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Today’s lecture: 
Random numbers

• Finish Implicit schemes for PDEs: The Schrodinger equation

• Introduction to stochastic methods: Random numbers



More accurate approximations: Crank-Nicholson

• As we saw before, numerically stable does not mean accurate

• More accurate scheme: Crank-Nicholson
• Average of implicit and explicit FTCS:

• In matrix form:

• Isolating the n+1 term:



Properties of Crank-Nicolson

• Unconditionally stable

• Centered in both space and time

• “Páde” approximation for exponential is  
• See (https://en.wikipedia.org/wiki/Pad%C3%A9_approximant)

• CN can be interpreted as Páde for the formal solution

• Preserves the unitarity of e-z

https://en.wikipedia.org/wiki/Pad%C3%A9_approximant


Example: Numerical solution of the 
Schrödinger equation 
• Initial conditions: Gaussian wave packet

• Localized around x0

• Width of 0

• Average momentum of:

• Which is normalized so that: 

• Also, has the special property that uncertainty produce xp is 
minimized 



Propagation of wave packet in free space

• Wavefunction evolves like:

• So we have:

• And for the probability density:
Remains a Gaussian in 
time



Propagation of wave packet in free space

• By symmetry, max of Gaussian equals its expectation value:

• In time, it moves as: 

• And the wave packet spreads as:



Why does the rough spatial discretization give 
errors?
• The reason is a poor representation of the initial conditions

• Rough discretization suppresses the higher wave number modes
• Difficult to represent those modes on a coarse grid

• Because of this suppression, the discretized version has a lower 
momentum than (x,t)



Can we avoid the taking the inverse of the 
matrix?
• As usual, we can trade taking the matrix inverse for solving a linear 

system of equations:

• Or:



Crank-Nicolson for tridiagonal matrices

• Now we can solve for the next timestep by solving the linear system:

• And then:

• Recall that for banded matrices, solving linear systems via, e.g., 
Gaussian elimination, is particularly efficient 



Some comments in implicit schemes

• Recall that the killer app of implicit methods was that they are 
unconditionally stable

• Major downside is that for higher-dimensional problems, matrices 
become very large and difficult to manipulate
• Can use approaches to separately perform implicit steps in different 

dimensions



Today’s lecture: 
Random numbers

• Finish Implicit schemes for PDEs: The Schrodinger equation

• Introduction to stochastic methods: Random numbers



Monte Carlo and stochastic methods

• Randomness is an important part 
of physics
• E.g., radioactive decay, Brownian 

motion
• In standard interpretations of 

quantum mechanics,  microscopic 
phenomena are random

• Random sampling can be a useful 
tool for integration
• Whole family of techniques based 

on this idea
Wikepedia



How can we model randomness on the 
computer
• In order to implement stochastic methods, we need random (or 

pseudorandom) numbers

• What do we need from a random number generator? (according to 
Pang)
• Long “period” before sequences of numbers are repeated

• Small correlation between numbers generated in sequence

• Very fast, so we can get many random numbers to accumulate statistics

• Typical random number generators return a number in [0,1)
• Should uniformly fill that space

• Seeds can be used to allow for reproducibility (from one run to the next)



Example of a simple random number 
generator

• Simplest generator made using the 
linear congruent scheme

• Random numbers are generated in 
sequence from the linear relation:

• a, b, and c are “magic numbers” which 
determine the quality of the generator
• Typical choices: a = 75, b = 0, c = 231 – 1

•  x0 is the seed, allows for reproducibility



• Simplest generator made using the 
linear congruent scheme

• Random numbers are generated in 
sequence from the linear relation:

• a, b, and c are “magic numbers” which 
determine the quality of the generator
• Typical choices: a = 75, b = 0, c = 231 – 1

•  x0 is the seed, allows for reproducibility

Example of a simple random number 
generator



Random versus pseudo random
• The numbers generated on the previous slide are actually 

pseudorandom
• Wikipedia: Appears to be statistically random despite having been produced 

by a completely deterministic and repeatable process
• Usually, good enough for most applications (except if you are doing 

cryptography) 
• Good for testing code, since you get the same values every time
• Can randomize the seed (e.g., clock time)

