## PHY604 Lecture 19

October 30, 2025

## Today's lecture: Random numbers

• Finish Implicit schemes for PDEs: The Schrodinger equation

• Introduction to stochastic methods: Random numbers

### More accurate approximations: Crank-Nicholson

- As we saw before, numerically stable does not mean accurate
- More accurate scheme: Crank-Nicholson
  - Average of implicit and explicit FTCS:

$$i\hbar \frac{\psi_j^{n+1} - \psi_j^n}{\tau} = \frac{1}{2} \sum_{k=0}^{N-1} H_{jk} (\psi_k^n + \psi_k^{n+1})$$

• In matrix form:

$$\Psi^{n+1} = \Psi^n - \frac{i\tau}{2\hbar} \mathbf{H} (\Psi^n + \Psi^{n+1})$$

• Isolating the *n*+1 term:

$$\Psi^{n+1} = \left(\mathbf{I} + \frac{i\tau}{2\hbar}\mathbf{H}\right)^{-1} \left(\mathbf{I} - \frac{i\tau}{2\hbar}\mathbf{H}\right) \Psi^n$$

### Properties of Crank-Nicolson

$$\Psi^{n+1} = \left(\mathbf{I} + \frac{i\tau}{2\hbar}\mathbf{H}\right)^{-1} \left(\mathbf{I} - \frac{i\tau}{2\hbar}\mathbf{H}\right) \Psi^n$$

- Unconditionally stable
- Centered in both space and time
- "Páde" approximation for exponential is
  - See (<a href="https://en.wikipedia.org/wiki/Pad%C3%A9">https://en.wikipedia.org/wiki/Pad%C3%A9</a> approximant)

$$e^{-z} \simeq \frac{1 - z/2}{1 + z/2}$$

- CN can be interpreted as Páde for the formal solution
- Preserves the unitarity of e<sup>-z</sup>

# Example: Numerical solution of the Schrödinger equation

- Initial conditions: Gaussian wave packet
  - Localized around  $x_0$
  - Width of  $\sigma_0$
  - Average momentum of:  $p_0 = \hbar k_0$

$$\psi(x, t = 0) = \frac{1}{\sqrt{\sigma_0 \sqrt{\pi}}} \exp(ik_0 x) \exp\left[-\frac{(x - x_0)^2}{2\sigma_0^2}\right]$$

Which is normalized so that:

$$\int_{-\infty}^{\infty} |\psi|^2 dx = 1$$

• Also, has the special property that uncertainty produce  $\Delta x \Delta p$  is minimized  $(\hbar/2)$ 

### Propagation of wave packet in free space

Wavefunction evolves like:

$$x \to x - \frac{p_0 t}{2m}, \qquad \sigma_0^2 \to \alpha^2 \equiv \sigma_0^2 + \frac{i\hbar t}{m}$$

So we have:

$$\psi(x,t) = \frac{1}{\sqrt{\sigma_0 \sqrt{\pi}}} \frac{\sigma_0}{\alpha} \exp\left[ik_0 \left(x - \frac{p_0 t}{2m}\right)\right] \exp\left[-\frac{(x - x_0 - \frac{p_0 t}{2m})^2}{2\alpha^2}\right]$$

And for the probability density:

Remains a Gaussian in

$$P(x,t) = |\psi(x,t)|^2 = \frac{\sigma_0}{|\alpha|^2 \sqrt{\pi}} \exp \left[ -\left(\frac{\sigma_0}{|\alpha|}\right)^4 \frac{(x - x_0 - \frac{p_0 t}{m})^2}{\sigma_0^2} \right]$$

### Propagation of wave packet in free space

By symmetry, max of Gaussian equals its expectation value:

$$\langle x \rangle = \int_{-\infty}^{\infty} x P(x, t) dx$$

• In time, it moves as: 
$$\langle x \rangle = x_0 + \frac{p_0 t}{m}$$

And the wave packet spreads as:

$$\sigma(t) = \sigma_0 \sqrt{1 + \frac{\hbar^2 t^2}{m^2 \sigma_0^4}}$$

## Why does the rough spatial discretization give errors?

The reason is a poor representation of the initial conditions

- Rough discretization suppresses the higher wave number modes
  - Difficult to represent those modes on a coarse grid
- Because of this suppression, the discretized version has a lower momentum than  $\psi(x,t)$

