PHY604 Lecture 19

October 30, 2025



Today’s lecture:
Random numbers

* Finish Implicit schemes for PDEs: The Schrodinger equation

* Introduction to stochastic methods: Random numbers



More accurate approximations: Crank-Nicholson

* As we saw before, numerically stable does not mean accurate

* More accurate scheme: Crank-Nicholson
* Average of implicit and explicit FTCS:
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Properties of Crank-Nicolson
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* Unconditionally stable
* Centered in both space and time

* “Pade” approximation for exponential is
e See (https://en.wikipedia.org/wiki/Pad%C3%A9 approximant)
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* CN can be interpreted as Pade for the formal solution

€

* Preserves the unitarity of e*


https://en.wikipedia.org/wiki/Pad%C3%A9_approximant

Example: Numerical solution of the
Schrodinger equation

* Initial conditions: Gaussian wave packet
* Localized around x,

+ Width of o,
« Average momentum of: Po = hkg
1 L 2
Y(x,t=0) = exp (tkox) exp {— (= $20) }
\/ O'Oﬁ 200

 Which is normalized so that:

| lpde=1

* Also, has the special property that uncertainty produce AxAp is
minimized (7/2)



Propagation of wave packet in free space

 Wavefunction evolves like:
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* So we have:

Y(x,t) = L o0 exp {iko (x -~ p_()t)} exp | — (= %0 — 5

* And for the probability density:

Remains a Gaussian in -
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Propagation of wave packet in free space

* By symmetry, max of Gaussian equals its expectation value:
©.@)
(x) = / rP(x,t)dx

Pot

* In time, it moves as: (x) = x0
m

* And the wave packet spreads as:




Why does the rough spatial discretization give
errors?

* The reason is a poor representation of the initial conditions

* Rough discretization suppresses the higher wave number modes
 Difficult to represent those modes on a coarse grid

* Because of this suppression, the discretized version has a lower
momentum than y(x,t)



Can we avoid the taking the inverse of the
matrix?

* As usual, we can trade taking the matrix inverse for solving a linear
system of equations:

] —1 ]
ot — (14 | T— TH)gn
(1o gpm) (15

. —1 .
LT LT o
() (1 )

: —1
1T
= |2(1+H) -—I|0"

* Or:

1 1T
\Ijn_l_l _ —lan . \Ijn — _ T — H



Crank-Nicolson for tridiagonal matrices
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* Now we can solve for the next timestep by solving the linear system:

Qx =""
 And then:

\I]n—l—l =y — \I/n

» Recall that for banded matrices, solving linear systems via, e.g.,
Gaussian elimination, is particularly efficient



Some comments in implicit schemes

e Recall that the killer app of implicit methods was that they are
unconditionally stable

* Major downside is that for higher-dimensional problems, matrices
become very large and difficult to manipulate

e Can use approaches to separately perform implicit steps in different
dimensions



Today’s lecture:
Random numbers

* Introduction to stochastic methods: Random numbers



Monte Carlo and stochastic methods

e Randomness is an important part
of physics
* E.g., radioactive decay, Brownian
motion

* In standard interpretations of
guantum mechanics, microscopic
phenomena are random

e Random sampling can be a useful
tool for integration

* Whole family of techniques based | S Wikepedia
on this idea




How can we model randomness on the
computer

* In order to implement stochastic methods, we need random (or
pseudorandom) numbers
 What do we need from a random number generator? (according to

Pang)
* Long “period” before sequences of numbers are repeated

* Small correlation between numbers generated in sequence
* Very fast, so we can get many random numbers to accumulate statistics

* Typical random number generators return a numberin [0,1)

e Should uniformly fill that space
e Seeds can be used to allow for reproducibility (from one run to the next)



Example of a simple random number
generator

e Simplest generator made using the
linear congruent scheme

* Random numbers are generated in
sequence from the linear relation:
;11 = (ax; +b) mod c

