PHY604 Lecture 20

November 4, 2025

Today's lecture: Random numbers and Monte Carlo integration

Gaussian random numbers

Monte Carlo integration

Nonuniform distributions

- We can also select random numbers from a distribution that is not constant over the range
 - I.e., all numbers are not selected with equal probability
- Consider the radioactive decay example:
 - Probability of decay in time interval dt is:

$$p(t) = 1 - 2^{-dt/\tau} = 1 - \exp\left(-\frac{dt}{\tau}\ln 2\right) \simeq \frac{\ln 2}{\tau}dt$$

- What is the probability to decay in time window t + dt?
 - Needs to survive without decay until t (probability $2^{-t/\tau}$)
 - Then must decay in dt
 - Total probability is:

$$P(t)dt = 2^{-t/\tau} \frac{\ln 2}{\tau} dt$$

Gaussian random numbers

• In many cases we would like to draw numbers from a Gaussian (i.e., normal) distribution:

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{x^2}{2\sigma^2}\right)$$

• Let's try the transformation method:

$$\frac{1}{\sqrt{2\pi\sigma^2}} \int_{-\infty}^x \exp\left(-\frac{x^2}{2\sigma^2}\right) dx = z$$

The solution to this integral and the resulting equation is complicated

Gaussian random numbers

 Trick: consider two random numbers x and y, both drawn from Gaussian distribution with the same standard deviation

• Probability that point with position (x,y) falls in some element dxdy

on xy plane is:

$$p(x)dx \times (y)dy = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{x^2}{2\sigma^2}\right) dx \times \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{y^2}{2\sigma^2}\right) dy$$
$$= \frac{1}{2\pi\sigma^2} \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right) dxdy$$

Now convert to polar coordinates:

$$p(r,\theta)drd\theta = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{r^2}{2\sigma^2}\right) r dr d\theta = \frac{r}{\sigma^2} \exp\left(-\frac{r^2}{2\sigma^2}\right) dr \frac{d\theta}{2\pi}$$

2D transformation method

$$p(r)dr \times p(\theta)d\theta = \frac{r}{\sigma^2} \exp\left(-\frac{r^2}{2\sigma^2}\right) dr \frac{d\theta}{2\pi}$$

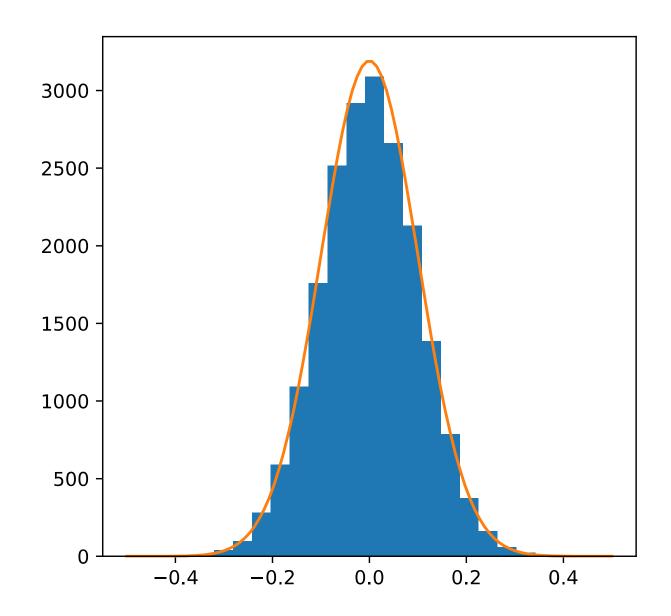
- The point in polar coordinates will have the same distribution as the original point in cartesian (x,y)
 - Solving in polar coordinates and transforming back to Cartesian gives us two random points from a Gaussian distribution
- θ part is just a uniform distribution: $p(\theta) = 1/2\pi$
- Radial part can be treated with transformation method:

$$\frac{1}{\sigma^2} \int_0^r \exp\left(-\frac{r'^2}{2\sigma^2}\right) r' dr' = 1 - \exp\left(-\frac{r^2}{2\sigma^2}\right) = z$$