## Can we avoid the taking the inverse of the matrix?

• As usual, we can trade taking the matrix inverse for solving a linear system of equations:

$$\Psi^{n+1} = \left(\mathbf{I} + \frac{i\tau}{2\hbar}\mathbf{H}\right)^{-1} \left(\mathbf{I} - \frac{i\tau}{2\hbar}\mathbf{H}\right) \Psi^{n}$$

$$= \left(\mathbf{I} + \frac{i\tau}{2\hbar}\mathbf{H}\right)^{-1} \left[2\mathbf{I} - \left(\mathbf{I} + \frac{i\tau}{2\hbar}\mathbf{H}\right)\right] \Psi^{n}$$

$$= \left[2\left(\mathbf{I} + \frac{i\tau}{2\hbar}\mathbf{H}\right)^{-1} - \mathbf{I}\right] \Psi^{n}$$

• Or:

$$\Psi^{n+1} = \mathbf{Q}^{-1}\Psi^n - \Psi^n, \quad \mathbf{Q} = \frac{1}{2} \left| \mathbf{I} + \frac{i\tau}{2\hbar} \mathbf{H} \right|$$

### Crank-Nicolson for tridiagonal matrices

$$\Psi^{n+1} = \mathbf{Q}^{-1}\Psi^n - \Psi^n, \quad \mathbf{Q} = \frac{1}{2} \left| \mathbf{I} + \frac{i\tau}{2\hbar} \mathbf{H} \right|$$

Now we can solve for the next timestep by solving the linear system:

$$\mathbf{Q}\chi = \Psi^n$$

• And then:

$$\Psi^{n+1} = \chi - \Psi^n$$

Recall that for banded matrices, solving linear systems via, e.g.,
 Gaussian elimination, is particularly efficient

### Some comments in implicit schemes

 Recall that the killer app of implicit methods was that they are unconditionally stable

- Major downside is that for higher-dimensional problems, matrices become very large and difficult to manipulate
  - Can use approaches to separately perform implicit steps in different dimensions

## Today's lecture: Random numbers

• Finish Implicit schemes for PDEs: The Schrodinger equation

Introduction to stochastic methods: Random numbers

#### Monte Carlo and stochastic methods

- Randomness is an important part of physics
  - E.g., radioactive decay, Brownian motion
  - In standard interpretations of quantum mechanics, microscopic phenomena are random
- Random sampling can be a useful tool for integration
  - Whole family of techniques based on this idea



Wikepedia

# How can we model randomness on the computer

- In order to implement stochastic methods, we need random (or pseudorandom) numbers
- What do we need from a random number generator? (according to Pang)
  - Long "period" before sequences of numbers are repeated
  - Small correlation between numbers generated in sequence
  - Very fast, so we can get many random numbers to accumulate statistics
- Typical random number generators return a number in [0,1)
  - Should uniformly fill that space
  - Seeds can be used to allow for reproducibility (from one run to the next)

# Example of a simple random number generator

- Simplest generator made using the linear congruent scheme
- Random numbers are generated in sequence from the linear relation:

$$x_{i+1} = (ax_i + b) \mod c$$

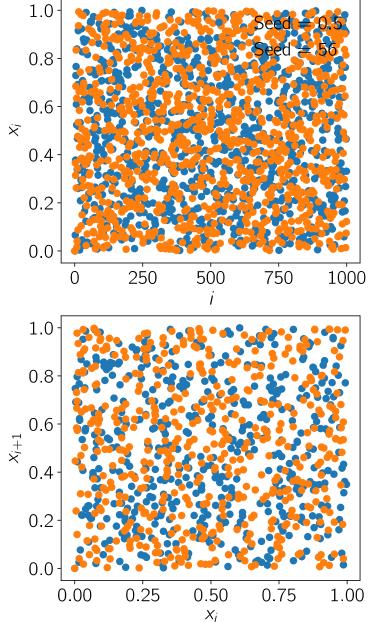
- a, b, and c are "magic numbers" which determine the quality of the generator
  - Typical choices:  $a = 7^5$ , b = 0,  $c = 2^{31} 1$
  - $x_0$  is the seed, allows for reproducibility

# Example of a simple random number generator

- Simplest generator made using the linear congruent scheme
- Random numbers are generated in sequence from the linear relation:

$$x_{i+1} = (ax_i + b) \mod c$$

- a, b, and c are "magic numbers" which determine the quality of the generator
  - Typical choices:  $a = 7^5$ , b = 0,  $c = 2^{31} 1$
  - $x_0$  is the seed, allows for reproducibility