* g, b, and c are “magic numbers” which
determine the quality of the generator

* Typical choices:a=7>,b=0,c=23-1
* X, is the seed, allows for reproducibility



Example of a simple random number

generator o
0.81
e Simplest generator made using the e
linear congruent scheme 041 srh
* Random numbers are generated in 0271 s
sequence from the linear relation: 0.0

r;11 = (ax; +b) mod ¢
* g, b, and c are “magic numbers” which
determine the quality of the generator
* Typical choices:a=7>,b=0,c=23-1
* X, is the seed, allows for reproducibility

Xit1




Random versus pseudo random

* The numbers generated on the previous slide are actually

pseudorandom

* Wikipedia: Appears to be statistically random despite having been produced
by a completely deterministic and repeatable process

e Usually, good enough for most applications (except if you are doing
cryptography)

* Good for testing code, since you get the same values every time

e Can randomize the seed (e.g., clock time)

* “True” random numbers can be generated by physically random
Processes
e Some noise or random process of the computer hardware (e.g., clock time)
* Thermal noise from a resistor
* Quantum shot noise
* Atmospheric noise: https://www.random.org/
 Lava lamps: https://patents.google.com/patent/US5732138



https://www.random.org/
https://patents.google.com/patent/US5732138

Random numbers from the RAND corporation

* If you want your random numbers in analog format, you can

download a book of them:
https://www.rand.org/pubs/monograph reports/MR1418.html|

Copyrighted Material

A MILLION

Random Digits

WITH

100,000 Normal Deviates

RAND

Copyrighted Material

TABLE OF RANDOM DIGITS 3

00100 03991 10461 93716 16894 66083 24653 84609 58232 88618 19161
00101 38555 95554 32886 59780 08355 60860 29735 47762 71299 23853
00102 17546 73704 92052 46215 5512] 29281 59076 07936 27954 58909
00103 32643 52861 95819 06831 00911 98936 76355 93779 80863 00514
00104 69572 68777 39510 35905 14060 40619 29549 69616 33564 60780

00105 24122 66591 27699 06494 14845 46672 61958 77100 90899 75754
00106 61196 30231 92962 61773 41839 55382 17267 70943 78038 70267
00107 30532 21704 10274 12202 39685 23309 10061 68829 55986 66485
00108 03788 97599 75867 20717 74416 53166 35208 33374 87539 08823
00109 48228 63379 85783 47619 53152 67433 35663 52972 16818 60311
00110 60365 94653 35075 33049 42614 20297 01918 28316 98053 73231
00111 83799 42402 56623 34442 34994 41374 70071 14736 09958 18065
00112 32060 07405 36409 83232 99385 41600 11133 07586 15917 06253

00113 19322 53845 57620 52606 66497 68646 78138 66559 19640 99413
00114 11220 94747 07399 37408 48509 23929 27482 45476 85244 35159

'I"ht-. 100,000 “normal deviates” cited in the ttle of this volume constitute a subset of

random numbers whose occurrence can be plotted on a bell-shaped curve. RAND legend
has it that this seemingly self-contradictory mathematical expression caused the New York

Public Library to misshelve the volume in the Psychology section.


https://www.rand.org/pubs/monograph_reports/MR1418.html

Best bet is to use previous implementations
for random number generators

* Correlations between random samples can be difficult to detect and
cause errors in computations

e See: https://docs.python.org/3/library/random.html or
https://numpy.org/doc/stable/reference/random/index.html for
details on how python does it



https://docs.python.org/3/library/random.html
https://numpy.org/doc/stable/reference/random/index.html

Ra d |Oa Ct|Ve deCay (see Newman Sec. 10.1)

* One of the quintessential random processes in physics

* Parent atoms decay with characteristic half-life ¢
* We will consider 2%Tl, which decays to ?%Pb with 7= 183.18 sec.

