution will be



FTCS for diffusion equation

* Consider the FTCS method for the 1D diffusion equation:

n+1 _ mn n n
T =T +E(T+1+T | — 277

* Where: t, = h*/2k
* For Dirichlet boundary conditions we can write FTCS as:

Tt — o~ ppn
o

-
=|I+—D|T"
(1+5.7)

= AT"



Matrix form of the diffusion equation
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Zero rows so boundary
points don’t change



Decomposing In eigenvectors

* To determine the stability of the problem T"*'=AT" consider the
eigenvalue problem for the matrix A:

1AV;€ — )\kvk
* Assuming eigenvectors form a complete basis, initial conditions may

be written as: N—-1
r].“1 — Z CLV[
k=0
* Then we can get T at a later time by repeatedly applying A:
T = AT" = A(AT" 1) = A*(AT" %) =... = A"T!

* Using our eigenvector decomposition
N-1 N-1

Tn-l—l — Z CkAnd — Z ck()\k)”vk



Stability condition on eigenvalues

N—-1

T = (W) Vi
k=0

* We see that we will have divergence if we have any eigenvalues that
are: |Ax| > 1

* Spectral radius of A: Magnitude of the largest eigenvalue
P(A) = [Amax|

* Scheme is matrix stable if the spectral radius is less than or equal to
unity
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Some comments on stability analysis

* The two stability analyses discussed here are only suitable for linear
PDEs

e Can use for nonlinear PDEs by linearizing around a reference state

e Often can use physical intuition to estimate stability criteria, as we did
originally for CFL condition

* Note that we have not tested numerical schemes for unwanted
dissipation (e.g., in the Lax method) or changes to dispersion

* Can be studied with extensions of von Neumann analysis



Today’s lecture:
PDEs

* Implicit schemes



Example for implicit schemes: Schrodinger
eguation
L0 2 07
zhaw(a:,t) =

 9m Ox2

p(x,t) + V(z)y(z, 1)

* Or:
O

* Formal solution:

()

b(z,t) = exp {—ﬁm} (z,0)



Discretizing the Schrodinger equation

* FTCS for the Schrodinger equation:

n-+1 n n n n
Yrt — g R Y -2 Vi
T 2m h? B

1h

 Since the Hamiltonian is a linear operator:

w’n—l—l fn,

N—-1

e Where:

h2 4. +0; 11— 20;
ij p— _2m JF1.k 221’]{: Ik | ‘/]5]]4:




FTCS steps for Schrodinger equation

 Final FTCS scheme in matrix notation:

gl — (I _ %H) "

* First term in Taylor expansion of the formal solution for one time
step:

O(z. 1) = exp {—%Ht} (2, 0)



Implicit schemes for the Schrodinger equation

* We have seen that the FTCS is numerically unstable for time steps
that are too large

* Alternative approach: Apply the Hamiltonian to the future value of

gt g N
ih— _ - = ZHJ‘I«%H
k=0

e Or: \I/n—|_1 — " — %H\I/n+1

* Solving for W"+:

. —1
gl (I+ %H) "



Implicit FTCS scheme
* Implicit FTCS:
\Ijn_l_l (

—1
I H yn
+ 7 )

e Compare with explicit FTCS:

\Ifn—"_l (I o EH> AL

* Equivalent as 7 goes to 0 since for small &:

1
> (1 —
1+ € ( 6)

e Con: Implicit method requires evaluation of matrix inverse, which can
be costly

* Pro: Unconditionally stable!



More accurate approximations: Crank-Nicholson

* As we saw before, numerically stable does not mean accurate

* More accurate scheme: Crank-Nicholson
* Average of implicit and explicit FTCS:
+1 n N-—1
Vi 1
: 9 1
ih — E Hik (W + ™)

T

* |n matrix form:

\Ijn+1 \Ifn . %H(\Ijn £+ \Ijn+1)

* Isolating the n+1 term:

—1
gl — (T H I——H gn
<+2h ) ( on )



Properties of Crank-Nicolson

—1
Ut = (1 H I- —H)| "
(e 5m) (1 5m)

* Unconditionally stable
* Centered in both space and time

* “Pade” approximationfor exponential is
e See (https://en.wikipedia.org/wiki/Pad%C3%A9 approximant)

. 1=2/2
- 142/2

* CN can be interpreted as Pade for the formal solution

€

* Preserves the unitarity of e*


https://en.wikipedia.org/wiki/Pad%C3%A9_approximant

Example: Numerical solution of the
Schrodinger equation

* Initial conditions: Gaussian wave packet
* Localized around x,

+ Width of o,
« Average momentum of: Po = hkg
1 L 2
Y(x,t=0) = exp (tkox) exp {— (= $20) }
\/ O'Oﬁ 200