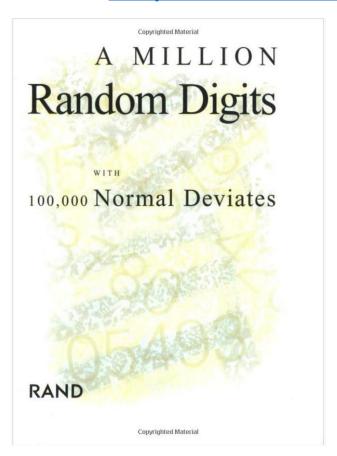
### Random versus pseudo random

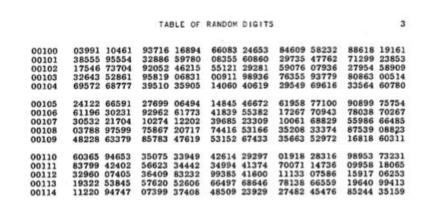
- The numbers generated on the previous slide are actually pseudorandom
  - Wikipedia: Appears to be statistically random despite having been produced by a completely deterministic and repeatable process
  - Usually, good enough for most applications (except if you are doing cryptography)
  - Good for testing code, since you get the same values every time
  - Can randomize the seed (e.g., clock time)
- "True" random numbers can be generated by physically random processes
  - Some noise or random process of the computer hardware (e.g., clock time)
  - Thermal noise from a resistor
  - Quantum shot noise
  - Atmospheric noise: <a href="https://www.random.org/">https://www.random.org/</a>
  - Lava lamps: <a href="https://patents.google.com/patent/US5732138">https://patents.google.com/patent/US5732138</a>

### Random numbers from the RAND corporation

 If you want your random numbers in analog format, you can download a book of them:

https://www.rand.org/pubs/monograph\_reports/MR1418.html





The 100,000 "normal deviates" cited in the title of this volume constitute a subset of random numbers whose occurrence can be plotted on a bell-shaped curve. RAND legend has it that this seemingly self-contradictory mathematical expression caused the New York Public Library to misshelve the volume in the Psychology section.

# Best bet is to use previous implementations for random number generators

 Correlations between random samples can be difficult to detect and cause errors in computations

• See: <a href="https://docs.python.org/3/library/random.html">https://docs.python.org/3/library/random.html</a> or <a href="https://numpy.org/doc/stable/reference/random/index.html">https://numpy.org/doc/stable/reference/random/index.html</a> for details on how python does it

### Radioactive decay (see Newman Sec. 10.1)

- One of the quintessential random processes in physics
- Parent atoms decay with characteristic half-life au
- We will consider <sup>208</sup>Tl, which decays to <sup>208</sup>Pb with  $\tau$  = 183.18 sec.

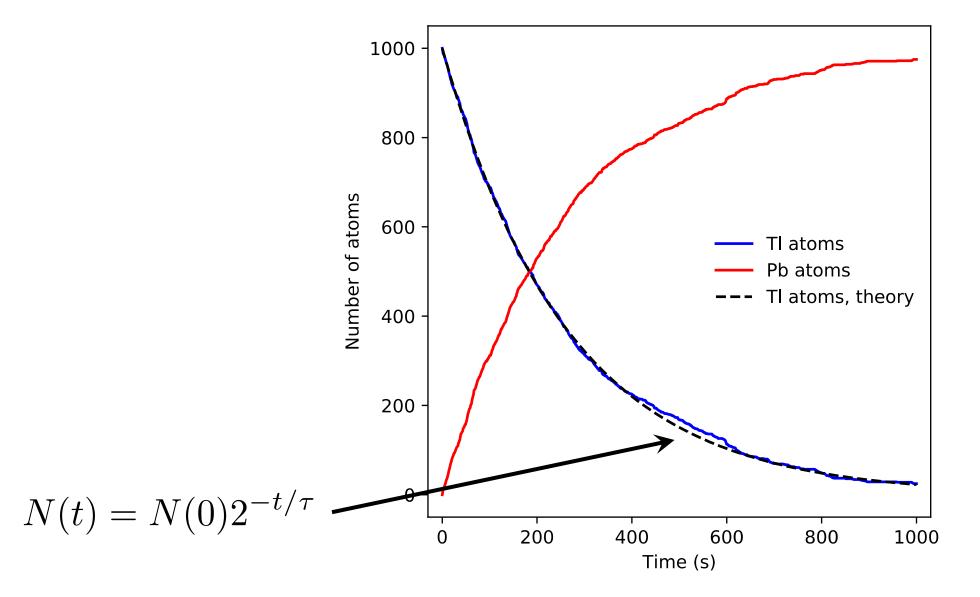
Number of parent atoms falls off exponentially:

$$N(t) = N(0)2^{-t/\tau}$$

• Probability that a particular atom has decayed in a time interval t:

$$p(t) = 1 - 2^{-t/\tau}$$

### Radioactive decay



### Nonuniform distributions

- We can also select random numbers from a distribution that is not constant over the range
  - I.e., all numbers are not selected with equal probability
- Consider the radioactive decay example:
  - Probability of decay in time interval dt is:

$$p(t) = 1 - 2^{-dt/\tau} = 1 - \exp\left(-\frac{dt}{\tau}\ln 2\right) \simeq \frac{\ln 2}{\tau}dt$$

