PHY604 Lecture 20

November 4, 2025



Today’s lecture:
Random numbers and Monte Carlo integration

e Gaussian random numbers

* Monte Carlo integration



Nonuniform distributions

* We can also select random numbers from a distribution that is not
constant over the range
* |.e., all numbers are not selected with equal probability

* Consider the radioactive decay example:
* Probability of decay in time interval dt is:

dt In 2
p(t) =1—2"7" =1 —exp (—— 1112) ~ 2t

T T
 What is the probability to decay in time window t + dt?
* Needs to survive without decay until t (probability 2-t/7)
* Then must decay in dt

* Total probability is:

In 2
P(t)dt = 27t/7 gt

T



Gaussian random numbers

* In many cases we would like to draw numbers from a Gaussian (i.e.,
normal) distribution:

(z) 1 T2
T) = exp | ——=
P 2102 P\ 202

* Let’s try the transformation method'

2
exp L dr = z
V2102 202

* The solution to this integral and the resulting equation is complicated




Gaussian random numbers

* Trick: consider two random numbers x and y, both drawn from
Gaussian distribution with the same standard deviation

* Probability that point with position (x,y) falls in some element dxdy

on xy plalle IS:
(x)dx x (y)dy = ! & o dx X ! ¢ v d
X )ax X X X

1 2 2
= exp (_:1: Y )dwdy

- 9702 202

* Now convert to polar coordinates:

1 2 2 d6
p(r, 8)drdd = exXp <—T—> rdrdf = _ exp (—;—2> dr —

2w o




2D transformation method
p(r)dr x p(0)df = % exp ( 202) d?“d—e

o 27

* The point in polar coordinates will have the same distribution as the
original point in cartesian (x,y)

* Solving in polar coordinates and transforming back to Cartesian gives us two
random points from a Gaussian distribution

e @part is just a uniform distribution: p(6) = 1/27
* Radial part can be treated with transformation method:

2
—/ exp( )T’dr’zl—exp<—2—2>:z
o

" 50: r=+/—202In(1 — 2)

* And random numbers are: = =rcosfl, y =rsinf



Random numbers from Gaussian distribution

3000 A

2500 A

2000 A

1500 -

1000 A

500 -




Example: Rutherford scattering

e o particles (helium nuclei) scatter when they
pass close to an atom with angle:

X 0 Ze?
an | — | =
2 2meg b /

* Fis the kinetic energy of the « particle, b is

the impact parameter e £
____________ bI 9\
* Consider Gaussian beam of particleswith @t
0=0,/100 and E=7.7MeV fired at a gold atom Nucleus

* How many “bounce back” (scattering angle >
90 degrees)? 7 02

b <
— 2megB




Analytic solution to Rutherford scattering

* The impact parameter (distance from gold atom) are radially
distributed:
=2 -
r)=—exp|——=
b g2 P 202

* Thus, the probability of scattering by more that 90 degrees is:

1 /b 7“/2 o . b2 . Z2€4
— | exp| — rdr =1—exp|——=—= ] =1—exp| —
a2 J, P 72,2 P 7252 P 8m2eio? F?

* Exact solution: 1557 particles backscattered out of 1,000,000
* In good agreement with our stochastic calculation
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Today’s lecture:
Random numbers and Monte Carlo integration

* Monte Carlo integration



Monte Carlo integration

* Let’s come back to the Rutherford scattering example

* One way to look at: Our stochastic solution was in good agreement
with the exact one

 Another way to look at it: Using a random process, we obtained an
approximate solution to the integral:

1 b ,’,,/2 ,
Bl ) dy
0_2 /O €EXP ( 20_2> T ar

* Monte Carlo integration: Approximate the value of an integral (which
has an exact solution) with random calculations



Example: Challenging integral with exact

solution in principle

e Consider the function:

I = /O2sin2 L(zl—x)} dz

* Finite over the range, must be less
than 2x1=2

 Oscillates infinitely fast at the edges
so very challenging for numerical
Integration
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Monte Carlo Integration with random sampling

2 T 1
I :/ sin? } dx
0 x(2 —x)

* Choose N random samples in the
bounding rectangle with area A=2

* Check which lie under the curve

* Probability that point lies under the
curveisp=1/A

* Fraction of points under the curve k/N
should be approximately p

* So: N%

N
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Errors in Monte Carlo method

* Normally gives worse results than, e.g.,

Simpson’s or trapezoid rule for simple 10-
integrals

* Probability random point falls below 084 #
the curve is p, above is 1-p

* Probability that k points fall below the 0.6 -

curve is i Nk
p (1 B p) 0.4 A
* There are N choose k ways to choose k
points, so the probability to get k 0.2 -

points under the curve is
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P(k) = @f) (1 )N o-



Errors in Monte Carlo method
N _
P = () -
e This is a binomial distribution, which has variance:

vark = (k%) — (k) = Np(1 — p) = N% (1 — %)

e And standard deviation is: vV vark

* So, the error on the integral / is:

A JI(A-T)
Ierror — ark— = — X
\VAY N <

2=



Compare MC errors to quadrature rules

A I(A—1 1
lerror = Vvark— = \/ ( ) X ——

N VN VN
* Errors for MC integration decrease like N-1/2

* For the trapezoid rule, error was on the order of Ax?, where Ax is the
width of the integration slice:

b—a
N
* So, error decreases like N2 much better than MC!

