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Today’s lecture: 
Random numbers and Monte Carlo integration

• Gaussian random numbers

• Monte Carlo integration



Nonuniform distributions

• We can also select random numbers from a distribution that is not 
constant over the range
• I.e., all numbers are not selected with equal probability

• Consider the radioactive decay example:
• Probability of decay in time interval dt is:

• What is the probability to decay in time window t + dt?
• Needs to survive without decay until t (probability 2-t/)

• Then must decay in dt

• Total probability is:



Gaussian random numbers

• In many cases we would like to draw numbers from a Gaussian (i.e., 
normal) distribution:

• Let’s try the transformation method:

• The solution to this integral and the resulting equation is complicated



Gaussian random numbers

• Trick: consider two random numbers x and y, both drawn from 
Gaussian distribution with the same standard deviation  

• Probability that point with position (x,y) falls in some element dxdy
on xy plane is:

• Now convert to polar coordinates:



2D transformation method 

• The point in polar coordinates will have the same distribution as the 
original point in cartesian (x,y)
• Solving in polar coordinates and transforming back to Cartesian gives us two 

random points from a Gaussian distribution

•  part is just a uniform distribution:

• Radial part can be treated with transformation method:

• So:

• And random numbers are:



Random numbers from Gaussian distribution



Example: Rutherford scattering

•  particles (helium nuclei) scatter when they 
pass close to an atom with angle:

• E is the kinetic energy of the  particle, b is 
the impact parameter

• Consider Gaussian beam of particles with 
=a0/100 and E=7.7MeV fired at a gold atom

• How many “bounce back” (scattering angle > 
90 degrees)?



Analytic solution to Rutherford scattering 

• The impact parameter (distance from gold atom) are radially 
distributed:

• Thus, the probability of scattering by more that 90 degrees is:

• Exact solution: 1557 particles backscattered out of 1,000,000
• In good agreement with our stochastic calculation
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Monte Carlo integration

• Let’s come back to the Rutherford scattering example

• One way to look at: Our stochastic solution was in good agreement 
with the exact one

• Another way to look at it: Using a random process, we obtained an 
approximate solution to the integral:

• Monte Carlo integration: Approximate the value of an integral (which 
has an exact solution) with random calculations



Example: Challenging integral with exact 
solution in principle

• Consider the function:

• Finite over the range, must be less 
than 2x1=2

• Oscillates infinitely fast at the edges 
so very challenging for numerical 
integration



Monte Carlo Integration with random sampling

• Choose N random samples in the 
bounding rectangle with area A=2

• Check which lie under the curve

• Probability that point lies under the 
curve is p = I/A

• Fraction of points under the curve k/N
should be approximately p

• So:



Errors in Monte Carlo method
• Normally gives worse results than, e.g., 

Simpson’s or trapezoid rule for simple 
integrals

• Probability random point falls below 
the curve is p, above is 1-p

• Probability that k points fall below the 
curve is 

• There are N choose k ways to choose k
points,  so the probability to get k
points under the curve is



Errors in Monte Carlo method

• This is a binomial distribution, which has variance:

• And standard deviation is:

• So, the error on the integral I is:



Compare MC errors to quadrature rules

• Errors for MC integration decrease like N-1/2

• For the trapezoid rule, error was on the order of x2, where x is the 
width of the integration slice:

• So, error decreases like N-2 much better than MC! 

• For Simpson’s rule, it decreases like N-4

• Monte Carlo methods should be used only when other methods 
break down!



Can we do better? Mean value method

• Consider general integration problem:

• Average value of f in the range between b and a is:

• So, we can get the integral by finding the average of f:

• We can estimate the average by measuring f(x) at N points chosen at 
random between a and b

• Then:



Errors of the mean value method

• Can estimate the error using the general theorem: The variance on 
the sum of N independent random numbers is the sum of the 
variances of the individual numbers
• Holds no matter what the distribution is

• So:

• Where:

• And:

Still N-1/2, but prefactor 
turns out to be smaller



Mean value method

• Equation:

• Errors:



When to use Monte Carlo integration? 
Multi-dimensional integrals

• If we have an integral over many dimensions (> 4), grid sizes get very 
large, scale as Nd

• Monte Carlo integration can give reasonable results with many fewer 
points

• Straightforward to generalize methods discussed to more dimensions
• E.g., mean value method



Example: Volume of hypersphere

• Consider a hypersphere of unit radius in all dimensions:

• Let’s use the mean value method to compute the integral of a 10-
dimensional hypersphere
• Trapezoid rule with 100 samples per dimension: 1020 grid points!

• We can compare to the exact solution:



Monte Carlo integration with divergences

• Monte Carlo integration fails for some 
pathological functions, e.g., those that 
contain divergences

• Consider:

• Function diverges at x=0, but integral is 
finite

• E.g., for mean value method, will 
occasionally get a very large 
contribution
• Estimate varies widely between runs



Importance sampling

• Can get around these issues by drawing points nonuniformly

• For a general function g(x) can define a weighted average:

• w(x) is a weighting function 

• If we want to solve a general 1D integral:

• We set g(x)=f(x)/w(x):



Importance sampling, 1D integral

• Thus, we have:

• Equivalent to the mean value method, but from a weighted average

• How do we calculate the weighted average?

• Define probability density function as normalized w(x)

• So



Importance sampling, 1D integral

• Now let’s sample N random points in the interval with the distribution 
p(x). Then:

• So:

• Where xi are chosen from the distribution:



Importance sampling, 1D integral

• Putting everything together:

• Generalization of mean value method, which is where w(x)=1

• w(x) can be any function that we choose
• Can be chosen to remove pathologies in the integrand

• However, now we need to draw from a nonuniform distribution 



Error on importance sampling method

• Error is given by:

• Where:

• Still goes like N-1/2



Importance sampling for pathological function

• Let’s return to the integral: 

• Choose:

• Then:
• Finite and well-behaved over the range

• Probability distribution is:

• So, using the transformation method:



Importance sampling for pathological 
function

• So finally, we need to sample:

• With the distribution x = z2



After class tasks

• Homework 3 will be graded soon

• Homework 4 due tomorrow Nov. 5

• Homework 5 posted soon

• Readings:
• Newman Sec. 10.2
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