- What is the probability to decay in time window t + dt?
  - Needs to survive without decay until t (probability  $2^{-t/\tau}$ )
  - Then must decay in dt
  - Total probability is:

$$P(t)dt = 2^{-t/\tau} \frac{\ln 2}{\tau} dt$$

### Nonuniform distribution for decay example

Nonuniform probability distribution:

$$P(t)dt = 2^{-t/\tau} \frac{\ln 2}{\tau} dt$$

- Decay times t are distributed in proportion to  $2^{-t/\tau}$
- We could calculate the decay of N atoms by drawing N random samples from this distribution
  - More efficient than previous method
  - Need to generate nonuniform distribution of random numbers
- Can generate nonuniform random numbers from a uniform distribution

## Transformation method for changing distributions

- We have a source of random numbers z drawn from distribution q(z)
  - Probability of generating a number between z and z+dz is q(z)dz
- Now we choose a function x = x(z) whose distribution p(x) is the one we want
- We know that: p(x)dx = q(z)dz
- If our random numbers are drawn from a uniform distribution [0,1), q(z)=1 from 0 to 1, zero elsewhere
- Then:

$$\int_{-\infty}^{x(z)} p(x')dx' = \int_{0}^{z} dz' = z$$

- We need to do the integral on the left and then solve for x(z)
  - Not always possible

## Transformation method to exponential distribution

• Say we want to generate random real numbers that are > 0 with the distribution:  $p(x) = \mu e^{-\mu x}$ 

• 
$$\mu$$
 is for normalization

• Then:

$$\mu \int_{-\infty}^{x(z)} e^{-\mu x'} dx' = 1 - e^{-\mu x} = z$$

• So:

$$x = -\frac{1}{\mu}\ln(1-z)$$

## Nonuniform distribution for decay example

 We can write the probability distribution for the decay example as

$$P(t)dt = 2^{-t/\tau} \frac{\ln 2}{\tau} dt = e^{-t \ln 2/\tau} \frac{\ln 2}{\tau}$$

• So:

$$x = -\frac{\tau}{\ln 2} \ln(1 - z)$$

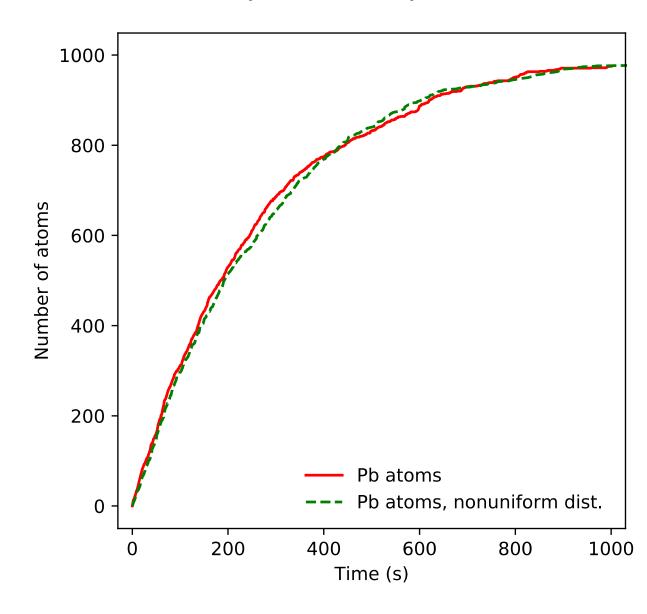
### Nonuniform distribution for decay example

 We can write the probability distribution for the decay example as

$$P(t)dt = 2^{-t/\tau} \frac{\ln 2}{\tau} dt = e^{-t \ln 2/\tau} \frac{\ln 2}{\tau}$$

• So:

$$x = -\frac{\tau}{\ln 2} \ln(1 - z)$$



#### Gaussian random numbers

• In many cases we would like to draw numbers from a Gaussian (i.e., normal) distribution:

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{x^2}{2\sigma^2}\right)$$

Let's try the transformation method:

$$\frac{1}{\sqrt{2\pi\sigma^2}} \int_{-\infty}^x \exp\left(-\frac{x^2}{2\sigma^2}\right) dx = z$$

