PHY604 Lecture 21

November 6, 2025



Today’s lecture:
Monte Carlo integration and simulation

* Monte Carlo integration with divergences

* Monte Carlo simulation



Monte Carlo integration with divergences

* Monte Carlo integration fails for some
pathological functions, e.g., those that 102
contain divergences '

e Consider: 1
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* Function diverges at x=0, but integral is
finite
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contribution
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Importance sampling

e Can get around these issues by drawing points nonuniformly
* For a general function g(x) can define a weighted average:

(g = fa w(x)g(x)dx

f; w(x)dx
* w(x) is a weighting function

b
* If we want to solve a general 1D integral: [ = / f(x)dx

a

* We set g(x)=f(x)/w(x):

<f(:v)> o f@de T
w(z) / f;w(x)dac f;w(x)dx




Importance sampling, 1D integral

* Thus, we have: 7= < f(z) > /b w(x)dx

w(z)

e Equivalent to the mean value method, but from a weighted average
* How do we calculate the weighted average?

* Define probability density function as normalized w(x)
w(z)

f; w(x)dr

p(z) =

* So



Importance sampling, 1D integral

* Now let’s sample N random points in the interval with the distribution
p(x). Then:

Zg(azi):/ Np(x)g(z)dx

* So:




Importance sampling, 1D integral

* Putting everything together:
1 « b
~ o E / ()dx

* Generalization of mean value method, which is where w(x)=1

* w(x) can be any function that we choose
e Can be chosen to remove pathologies in the integrand

* However, now we need to draw from a nonuniform distribution



Error on importance sampling method

* Error is given by:

_ yvary(f/w) [°
Terror = N /a w(r)dz

e Where:

varyg = (9%)w — (9)u

* Still goes like N-1/2



Importance sampling for pathological function

1 .—1/2
* Let’s return to the integral: [ = / dx
0 et + 1

e Choose: w(z) =z~ /2

* Then: f(z)/w(z) = (" +1)~"
* Finite and well-behaved over the range

* Probability distribution is:
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* So, using the transformation method:
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Importance sampling for pathological
function

* So finally, we need to sample:

N b N 1 N
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* With the distribution x = z2



Today’s lecture:
Monte Carlo integration and simulation

* Monte Carlo simulation



Monte Carlo simulation

 Any computer simulation that uses random numbers to simulate
physical process

* We saw a few examples already: radioactive decay and Rutherford
scattering

* Used in every branch of physics
 Particularly important in statistical mechanics and many-body physics



Monte Carlo simulation in stat mech

* Fundamental problem in statistical mechanics: Calculate expectation
value of quantity of interest in thermal equilibrium

 Don’t know the exact state of the system, only probability of
occupying state i with energy E;

PE)=—7+—  Z=) "

* Then average value of observable X:

(X) = ZXiP(Ei)




States with large numbers
(X) = ZXiP(Ei)

 Calculating this sum exactly can only be done in a few specific systems
(e.g., harmonic oscillator)

* Numerically challenging: states are order Avogadro's number in size
23
e E.g., one mole of gas with two states: total number of states is 210

* Instead, use Monte Carlo approach to evaluate the sum



Monte Carlo approach to expectation values

* We could choose N terms in the sum at random to add up:

N
X P(E Needed t i
x) ~ Zim X PED e
Zkzl P(Ek)(' not summing over all

states

* This would not work well! Boltzmann probability is exponentially
small for states E; > kgT

* Usually, most of the states are high energy, only a few contribute
significantly

* Need to use importance sampling!



Importance sampling for thermal average

 Choose nonuniform distribution to focus on this small set
* Define weighted average over states:
w
i Wi
* We choose: ¢g; = X; P(E;)/w;
* So:

<XZ-P<EZ->> N wiXiP(B) /w2, XiP(E)  (X)

* Or:

= (3282 5.



Importance sampling for thermal average

- (500)

* Evaluate by selecting N states randomly with nonuniform distribution:

x= gy M s,
k?l \ Summed over all states

Summed over N samples

* Still need to choose w; to bias us towards high-probability samples
* Also, so that sum over all states i can be evaluated analytically



Weights for importance sampling

* Simple choice: w; = P(E))
 Sums to 1 over all by definition

* Then we have: N
1
(X) ~ N I;Xk

* Thus, choose N states in proportion to their Boltzmann weights, and
average X over them



Markov chain Monte Carlo

—BE;
+ Recall that:  P(E;) = - ., Z=) P

* Partition function requires a sum over all states that we are trying to
avoid

* Can use a Markov chain to choose states with probability P(E))
without knowing the partition function:
e Start with a state i
* Generate a new state j by making a small change to i

* Choice of new state is determined probabilistically by a set of transition
probabilities T; that give probability for changing from state i to j

* If we chose T; correctly, probability of visiting any state on a step of
the Markov chain is P(E;)!