• So: $r = \sqrt{-2\sigma^2 \ln(1-z)}$

• And random numbers are: $x = r \cos \theta$, $y = r \sin \theta$

Random numbers from Gaussian distribution

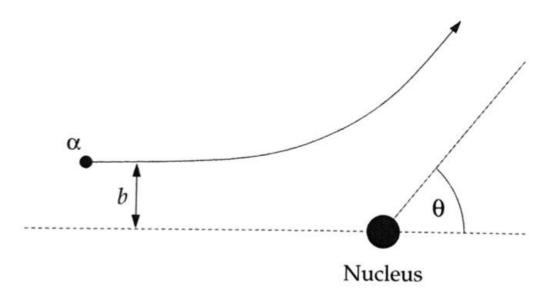


Example: Rutherford scattering

• α particles (helium nuclei) scatter when they pass close to an atom with angle:

$$\tan\left(\frac{\theta}{2}\right) = \frac{Ze^2}{2\pi\epsilon_0 Eb}$$

- $\it E$ is the kinetic energy of the $\it lpha$ particle, $\it b$ is the impact parameter
- Consider Gaussian beam of particles with $\sigma=a_0/100$ and E=7.7MeV fired at a gold atom
- How many "bounce back" (scattering angle > 90 degrees)? $b \leq \frac{Ze^2}{2\pi\epsilon_0 E}$



Analytic solution to Rutherford scattering

 The impact parameter (distance from gold atom) are radially distributed:

$$p(r) = \frac{r}{\sigma^2} \exp\left(-\frac{r^2}{2\sigma^2}\right)$$

Thus, the probability of scattering by more that 90 degrees is:

$$\frac{1}{\sigma^2} \int_0^b \exp\left(-\frac{r'^2}{2\sigma^2}\right) r' dr' = 1 - \exp\left(-\frac{b^2}{2\sigma^2}\right) = 1 - \exp\left(-\frac{Z^2 e^4}{8\pi^2 \epsilon_0^2 \sigma^2 E^2}\right)$$

- Exact solution: 1557 particles backscattered out of 1,000,000
 - In good agreement with our stochastic calculation

Analytic solution to Rutherford scattering

 The impact parameter (distance from gold atom) are radially distributed:

$$p(r) = \frac{r}{\sigma^2} \exp\left(-\frac{r^2}{2\sigma^2}\right)$$

Thus, the probability of scattering by more that 90 degrees is:

$$\frac{1}{\sigma^2} \int_0^b \exp\left(-\frac{r'^2}{2\sigma^2}\right) r' dr' = 1 - \exp\left(-\frac{b^2}{2\sigma^2}\right) = 1 - \exp\left(-\frac{Z^2 e^4}{8\pi^2 \epsilon_0^2 \sigma^2 E^2}\right)$$

- Exact solution: 1557 particles backscattered out of 1,000,000
 - In good agreement with our stochastic calculation

Today's lecture: Random numbers and Monte Carlo integration

Gaussian random numbers

Monte Carlo integration

Monte Carlo integration

• Let's come back to the Rutherford scattering example

 One way to look at: Our stochastic solution was in good agreement with the exact one

 Another way to look at it: Using a random process, we obtained an approximate solution to the integral:

$$\frac{1}{\sigma^2} \int_0^b \exp\left(-\frac{r'^2}{2\sigma^2}\right) r' dr'$$

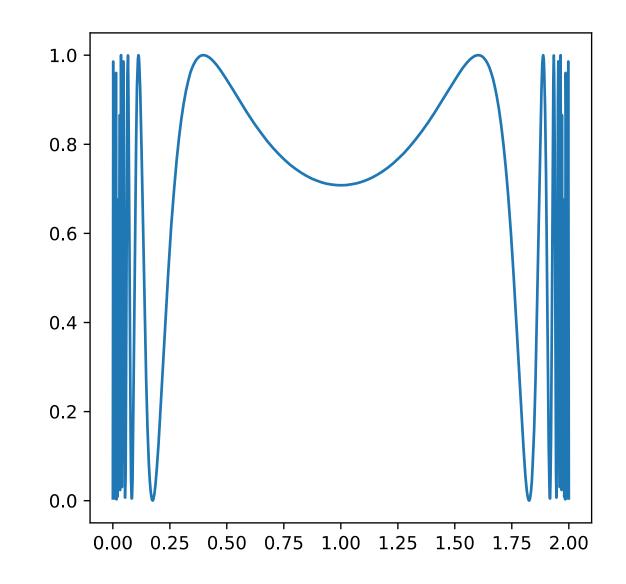
 Monte Carlo integration: Approximate the value of an integral (which has an exact solution) with random calculations

Example: Challenging integral with exact solution in principle

• Consider the function:

$$I = \int_0^2 \sin^2 \left[\frac{1}{x(2-x)} \right] dx$$

- Finite over the range, must be less than 2x1=2
- Oscillates infinitely fast at the edges so very challenging for numerical integration

