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Today’s lecture: 
Monte Carlo integration and simulation

• Monte Carlo integration with divergences

• Monte Carlo simulation



Monte Carlo integration with divergences

• Monte Carlo integration fails for some 
pathological functions, e.g., those that 
contain divergences

• Consider:

• Function diverges at x=0, but integral is 
finite

• E.g., for mean value method, will 
occasionally get a very large 
contribution
• Estimate varies widely between runs



Importance sampling

• Can get around these issues by drawing points nonuniformly

• For a general function g(x) can define a weighted average:

• w(x) is a weighting function 

• If we want to solve a general 1D integral:

• We set g(x)=f(x)/w(x):



Importance sampling, 1D integral

• Thus, we have:

• Equivalent to the mean value method, but from a weighted average

• How do we calculate the weighted average?

• Define probability density function as normalized w(x)

• So



Importance sampling, 1D integral

• Now let’s sample N random points in the interval with the distribution 
p(x). Then:

• So:

• Where xi are chosen from the distribution:



Importance sampling, 1D integral

• Putting everything together:

• Generalization of mean value method, which is where w(x)=1

• w(x) can be any function that we choose
• Can be chosen to remove pathologies in the integrand

• However, now we need to draw from a nonuniform distribution 



Error on importance sampling method

• Error is given by:

• Where:

• Still goes like N-1/2



Importance sampling for pathological function

• Let’s return to the integral: 

• Choose:

• Then:
• Finite and well-behaved over the range

• Probability distribution is:

• So, using the transformation method:



Importance sampling for pathological 
function

• So finally, we need to sample:

• With the distribution x = z2



Today’s lecture: 
Monte Carlo integration and simulation

• Monte Carlo integration with divergences

• Monte Carlo simulation



Monte Carlo simulation

• Any computer simulation that uses random numbers to simulate 
physical process

• We saw a few examples already: radioactive decay and Rutherford 
scattering

• Used in every branch of physics
• Particularly important in statistical mechanics and many-body physics



Monte Carlo simulation in stat mech

• Fundamental problem in statistical mechanics: Calculate expectation 
value of quantity of interest in thermal equilibrium

• Don’t know the exact state of the system, only probability of 
occupying state i with energy Ei

• Then average value of observable X:



States with large numbers

• Calculating this sum exactly can only be done in a few specific systems 
(e.g., harmonic oscillator)

• Numerically challenging: states are order Avogadro's number in size

• E.g., one mole of gas with two states: total number of states is

• Instead, use Monte Carlo approach to evaluate the sum



Monte Carlo approach to expectation values

• We could choose N terms in the sum at random to add up:

• This would not work well! Boltzmann probability is exponentially 
small for states 

• Usually, most of the states are high energy, only a few contribute 
significantly

• Need to use importance sampling!

Needed to normalize 
the weighted average if 
not summing over all 
states



Importance sampling for thermal average

• Choose nonuniform distribution to focus on this small set

• Define weighted average over states:

• We choose:

• So: 

• Or:



Importance sampling for thermal average

• Evaluate by selecting N states randomly with nonuniform distribution:

• Still need to choose wi to bias us towards high-probability samples
• Also, so that sum over all states i can be evaluated analytically

Summed over all states

Summed over N samples



Weights for importance sampling

• Simple choice: wi = P(Ei)

• Sums to 1 over all by definition

• Then we have:

• Thus, choose N states in proportion to their Boltzmann weights, and 
average X over them



Markov chain Monte Carlo

• Recall that:

• Partition function requires a sum over all states that we are trying to 
avoid

• Can use a Markov chain to choose states with probability P(Ei) 
without knowing the partition function:
• Start with a state i

• Generate a new state j by making a small change to i

• Choice of new state is determined probabilistically by a set of transition 
probabilities Tij that give probability for changing from state i to j 

• If we chose Tij correctly, probability of visiting any state on a step of 
the Markov chain is P(Ei)!



Transition probabilities in the MC

• We must end up in some state on every MC step, so:

• Choose transition probabilities such that:

• I.e., choosing particular ratio of the probability to go from i to j, and j 
to i 

• Partition function cancels out!



Transition probabilities in the MC

• If we have correct probability of being in a given state at one step, we 
will have the correct probability for all later steps

• To see this:
• Suppose we find a set of Tij’s that satisfy the previous conditions

• Suppose the probability to be in state i on one particular step is P(Ei)

• Then, probability to be in state j on the next step is:

• Once we get a Boltzmann distribution over states, we will keep it
• Boltzmann distribution is a fixed point of the Markov chain

• Can also prove that we will converge to Boltzmann distribution
• See, e.g., Appendix D of Newman



Metropolis-Hastings accept/reject

• Still have not worked out what elements of Tij are
• Actually, many possible choices

• Most common choice: Metropolis-Hastings algorithm:
• Choose the change between i and j from specified set of possible changes

• Can be, e.g., chosen at random, uniformly

• Accept or reject the new state with acceptance probability:

• I.e., definitely accept if energy is lowered (or equal); may still accept if energy 
is increased



Transition probabilities under Metropolis-
Hastings

• Total probability to move from i to given j (if Ej <Ei)

Probability we accept

Probability we choose j



Transition probabilities under Metropolis-
Hastings

• If                 :

• If                 :

• Thus, both consistent with :



Some comments about the Metropolis 
algorithm
• Note that many steps will not change the system

• Still need to include in the sum

• The number of possible moves M, must be the same when going from 
i to j as j to i

• Moves must be chosen to get you to every state
• Move set for which all states are accessible is called ergodic 

• Will generally take some (unknown) time to equilibrate to Boltzmann 
distribution



Steps of Markov chain Monte Carlo:

• 1. Choose random starting state

• 2. Choose a move uniformly at random from set of moves

• 3. Calculate the acceptance probability

• 4. Accept or reject the move

• 5. Measure X in current state, add to sum

• 6. Go back to step 2



Example: Ideal gas

• Consider the quantum states of a particle or atom of mass m in cubic 
box of length L

• Energy of one particle given by:

• Ideal gas: no interactions between particles
• Energy is sum of individual particles:

Quantum numbers from 
1 to infinity.



Move set for ideal gas
• Choose set of all moves of a single atom to one of the six 

“neighboring” states where nx, ny, or nz differ by +/- 1

• Each Monte Carlo step, choose a random particle, chose a quantum 
number, change it by +/- 1

• Change in total energy just the change for single particle since there 
are no interactions
• E.g., increase or decrease nx of atom i by one:

• Note: Reject moves that try to make n < 1



Monte Carlo simulation of ideal gas

Looks equilibrated at 
around 50,000 steps 



Monte Carlo simulation of ideal gas: 
Dependence on T

kBT = 3

kBT = 30



Monte Carlo simulation of ideal gas: E vs. T



After class tasks

• Homework 5 is posted, due Nov. 19, 2025

• Almost done grading Homework 3 

• Final project ideas due Nov. 19 

• Readings:
• Newman Sec. 10.3
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