PHY604 Lecture 21

November 6, 2025

Today's lecture: Monte Carlo integration and simulation

Monte Carlo integration with divergences

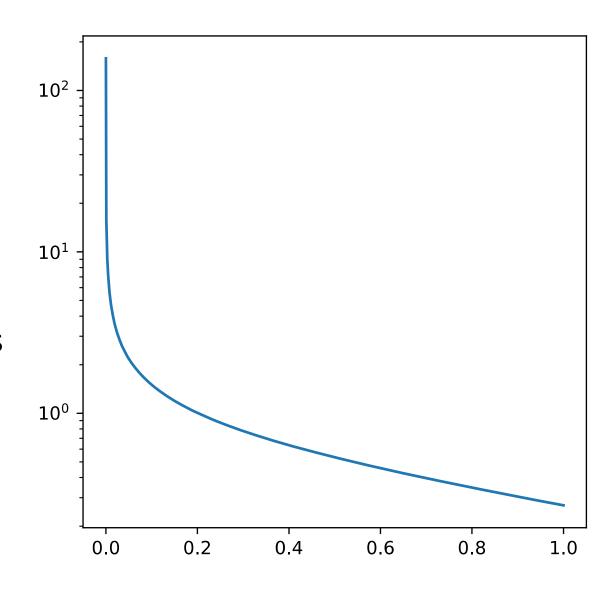
Monte Carlo simulation

Monte Carlo integration with divergences

- Monte Carlo integration fails for some pathological functions, e.g., those that contain divergences
- Consider:

$$I = \int_0^1 \frac{x^{-1/2}}{e^x + 1} dx$$

- Function diverges at x=0, but integral is finite
- E.g., for mean value method, will occasionally get a very large contribution
 - Estimate varies widely between runs



Importance sampling

- Can get around these issues by drawing points nonuniformly
- For a general function g(x) can define a weighted average:

$$\langle g \rangle_w = \frac{\int_a^b w(x)g(x)dx}{\int_a^b w(x)dx}$$

- w(x) is a weighting function
- If we want to solve a general 1D integral: $I = \int_a^o f(x) dx$
- We set g(x)=f(x)/w(x):

$$\left\langle \frac{f(x)}{w(x)} \right\rangle_{w} = \frac{\int_{a}^{b} f(x) dx}{\int_{a}^{b} w(x) dx} = \frac{I}{\int_{a}^{b} w(x) dx}$$

Importance sampling, 1D integral

• Thus, we have:

$$I = \left\langle \frac{f(x)}{w(x)} \right\rangle_w \int_a^b w(x) dx$$

- Equivalent to the mean value method, but from a weighted average
- How do we calculate the weighted average?
- Define probability density function as normalized w(x)

$$p(x) = \frac{w(x)}{\int_a^b w(x)dx}$$

• So

$$\langle g \rangle_w = \int_a^b p(x)g(x)dx$$

Importance sampling, 1D integral

• Now let's sample N random points in the interval with the distribution p(x). Then:

$$\sum_{i=1}^{N} g(x_i) \simeq \int_{a}^{b} Np(x)g(x)dx$$

• So:

$$\langle g \rangle_w = \int_a^b p(x)g(x)dx \simeq \frac{1}{N} \sum_{i=1}^N g(x_i)$$

• Where x_i are chosen from the distribution:

$$p(x) = \frac{w(x)}{\int_a^b w(x)dx}$$

Importance sampling, 1D integral

Putting everything together:

$$I \simeq \frac{1}{N} \sum_{i=1}^{N} \frac{f(x_i)}{w(x_i)} \int_a^b w(x) dx$$

- Generalization of mean value method, which is where w(x)=1
- w(x) can be any function that we choose
 - Can be chosen to remove pathologies in the integrand

However, now we need to draw from a nonuniform distribution

Error on importance sampling method

• Error is given by:

$$I_{\text{error}} = \frac{\sqrt{\text{var}_w(f/w)}}{\sqrt{N}} \int_a^b w(x) dx$$