Transition probabilities in the MC

* We must end up in some state on every MC step, so:
> T =1
J

* Choose transition probabilities such that:
T,;, P(E;,) e Pfi/Z

e e— p— —

T;; P(E;) e BE/z7

—B(E;—E;)

* |.e., choosing particular ratio of the probability to go from ito j, and j
toi

e Partition function cancels out!



Transition probabilities in the MC

* If we have correct probability of being in a given state at one step, we
will have the correct probability for all later steps

e To see this:

* Suppose we find a set of T;/s that satisfy the previous conditions
* Suppose the probability to be in state i on one particular step is P(E))
* Then, probability to be in state j on the next step is:

ZTZJP ZngP (Ej)Zsz' = P(Ej)

* Once we get a Boltzmann distribution over states, we will keep it
* Boltzmann distribution is a fixed point of the Markov chain

* Can also prove that we will converge to Boltzmann distribution
* See, e.g., Appendix D of Newman



Metropolis-Hastings accept/reject

* Still have not worked out what elements of T; are
* Actually, many possible choices

* Most common choice: Metropolis-Hastings algorithm:

* Choose the change between i and j from specified set of possible changes
e Can be, e.g., chosen at random, uniformly

* Accept or reject the new state with acceptance probability:

1 if £, < E;
(e PEimF) i By > E

(

P, =<

* |.e., definitely accept if energy is lowered (or equal); may still accept if energy
is increased



Transition probabilities under Metropolis-
Hastings

» Total probability to move from i to given j (if E; <E))
TZ] — LB_IB(Ej_Ei)

1‘ Probability we accept

Probability we choose j



Transition probabilities under Metropolis-

Hastings
o |f Ej > kb
1

1ij = MQ_B(E
 |If Ej < Ez
1

Tij — Ma sz

* Thus, both consistent with :
_ P(E;)
P(E;)

T,

e "7
- e BEi /7

Lij _ —p(B;- )
& — e_B(EJI—E’b)
_B(Ej Ez)



Some comments about the Metropolis
algorithm

* Note that many steps will not change the system
e Still need to include in the sum

* The number of possible moves M, must be the same when going from
ftojasjtoi

* Moves must be chosen to get you to every state
* Move set for which all states are accessible is called ergodic

* Will generally take some (unknown) time to equilibrate to Boltzmann
distribution



Steps of Markov chain Monte Carlo:

* 1. Choose random starting state

e 2. Choose a move uniformly at random from set of moves
3. Calculate the acceptance probability

* 4. Accept or reject the move

* 5. Measure X in current state, add to sum

* 6. Go back to step 2



Example: [deal gas

* Consider the quantum states of a particle or atom of mass m in cubic
box of length L

. ] Quantum numbers from
* Energy of one particle given by: / 1 to infinity.

2h2 5

Eng,ny,n,) = 3

* |deal gas: no interactions between particles
* Energy is sum of individual particles

o ZE () (), n)



Move set for ideal gas

* Choose set of all moves of a single atom to one of the six
“neighboring” states where n,, n, or n, differ by +/- 1

* Each Monte Carlo step, choose a random particle, chose a quantum

number, change it by +/- 1

* Change in total energy just the change for single particle since there

are no interactions
* E.g., increase or decrease n, of atom i by one:

w2 h? T4 h?
AFE = S (ng £1)* +n; +nZ] — -~ (n2 +n +n2)
T2 h? m h?
— 2mL2 [(nx T 1)2 — ni] — QmLZ (::271/3; =+ 1)

* Note: Reject moves that try to make n< 1
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Monte Carlo simulation of ideal gas:
Dependenceon T
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Monte Carlo simulation of ideal gas: Evs. T
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After class tasks

* Homework 5 is posted, due Nov. 19, 2025
* Almost done grading Homework 3

* Final project ideas due Nov. 19

* Readings:
* Newman Sec. 10.3
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