* Number of parent atoms falls off exponentially:
N(t) = N(0)2747

* Probability that a particular atom has decayed in a time interval t:
p(t) =1—2717



Radioactive decay
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Nonuniform distributions

* We can also select random numbers from a distribution that is not
constant over the range
* |.e., all numbers are not selected with equal probability

* Consider the radioactive decay example:
* Probability of decay in time interval dt is:

dt In 2
p(t) =1—2"7" =1 —exp (—— 1112) ~ 2t

T T
 What is the probability to decay in time window t + dt?
* Needs to survive without decay until t (probability 2-t/7)
* Then must decay in dt

* Total probability is:

In 2
P(t)dt = 27t/7 gt

T



Nonuniform distribution for decay example

* Nonuniform probability distribution:

In 2
P(t)dt = 27t 2 gt

T

* Decay times t are distributed in proportion to 27

* We could calculate the decay of N atoms by drawing N random
samples from this distribution
* More efficient than previous method
* Need to generate nonuniform distribution of random numbers

e Can generate nonuniform random numbers from a uniform
distribution



Transformation method for changing
distributions

* We have a source of random numbers z drawn from distribution g(z)
* Probability of generating a number between z and z+dz is g(z)dz

* Now we choose a function x = x(z) whose distribution p(x) is the one
we want

* We know that: p(x)dx = q(z)dz

* If our random numbers are drawn from a uniform distribution [0,1),
g(z)=1 from O to 1, zero elsewhere

* Then: (%) s
/ p(x)dz' = / dz' =z
— 00 0

 We need to do the integral on the left and then solve for x(z)
* Not always possible



Transformation method to exponential
distribution

e Say we want to generate random real numbers that are > 0 with the

distribution: .

p(z) = pe "

* 1 is for normalization
* Then:

* So:



Nonuniform distribution for decay example

* We can write the probability
distribution for the decay

example as
In 2 In 2
P(t)dt = 27t 2 gt = e~ tin2/m 27
T T
* So:
= In(1 — 2)

In 2



Nonuniform distribution for decay example

* We can write the probability
distribution for the decay

example as
In 2 In 2
P(t)dt = 27t 2 gt = e~ tin2/m 27
T
* So:
-
= —— In(1 —
T 5 n( 2)

T
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Gaussian random numbers

* In many cases we would like to draw numbers from a Gaussian (i.e.,
normal) distribution:

(z) 1 T2
T) = exp | ——=
P 2102 P\ 202

* Let’s try the transformation method'

2
exp L dr = z
V2102 202

* The solution to this integral and the resulting equation is complicated




Gaussian random numbers

* Trick: consider two random numbers x and y, both drawn from
Gaussian distribution with the same standard deviation

* Probability that point with position (x,y) falls in some element dxdy

on xy plalle IS:
(x)dx x (y)dy = ! & o dx X ! ¢ v d
X )ax X X X

1 2 2
= exp (_:1: Y )dwdy

- 9702 202

* Now convert to polar coordinates:

1 2 2 d6
p(r, 8)drdd = exXp <—T—> rdrdf = _ exp (—;—2> dr —

2w o




2D transformation method
p(r)dr x p(0)df = % exp ( 202) d?“d—e

o 27

* The point in polar coordinates will have the same distribution as the
original point in cartesian (x,y)

* Solving in polar coordinates and transforming back to Cartesian gives us two
random points from a Gaussian distribution

e @part is just a uniform distribution: p(6) = 1/27
* Radial part can be treated with transformation method:

2
—/ exp( )T’dr’zl—exp<—2—2>:z
o

" 50: r=+/—202In(1 — 2)

* And random numbers are: = =rcosfl, y =rsinf



Random numbers from Gaussian distribution
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Example: Rutherford scattering

e o particles (helium nuclei) scatter when they
pass close to an atom with angle:

X 0 Ze?
an | — | =
2 2meg b /

* Fis the kinetic energy of the « particle, b is

the impact parameter e £
____________ bI 9\
* Consider Gaussian beam of particleswith @t
0=0,/100 and E=7.7MeV fired at a gold atom Nucleus

* How many “bounce back” (scattering angle >
90 degrees)? 7 02

b <
— 2megB




After class tasks

* Homework 4 due Nov. 5, 2025

* Readings
* Newman Sec. 10.1
* Pang Sec. 2.5
* Garcia Sec. 11.2
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