• Where:

$$var_w g = \langle g^2 \rangle_w - \langle g \rangle_w^2$$

• Still goes like N^{-1/2}

Importance sampling for pathological function

• Let's return to the integral:
$$I = \int_0^1 \frac{x^{-1/2}}{e^x + 1} dx$$

- Choose: $w(x) = x^{-1/2}$
- Then: $f(x)/w(x) = (e^x + 1)^{-1}$
 - Finite and well-behaved over the range
- Probability distribution is:

$$p(x) = \frac{x^{-1/2}}{\int_0^1 x^{-1/2} dx} = \frac{1}{2\sqrt{x}}$$

• So, using the transformation method:

$$\int_0^x \frac{1}{2\sqrt{x'}} dx' = \sqrt{x} = z \implies x = z^2$$

Importance sampling for pathological function

• So finally, we need to sample:

$$I \simeq \frac{1}{N} \sum_{i=1}^{N} \frac{f(x_i)}{w(x_i)} \int_a^b w(x) dx = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{e^{x_i} + 1} \int_0^1 \frac{1}{\sqrt{x}} dx = \frac{1}{N} \sum_{i=1}^{N} \frac{2}{e^{x_i} + 1}$$

• With the distribution $x = z^2$

Today's lecture: Monte Carlo integration and simulation

Monte Carlo integration with divergences

Monte Carlo simulation

Monte Carlo simulation

 Any computer simulation that uses random numbers to simulate physical process

 We saw a few examples already: radioactive decay and Rutherford scattering

- Used in every branch of physics
 - Particularly important in statistical mechanics and many-body physics

Monte Carlo simulation in stat mech

• Fundamental problem in statistical mechanics: Calculate expectation value of quantity of interest in thermal equilibrium

 Don't know the exact state of the system, only probability of occupying state i with energy E_i

$$P(E_i) = \frac{e^{-\beta E_i}}{Z}, \qquad Z = \sum_i e^{-\beta E_i}$$

• Then average value of observable X:

$$\langle X \rangle = \sum_{i} X_{i} P(E_{i})$$

States with large numbers

$$\langle X \rangle = \sum_{i} X_{i} P(E_{i})$$

 Calculating this sum exactly can only be done in a few specific systems (e.g., harmonic oscillator)

Numerically challenging: states are order Avogadro's number in size

ullet E.g., one mole of gas with two states: total number of states is $\,2^{10^{23}}$

Instead, use Monte Carlo approach to evaluate the sum

Monte Carlo approach to expectation values

We could choose N terms in the sum at random to add up:

$$\langle X \rangle \simeq \frac{\sum_{k=1}^N X_k P(E_k)}{\sum_{k=1}^N P(E_k)} \qquad \begin{array}{c} \text{Needed to normalize} \\ \text{the weighted average if} \\ \text{not summing over } \textit{all} \\ \text{states} \end{array}$$

• This would not work well! Boltzmann probability is exponentially small for states $E_i\gg k_BT$

 Usually, most of the states are high energy, only a few contribute significantly

Need to use importance sampling!

Importance sampling for thermal average

- Choose nonuniform distribution to focus on this small set
- Define weighted average over states:

$$\langle g \rangle_w \simeq \frac{\sum_i w_i g_i}{\sum_i w_i}$$

- We choose: $g_i = X_i P(E_i)/w_i$
- So:

$$\left\langle \frac{X_i P(E_i)}{w_i} \right\rangle_w = \frac{\sum_i w_i X_i P(E_i) / w_i}{\sum_i w_i} = \frac{\sum_i X_i P(E_i)}{\sum_i w_i} = \frac{\langle X \rangle}{\sum_i w_i}$$

• Or:

$$\langle X \rangle = \left\langle \frac{X_i P(E_i)}{w_i} \right\rangle_w \sum_i w_i$$

Importance sampling for thermal average

$$\langle X \rangle = \left\langle \frac{X_i P(E_i)}{w_i} \right\rangle_w \sum_i w_i$$