 Which is normalized so that:

| lpde=1

* Also, has the special property that uncertainty produce AxAp is
minimized (7/2)



Propagation of wave packet in free space

 Wavefunction evolves like:

t vt
ajﬁm—pi, 08%&25084——
2m m

* So we have:

Y(x,t) = L o0 exp {iko (x -~ p_()t)} exp | — (= %0 — 5

* And for the probability density:

Remains a Gaussian in -

) 4 o __ pot\2
NP, 1) = (s ]2 = —20 exp —(@) == %0~ )




Propagation of wave packet in free space

* By symmetry, max of Gaussian equals its expectation value:
©.@)
(x) = / rP(x,t)dx

Pot

* In time, it moves as: (x) = x0
m

* And the wave packet spreads as:




DEMO

* CN_schro.ipynb

e Start with N=30, t=1, r=3
* Looks ok, but only move halfway

e Change t=0.1, r=30

* Still only moves halfway

* Change t=1, N=80, r=3
 Much better!

* Change N=150



DEMO

* Interactive plot for probability density



Why does the rough spatial discretization give
errors?

* The reason is a poor representation of the initial conditions

* Rough discretization suppresses the higher wave number modes
 Difficult to represent those modes on a coarse grid

* Because of this suppression, the discretized version has a lower
momentum than y(x,t)



Can we avoid the taking the inverse of the
matrix?

* As usual, we can trade taking the matrix inverse for solving a linear
system of equations:

] —1 ]
ot — (14 | T— TH)gn
(1o gpm) (15

. —1 .
LT LT o
() (1 )

: —1
1T
= |2(1+H) -—I|0"

* Or:

1 1T
\Ijn_l_l _ —lan . \Ijn — _ T — H



Crank-Nicolson for tridiagonal matrices

1 1T
\Ijn+1 _ _1\Ijn o \Ijn — _ |1 T H

* Now we can solve for the next timestep by solving the linear system:

Qx =""
 And then:

\I]n—l—l =y — \I/n

» Recall that for banded matrices, solving linear systems via, e.g.,
Gaussian elimination, is particularly efficient



DEMO

* CN_schro_no_inv.ipynb



Some comments in implicit schemes

e Recall that the killer app of implicit methods was that they are
unconditionally stable

* Major downside is that for higher-dimensional problems, matrices
become very large and difficult to manipulate

e Can use approaches to separately perform implicit steps in different
dimensions



After class tasks

e Homework 4 is posted, due Nov. 5, 2025

* Readings

e Garcia Chapters 8 and 9
e Mlke Zingale's notes on computational hydrodynamics



http://bender.astro.sunysb.edu/hydro_by_example/CompHydroTutorial.pdf
http://bender.astro.sunysb.edu/hydro_by_example/CompHydroTutorial.pdf

	Slide 1: PHY604 Lecture 18
	Slide 2: Today’s lecture:  PDEs
	Slide 3: Stability analysis of PDEs
	Slide 4: Stability analysis of the advection equation
	Slide 5: von Neumann stability analysis
	Slide 6: Stability of FTCS for advection equation
	Slide 7: FTCS is not stable for advection equation
	Slide 8: Divergent modes for FTCS on advection equation
	Slide 9: von Neumann stability of the Lax scheme
	Slide 10: Stability of the Lax scheme
	Slide 11: Matrix stability analysis
	Slide 12: FTCS for diffusion equation
	Slide 13: Matrix form of the diffusion equation
	Slide 14: Decomposing in eigenvectors
	Slide 15: Stability condition on eigenvalues
	Slide 16: Stability of FTCS for diffusion equation  with timestep
	Slide 17: Some comments on stability analysis
	Slide 18: Today’s lecture:  PDEs
	Slide 19: Example for implicit schemes: Schrödinger equation
	Slide 20: Discretizing the Schrödinger equation
	Slide 21: FTCS steps for Schrödinger equation
	Slide 22: Implicit schemes for the Schrödinger equation 
	Slide 23: Implicit FTCS scheme
	Slide 24: More accurate approximations: Crank-Nicholson
	Slide 25: Properties of Crank-Nicolson
	Slide 26: Example: Numerical solution of the Schrödinger equation 
	Slide 27: Propagation of wave packet in free space
	Slide 28: Propagation of wave packet in free space
	Slide 29: DEMO
	Slide 30: DEMO
	Slide 31: Why does the rough spatial discretization give errors?
	Slide 32: Can we avoid the taking the inverse of the matrix?
	Slide 33: Crank-Nicolson for tridiagonal matrices
	Slide 34: DEMO
	Slide 35: Some comments in implicit schemes
	Slide 36: After class tasks