• “True” random numbers can be generated by physically random 
processes
• Some noise or random process of the computer hardware (e.g., clock time)
• Thermal noise from a resistor
• Quantum shot noise
• Atmospheric noise: https://www.random.org/
• Lava lamps: https://patents.google.com/patent/US5732138

https://www.random.org/
https://patents.google.com/patent/US5732138


Random numbers from the RAND corporation
• If you want your random numbers in analog format, you can 

download a book of them: 
https://www.rand.org/pubs/monograph_reports/MR1418.html

https://www.rand.org/pubs/monograph_reports/MR1418.html


Best bet is to use previous implementations 
for random number generators
• Correlations between random samples can be difficult to detect and  

cause errors in computations

• See: https://docs.python.org/3/library/random.html or 
https://numpy.org/doc/stable/reference/random/index.html for 
details on how python does it

https://docs.python.org/3/library/random.html
https://numpy.org/doc/stable/reference/random/index.html


Radioactive decay (see Newman Sec. 10.1)

• One of the quintessential random processes in physics

• Parent atoms decay with characteristic half-life 

• We will consider 208Tl, which decays to 208Pb with  = 183.18 sec.

• Number of parent atoms falls off exponentially:

• Probability that a particular atom has decayed in a time interval t:



Radioactive decay



Nonuniform distributions

• We can also select random numbers from a distribution that is not 
constant over the range
• I.e., all numbers are not selected with equal probability

• Consider the radioactive decay example:
• Probability of decay in time interval dt is:

• What is the probability to decay in time window t + dt?
• Needs to survive without decay until t (probability 2-t/)

• Then must decay in dt

• Total probability is:



Nonuniform distribution for decay example

• Nonuniform probability distribution:

• Decay times t are distributed in proportion to 2-t/

• We could calculate the decay of N atoms by drawing N random 
samples from this distribution
• More efficient than previous method

• Need to generate nonuniform distribution of random numbers

• Can generate nonuniform random numbers from a uniform 
distribution



Transformation method for changing 
distributions
• We have a source of random numbers z drawn from distribution q(z)

• Probability of generating a number between z and z+dz is q(z)dz

• Now we choose a function x = x(z) whose distribution p(x) is the one 
we want

• We know that: 

• If our random numbers are drawn from a uniform distribution [0,1), 
q(z)=1 from 0 to 1, zero elsewhere

• Then:

• We need to do the integral on the left and then solve for x(z)
• Not always possible



Transformation method to exponential 
distribution
• Say we want to generate random real numbers that are > 0 with the 

distribution:

•  is for normalization

• Then:

• So:



Nonuniform distribution for decay example

• We can write the probability 
distribution for the decay 
example as

• So:



Nonuniform distribution for decay example

• We can write the probability 
distribution for the decay 
example as

• So:



Gaussian random numbers

• In many cases we would like to draw numbers from a Gaussian (i.e., 
normal) distribution:

• Let’s try the transformation method:

• The solution to this integral and the resulting equation is complicated



Gaussian random numbers

• Trick: consider two random numbers x and y, both drawn from 
Gaussian distribution with the same standard deviation  

• Probability that point with position (x,y) falls in some element dxdy 
on xy plane is:

• Now convert to polar coordinates:



2D transformation method 

• The point in polar coordinates will have the same distribution as the 
original point in cartesian (x,y)
• Solving in polar coordinates and transforming back to Cartesian gives us two 

random points from a Gaussian distribution

•  part is just a uniform distribution:

• Radial part can be treated with transformation method:

• So:

• And random numbers are:



Random numbers from Gaussian distribution



Example: Rutherford scattering

•  particles (helium nuclei) scatter when they 
pass close to an atom with angle:

• E is the kinetic energy of the  particle, b is 
the impact parameter

• Consider Gaussian beam of particles with 
=a0/100 and E=7.7MeV fired at a gold atom

• How many “bounce back” (scattering angle > 
90 degrees)?



After class tasks

• Homework 4 due Nov. 5, 2025

• Readings
• Newman Sec. 10.1

• Pang Sec. 2.5

• Garcia Sec. 11.2
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