• Evaluate by selecting N states randomly with nonuniform distribution:

$$\langle X \rangle \simeq \frac{1}{N} \sum_{k=1}^{N} \frac{X_k P(E_k)}{w_k} \sum_i w_i$$
 Summed over all states

Summed over N samples

- Still need to choose w_i to bias us towards high-probability samples
 - Also, so that sum over all states i can be evaluated analytically

Weights for importance sampling

- Simple choice: $w_i = P(E_i)$
- Sums to 1 over all by definition
- Then we have:

$$\langle X \rangle \simeq \frac{1}{N} \sum_{k=1}^{N} X_k$$

 Thus, choose N states in proportion to their Boltzmann weights, and average X over them

Markov chain Monte Carlo

• Recall that:
$$P(E_i) = \frac{e^{-\beta E_i}}{Z}, \qquad Z = \sum_i e^{-\beta E_i}$$

- Partition function requires a sum over all states that we are trying to avoid
- Can use a Markov chain to choose states with probability $P(E_i)$ without knowing the partition function:
 - Start with a state i
 - Generate a new state j by making a small change to i
 - Choice of new state is determined probabilistically by a set of transition probabilities T_{ij} that give probability for changing from state i to j
- If we chose T_{ij} correctly, probability of visiting any state on a step of the Markov chain is $P(E_i)$!

Transition probabilities in the MC

• We must end up in some state on every MC step, so:

$$\sum_{j} T_{ij} = 1$$

Choose transition probabilities such that:

$$\frac{T_{ij}}{T_{ji}} = \frac{P(E_j)}{P(E_i)} = \frac{e^{-\beta E_j}/Z}{e^{-\beta E_i}/Z} = e^{-\beta(E_j - E_i)}$$

I.e., choosing particular ratio of the probability to go from i to j, and j
to i

Partition function cancels out!

Transition probabilities in the MC

- If we have correct probability of being in a given state at one step, we will have the correct probability for all later steps
- To see this:
 - Suppose we find a set of T_{ii} 's that satisfy the previous conditions
 - Suppose the probability to be in state i on one particular step is $P(E_i)$
 - Then, probability to be in state *j* on the next step is:

$$\sum_{i} T_{ij} P(E_i) = \sum_{i} T_{ji} P(E_j) = P(E_j) \sum_{i} T_{ji} = P(E_j)$$

- Once we get a Boltzmann distribution over states, we will keep it
 - Boltzmann distribution is a fixed point of the Markov chain
- Can also prove that we will converge to Boltzmann distribution
 - See, e.g., Appendix D of Newman

Metropolis-Hastings accept/reject

- Still have not worked out what elements of T_{ii} are
 - Actually, many possible choices
- Most common choice: Metropolis-Hastings algorithm:
 - Choose the change between *i* and *j* from specified set of possible changes
 - Can be, e.g., chosen at random, uniformly
 - Accept or reject the new state with acceptance probability:

$$P_a = \begin{cases} 1 & \text{if } E_j \le E_i \\ e^{-\beta(E_j - E_i)} & \text{if } E_j > E_i \end{cases}$$

 I.e., definitely accept if energy is lowered (or equal); may still accept if energy is increased

Transition probabilities under Metropolis-Hastings

• Total probability to move from i to given j (if $E_i < E_i$)

$$T_{ij} = \frac{1}{M} e^{-\beta (E_j - E_i)}$$
Probability we accept

Probability we choose j

Transition probabilities under Metropolis-Hastings

• If $E_j > E_i$:

$$T_{ij} = \frac{1}{M} e^{-\beta(E_j - E_i)}, \quad T_{ji} = \frac{1}{M} \implies \frac{T_{ij}}{T_{ji}} = e^{-\beta(E_j - E_i)}$$

• If $E_j \leq E_i$:

$$T_{ij} = \frac{1}{M}, \quad T_{ji} = \frac{1}{M} e^{-\beta(E_i - E_j)} \implies \frac{T_{ij}}{T_{ji}} = e^{-\beta(E_j - E_i)}$$