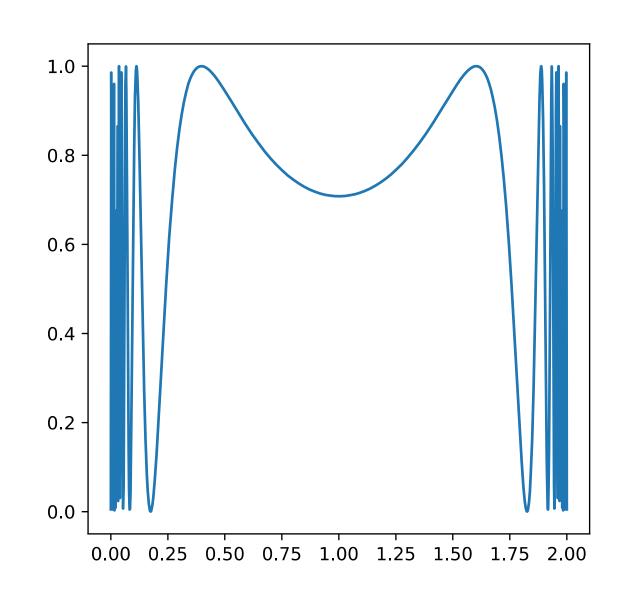


Monte Carlo Integration with random sampling

$$I = \int_0^2 \sin^2 \left[\frac{1}{x(2-x)} \right] dx$$

- Choose *N* random samples in the bounding rectangle with area *A*=2
- Check which lie under the curve
- Probability that point lies under the curve is p = I/A
- Fraction of points under the curve k/N should be approximately p
- So:

$$I \simeq \frac{kA}{N}$$



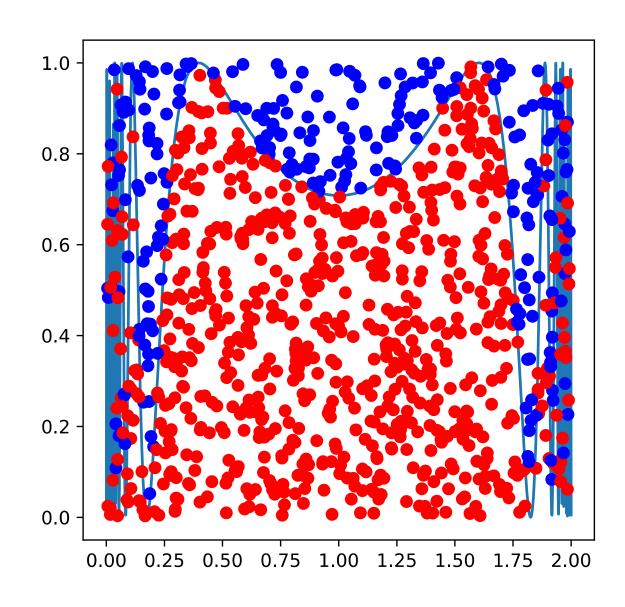
Errors in Monte Carlo method

- Normally gives worse results than, e.g., Simpson's or trapezoid rule for simple integrals
- Probability random point falls below the curve is *p*, above is 1-*p*
- Probability that *k* points fall below the curve is

$$p^k(1-p)^{N-k}$$

There are N choose k ways to choose k
points, so the probability to get k
points under the curve is

$$P(k) = \binom{N}{k} p^k (1-p)^{N-k}$$



Errors in Monte Carlo method

$$P(k) = \binom{N}{k} p^k (1-p)^{N-k}$$

• This is a binomial distribution, which has variance:

$$\operatorname{var} k \equiv \langle k^2 \rangle - \langle k \rangle^2 = Np(1-p) = N\frac{I}{A} \left(1 - \frac{I}{A}\right)$$

• And standard deviation is: $\sqrt{\mathrm{var}k}$

• So, the error on the integral *I* is:

$$I_{\mathrm{error}} = \sqrt{\mathrm{var}k} \frac{A}{N} = \frac{\sqrt{I(A-I)}}{\sqrt{N}} \propto \frac{1}{\sqrt{N}}$$

Compare MC errors to quadrature rules

$$I_{\mathrm{error}} = \sqrt{\mathrm{var}k} \frac{A}{N} = \frac{\sqrt{I(A-I)}}{\sqrt{N}} \propto \frac{1}{\sqrt{N}}$$

- Errors for MC integration decrease like $N^{-1/2}$
- For the trapezoid rule, error was on the order of Δx^2 , where Δx is the width of the integration slice:

$$\Delta x = \frac{b - a}{N}$$

- So, error decreases like N⁻² much better than MC!
- For Simpson's rule, it decreases like N⁻⁴
- Monte Carlo methods should be used only when other methods break down!