* For Simpson’s rule, it decreases like N

Ax

 Monte Carlo methods should be used only when other methods
break down!



Can we do better? Mean value method

* Consider general integration problem: [ :/ f(x)dx
a

e Average value of fin the range between b and a is:

b—a/f b—a

* So, we can get the integral by finding the average of f:

I=(b-a)f)

* We can estimate the average by measuring f(x) at N points chosen at
random between g and b

N

* Then: _(b—a) |
I~ N Zf(CCZ)




Errors of the mean value method

* Can estimate the error using the general theorem: The variance on
the sum of N independent random numbers is the sum of the
variances of the individual numbers

 Holds no matter what the distribution is

>0 varf = (f%) = (f)’
* Where: 1 N , 1 N ,
(f) = D f@), () =5 D _[f(x)]
1=1 1=1
Still NY/2, but prefactor

And turns qut to be smaller

* ANQ:
b—a




Mean value method
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2
1 60 1
I:/ Sil’l2|: ]dx -
0 (2 —x)
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When to use Monte Carlo integration?
Multi-dimensional integrals

* If we have an integral over many dimensions (> 4), grid sizes get very
large, scale as N¢

* Monte Carlo integration can give reasonable results with many fewer
points

 Straightforward to generalize methods discussed to more dimensions
e E.g., mean value method

v
I:NZf(r?;)

1=1



Example: Volume of hypersphere

* Consider a hypersphere of unit radius in all dimensions:
(
1 ifr<1
fr) =« .
\O otherwise

* Let’s use the mean value method to compute the integral of a 10-
dimensional hypersphere
* Trapezoid rule with 100 samples per dimension: 102° grid points!

* We can compare to the exact solution:

S

P(g+1)r

Va(r) =



Monte Carlo integration with divergences

* Monte Carlo integration fails for some
pathological functions, e.g., those that 102
contain divergences '

e Consider: 1
1 .—1/2 -
I = / dCU 10! -
0 et —|— ]_
* Function diverges at x=0, but integral is
finite

. 100 -
* E.g., for mean value method, will '

occasionally get a very large
contribution

i fac Wi f 2 4 |
e Estimate varies widely between runs 0.0 0 0 0.6

0.8

1.0




Importance sampling

e Can get around these issues by drawing points nonuniformly
* For a general function g(x) can define a weighted average:

(g = fa w(x)g(x)dx

f; w(x)dx
* w(x) is a weighting function

b
* If we want to solve a general 1D integral: [ = / f(x)dx

a

* We set g(x)=f(x)/w(x):

<f(:v)> o f@de T
w(z) / f;w(x)dac f;w(x)dx




Importance sampling, 1D integral

* Thus, we have: 7= < f(z) > /b w(x)dx

w(z)

e Equivalent to the mean value method, but from a weighted average
* How do we calculate the weighted average?

* Define probability density function as normalized w(x)
w(z)

f; w(x)dr

p(z) =

* So



Importance sampling, 1D integral

* Now let’s sample N random points in the interval with the distribution
p(x). Then:

Zg(azi):/ Np(x)g(z)dx

* So:




Importance sampling, 1D integral

* Putting everything together:
1 « b
~ o E / ()dx

* Generalization of mean value method, which is where w(x)=1

* w(x) can be any function that we choose
e Can be chosen to remove pathologies in the integrand

* However, now we need to draw from a nonuniform distribution



Error on importance sampling method

* Error is given by:

_ yvary(f/w) [°
Terror = N /a w(r)dz

e Where:

varyg = (9%)w — (9)u

* Still goes like N-1/2



Importance sampling for pathological function

1 .—1/2
* Let’s return to the integral: [ = / dx
0 et + 1

e Choose: w(z) =z~ /2

* Then: f(z)/w(z) = (" +1)~"
* Finite and well-behaved over the range

* Probability distribution is:
r—1/2 1

p €T ) — = —
() fol c—1/2dy 2V

* So, using the transformation method:

S |
de' = \V/r =2 — 1x=2°
/02\/? v




Importance sampling for pathological
function

* So finally, we need to sample:

N b N 1 N
1 z- 1 1 1 9
N —~ w(x;) J, N — e +1 0 VI N ~ e¥i +1

* With the distribution x = z2



After class tasks

* Homework 3 will be graded soon

* Homework 4 due tomorrow Nov. 5

* Homework 5 posted soon

* Readings:
* Newman Sec. 10.2
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