• Thus, both consistent with:

$$\frac{T_{ij}}{T_{ii}} = \frac{P(E_j)}{P(E_i)} = \frac{e^{-\beta E_j}/Z}{e^{-\beta E_i}/Z} = e^{-\beta(E_j - E_i)}$$

Some comments about the Metropolis algorithm

- Note that many steps will not change the system
 - Still need to include in the sum
- The number of possible moves M, must be the same when going from i to j as j to i
- Moves must be chosen to get you to every state
 - Move set for which all states are accessible is called ergodic
- Will generally take some (unknown) time to equilibrate to Boltzmann distribution

Steps of Markov chain Monte Carlo:

- 1. Choose random starting state
- 2. Choose a move uniformly at random from set of moves
- 3. Calculate the acceptance probability
- 4. Accept or reject the move
- 5. Measure X in current state, add to sum
- 6. Go back to step 2

Example: Ideal gas

- Consider the quantum states of a particle or atom of mass m in cubic box of length L
- Energy of one particle given by:

$$E(n_x, n_y, n_z) = \frac{\pi^2 \hbar^2}{2mL^2} (n_x^2 + n_y^2 + n_z^2)$$

Quantum numbers from

1 to infinity.

- Ideal gas: no interactions between particles
 - Energy is sum of individual particles:

$$E = \sum_{i=1}^{N} E(n_x^{(i)}, n_y^{(i)}, n_z^{(i)})$$

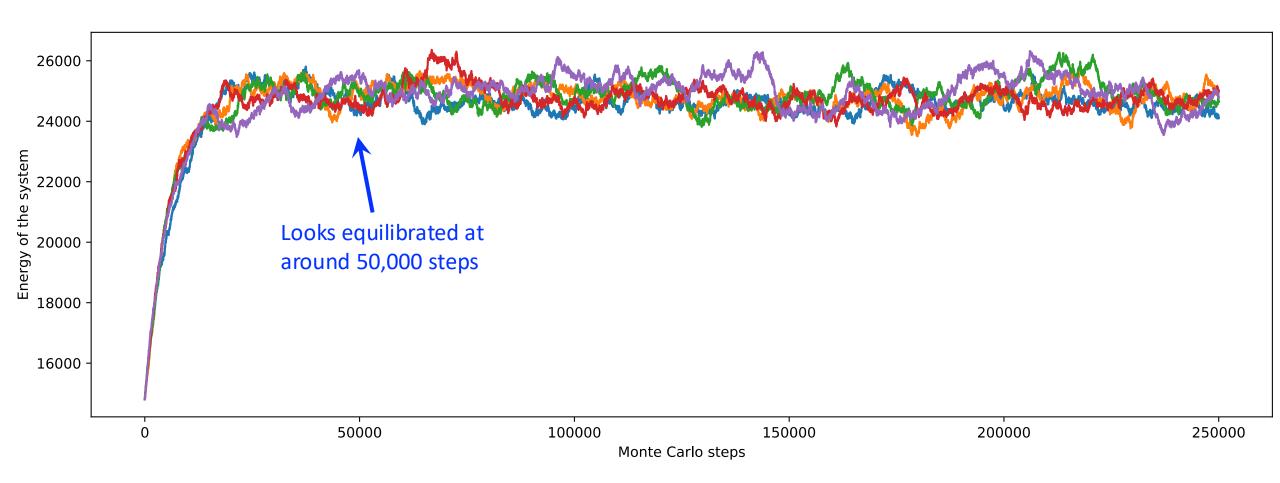
Move set for ideal gas

- Choose set of all moves of a single atom to one of the six "neighboring" states where n_x , n_y , or n_z differ by +/- 1
- Each Monte Carlo step, choose a random particle, chose a quantum number, change it by +/- 1
- Change in total energy just the change for single particle since there are no interactions
 - E.g., increase or decrease n_x of atom i by one:

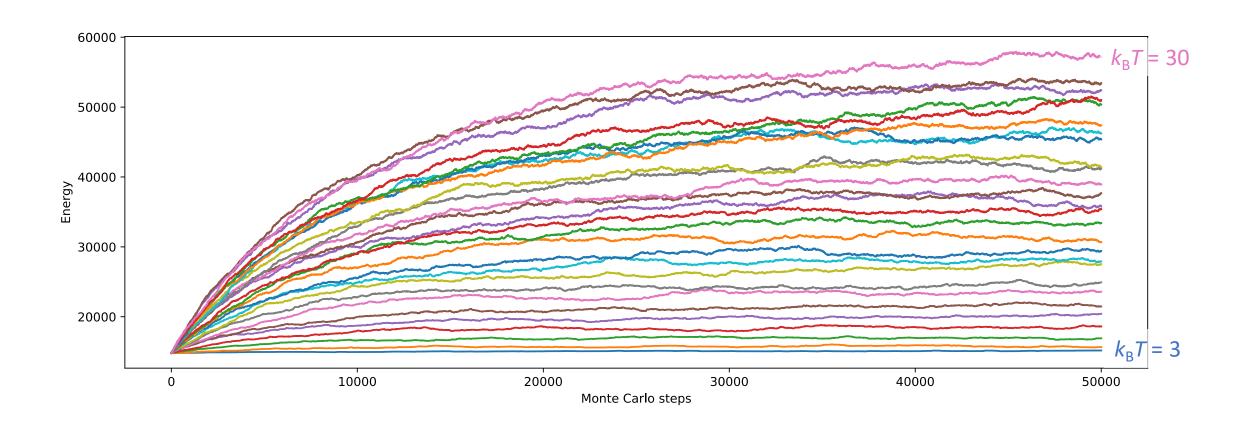
$$\Delta E = \frac{\pi^2 \hbar^2}{2mL^2} [(n_x \pm 1)^2 + n_y^2 + n_z^2] - \frac{\pi^2 \hbar^2}{2mL^2} (n_x^2 + n_y^2 + n_z^2)$$
$$= \frac{\pi^2 \hbar^2}{2mL^2} [(n_x \pm 1)^2 - n_x^2] = \frac{\pi^2 \hbar^2}{2mL^2} (\pm 2n_x + 1)$$

• Note: Reject moves that try to make *n* < 1

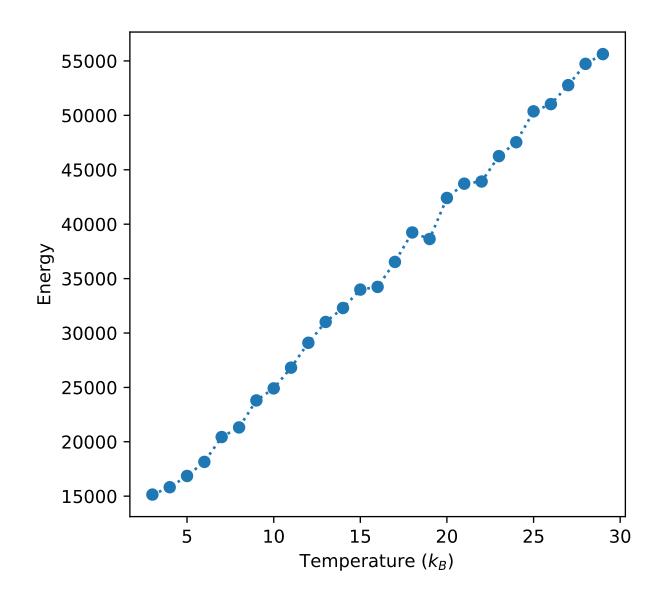
Monte Carlo simulation of ideal gas



Monte Carlo simulation of ideal gas: Dependence on T



Monte Carlo simulation of ideal gas: E vs. T



After class tasks

- Homework 5 is posted, due Nov. 19, 2025
- Almost done grading Homework 3

- Final project ideas due Nov. 19
- Readings:
 - Newman Sec. 10.3