Can we do better? Mean value method

- Consider general integration problem: $I = \int_a^b f(x) dx$
- Average value of f in the range between b and a is:

$$\langle f \rangle \equiv \frac{1}{b-a} \int_{a}^{b} f(x) dx = \frac{I}{b-a}$$

• So, we can get the integral by finding the average of *f*:

$$I = (b - a)\langle f \rangle$$

- We can estimate the average by measuring f(x) at N points chosen at random between a and b
- Then: $I \simeq \frac{(b-a)}{N} \sum_{i=1}^N f(x_i)$

Errors of the mean value method

- Can estimate the error using the general theorem: The variance on the sum of N independent random numbers is the sum of the variances of the individual numbers
 - Holds no matter what the distribution is
- So:

$$var f \equiv \langle f^2 \rangle - \langle f \rangle^2$$

• Where:

$$\langle f \rangle = \frac{1}{N} \sum_{i=1}^{N} f(x_i), \quad \langle f^2 \rangle = \frac{1}{N} \sum_{i=1}^{N} [f(x_i)]^2$$

• And:

$$I_{\text{error}} = \frac{b-a}{N} \sqrt{N \text{var} f} = (b-a) \frac{\sqrt{\text{var} f}}{\sqrt{N}}$$

Still N^{-1/2}, but prefactor turns out to be smaller

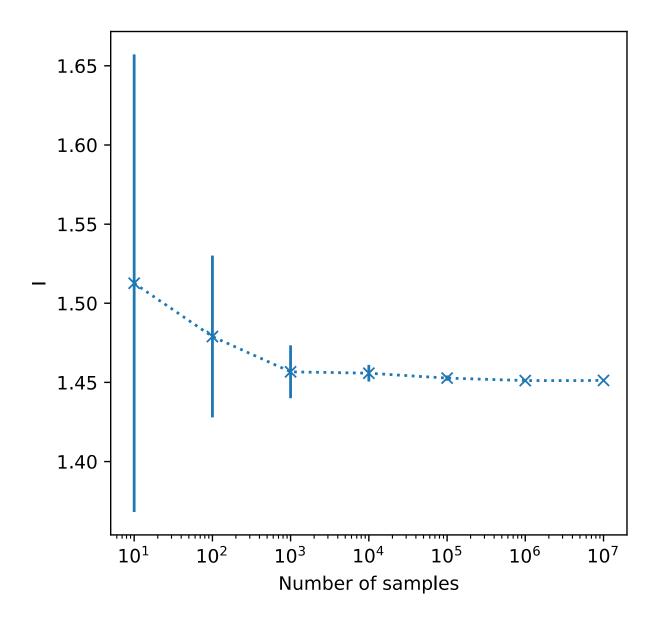
Mean value method

• Equation:

$$I = \int_0^2 \sin^2 \left[\frac{1}{x(2-x)} \right] dx$$

• Errors:

$$I_{\text{error}} = (b - a) \frac{\sqrt{\text{var}f}}{\sqrt{N}}$$



When to use Monte Carlo integration? Multi-dimensional integrals

• If we have an integral over many dimensions (> 4), grid sizes get very large, scale as N^d

Monte Carlo integration can give reasonable results with many fewer points

- Straightforward to generalize methods discussed to more dimensions
 - E.g., mean value method

$$I \simeq \frac{V}{N} \sum_{i=1}^{N} f(\mathbf{r}_i)$$

Example: Volume of hypersphere

Consider a hypersphere of unit radius in all dimensions:

$$f(\mathbf{r}) = \begin{cases} 1 & \text{if } \mathbf{r} \le 1\\ 0 & \text{otherwise} \end{cases}$$

- Let's use the mean value method to compute the integral of a 10dimensional hypersphere
 - Trapezoid rule with 100 samples per dimension: 10²⁰ grid points!

• We can compare to the exact solution:

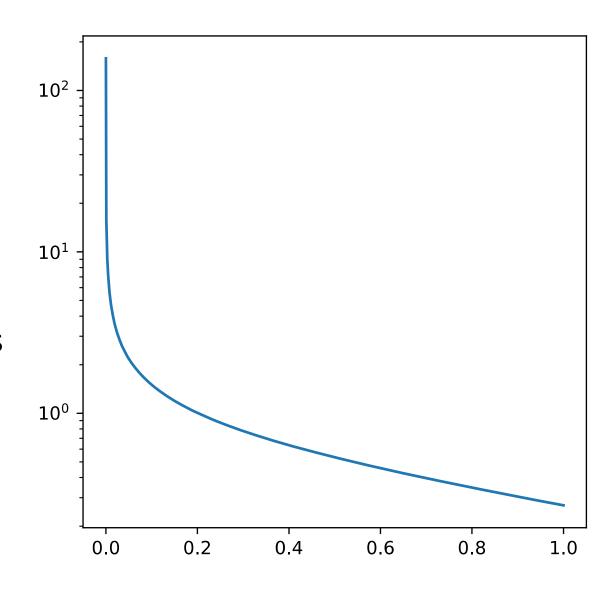
$$V_d(r) = \frac{\pi^{d/2}}{\Gamma\left(\frac{d}{2} + 1\right)} r^d$$