The solution to this integral and the resulting equation is complicated

### Gaussian random numbers

 Trick: consider two random numbers x and y, both drawn from Gaussian distribution with the same standard deviation

• Probability that point with position (x,y) falls in some element dxdy

on xy plane is:

$$p(x)dx \times (y)dy = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{x^2}{2\sigma^2}\right) dx \times \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{y^2}{2\sigma^2}\right) dy$$
$$= \frac{1}{2\pi\sigma^2} \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right) dxdy$$

Now convert to polar coordinates:

$$p(r,\theta)drd\theta = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{r^2}{2\sigma^2}\right) r dr d\theta = \frac{r}{\sigma^2} \exp\left(-\frac{r^2}{2\sigma^2}\right) dr \frac{d\theta}{2\pi}$$

### 2D transformation method

$$p(r)dr \times p(\theta)d\theta = \frac{r}{\sigma^2} \exp\left(-\frac{r^2}{2\sigma^2}\right) dr \frac{d\theta}{2\pi}$$

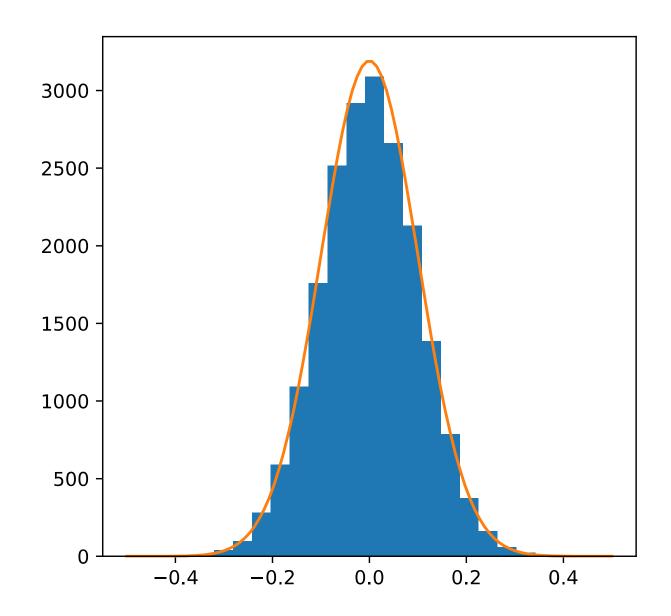
- The point in polar coordinates will have the same distribution as the original point in cartesian (x,y)
  - Solving in polar coordinates and transforming back to Cartesian gives us two random points from a Gaussian distribution
- $\theta$  part is just a uniform distribution:  $p(\theta) = 1/2\pi$
- Radial part can be treated with transformation method:

$$\frac{1}{\sigma^2} \int_0^r \exp\left(-\frac{r'^2}{2\sigma^2}\right) r' dr' = 1 - \exp\left(-\frac{r^2}{2\sigma^2}\right) = z$$

• So:  $r = \sqrt{-2\sigma^2 \ln(1-z)}$ 

• And random numbers are:  $x = r \cos \theta$ ,  $y = r \sin \theta$ 

### Random numbers from Gaussian distribution

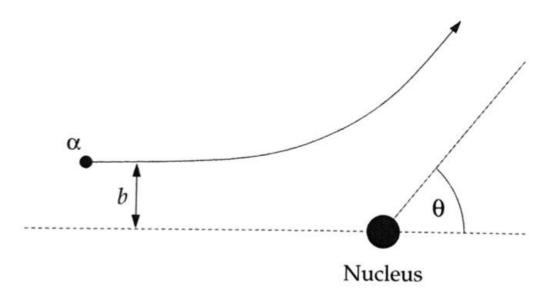


### Example: Rutherford scattering

•  $\alpha$  particles (helium nuclei) scatter when they pass close to an atom with angle:

$$\tan\left(\frac{\theta}{2}\right) = \frac{Ze^2}{2\pi\epsilon_0 Eb}$$

- $\it E$  is the kinetic energy of the  $\it lpha$  particle,  $\it b$  is the impact parameter
- Consider Gaussian beam of particles with  $\sigma=a_0/100$  and E=7.7MeV fired at a gold atom
- How many "bounce back" (scattering angle > 90 degrees)?  $b \leq \frac{Ze^2}{2\pi\epsilon_0 E}$



#### After class tasks

• Homework 4 due Nov. 5, 2025

- Readings
  - Newman Sec. 10.1
  - Pang Sec. 2.5
  - Garcia Sec. 11.2