Monte Carlo integration with divergences

- Monte Carlo integration fails for some pathological functions, e.g., those that contain divergences
- Consider:

$$I = \int_0^1 \frac{x^{-1/2}}{e^x + 1} dx$$

- Function diverges at x=0, but integral is finite
- E.g., for mean value method, will occasionally get a very large contribution
 - Estimate varies widely between runs



Importance sampling

- Can get around these issues by drawing points nonuniformly
- For a general function g(x) can define a weighted average:

$$\langle g \rangle_w = \frac{\int_a^b w(x)g(x)dx}{\int_a^b w(x)dx}$$

- w(x) is a weighting function
- If we want to solve a general 1D integral: $I = \int_a^o f(x) dx$
- We set g(x)=f(x)/w(x):

$$\left\langle \frac{f(x)}{w(x)} \right\rangle_{w} = \frac{\int_{a}^{b} f(x) dx}{\int_{a}^{b} w(x) dx} = \frac{I}{\int_{a}^{b} w(x) dx}$$

Importance sampling, 1D integral

• Thus, we have:

$$I = \left\langle \frac{f(x)}{w(x)} \right\rangle_w \int_a^b w(x) dx$$

- Equivalent to the mean value method, but from a weighted average
- How do we calculate the weighted average?
- Define probability density function as normalized w(x)

$$p(x) = \frac{w(x)}{\int_a^b w(x)dx}$$

• So

$$\langle g \rangle_w = \int_a^b p(x)g(x)dx$$

Importance sampling, 1D integral

• Now let's sample N random points in the interval with the distribution p(x). Then:

$$\sum_{i=1}^{N} g(x_i) \simeq \int_{a}^{b} Np(x)g(x)dx$$

• So:

$$\langle g \rangle_w = \int_a^b p(x)g(x)dx \simeq \frac{1}{N} \sum_{i=1}^N g(x_i)$$

• Where x_i are chosen from the distribution:

$$p(x) = \frac{w(x)}{\int_a^b w(x)dx}$$

Importance sampling, 1D integral

Putting everything together:

$$I \simeq \frac{1}{N} \sum_{i=1}^{N} \frac{f(x_i)}{w(x_i)} \int_a^b w(x) dx$$

- Generalization of mean value method, which is where w(x)=1
- w(x) can be any function that we choose
 - Can be chosen to remove pathologies in the integrand

However, now we need to draw from a nonuniform distribution

Error on importance sampling method

• Error is given by:

$$I_{\text{error}} = \frac{\sqrt{\text{var}_w(f/w)}}{\sqrt{N}} \int_a^b w(x) dx$$

• Where:

$$var_w g = \langle g^2 \rangle_w - \langle g \rangle_w^2$$

• Still goes like N^{-1/2}

Importance sampling for pathological function

• Let's return to the integral:
$$I = \int_0^1 \frac{x^{-1/2}}{e^x + 1} dx$$

- Choose: $w(x) = x^{-1/2}$
- Then: $f(x)/w(x) = (e^x + 1)^{-1}$
 - Finite and well-behaved over the range
- Probability distribution is:

$$p(x) = \frac{x^{-1/2}}{\int_0^1 x^{-1/2} dx} = \frac{1}{2\sqrt{x}}$$

• So, using the transformation method:

$$\int_0^x \frac{1}{2\sqrt{x'}} dx' = \sqrt{x} = z \implies x = z^2$$

Importance sampling for pathological function

• So finally, we need to sample:

$$I \simeq \frac{1}{N} \sum_{i=1}^{N} \frac{f(x_i)}{w(x_i)} \int_a^b w(x) dx = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{e^{x_i} + 1} \int_0^1 \frac{1}{\sqrt{x}} dx = \frac{1}{N} \sum_{i=1}^{N} \frac{2}{e^{x_i} + 1}$$

• With the distribution $x = z^2$

After class tasks

- Homework 3 will be graded soon
- Homework 4 due tomorrow Nov. 5
- Homework 5 posted soon

- Readings:
 - Newman Sec. 10.2