PHY604 Lecture 3

September 2, 2025



Today’s lecture:

* Good programming practices:
* Debugging

* Misc. good practices

* Numerical differentiation



Debugging tools

Simplest debugging: print out information at intermediate points in code execution

Running with appropriate compiler glags (e.g., =g for gnu compilers) can provide
debugging information

* Can make code run slower, but useful for test purposes

Interactive debuggers let you step through your code line-by-line, inspect the values of
variables as they are set, etc.

e gdb is the version that works with the GNU compilers. Some graphical frontends exist.
* Lots of examples online
* Not very useful for parallel code.

Particularly difficult errors to find often involve memory management

» Valgrind is an automated tool for finding memory leaks. No source code modifications are
necessary.



Building your code with, e.g., Makefiles

* [t is good style to separate your subroutines/functions into files,
grouped together by purpose
* Makes a project easier to manage (for you and version control)
* Reduces compiler memory needs (although, can prevent inlining across files)

* Reduces compile time—you only need to recompile the code that changed
(and anything that might depend on it)

* Makefiles automate the process of building your code
 No ambiguity of whether your executable is up-to-date with your changes
* Only recompiles the code that changed (looks at dates)
* Very flexible: lots of rules allow you to customize how to build, etc.
* Written to take into account dependencies



We have not really discussed general coding style

* Depends very much on the language, and is often a matter of opinion
(google it)

* Some general rules:

1. Use a consistent programming style
2. Use brief but descriptive variable and function names
3. Avoid “magic numbers”
* Name your constants, specify your flags
4. Use functions and/or subroutines for repetitive tasks
5. Check return values for errors before proceeding
6. Share information effectively (e.g., using modules or namespaces)
7. Limit the scope of your variables, methods, etc.
8. Think carefully about the most effective way to input and output data
9. Be careful about memory, i.e., allocating and deallocating

10. Make your code readable and portable, you will thank yourself (or your
collaborators will thank you) later.



Today’s lecture:

* Numerical differentiation



Numerical differentiation, Two situations:

* We have data defined only at a set of (possibly regularly spaced)
points

* Generally speaking, asking for greater accuracy for the derivative involves
using more of the discrete points

* We have an analytic expression for f(x) and want to compute the
derivative numerically

* If possible, it would be better to take the analytic derivative of f(x), but we can
learn something about error estimation in this case.

e Used, for example, in computing the numerical Jacobian for integrating a
system of ODEs (we'll see this later)



Gridded data

 Discretized data is represented at a finite number of locations

* Integer subscripts are used to denote the position (index) on the grid
 Structured/regular: spacing is constant
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First derivative
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e Solve for the first derivative:
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Order of accuracy
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* The accuracy of the finite difference approximation is determined by
size of Ax

* So this finite difference expression is accurate to “order” Ax: O(Ax)

* However: Making Ax small means that we are subtracting numbers
that are very close to each other, which can result in significant
rounding errors



Maximizing the accuracy

e Say we can evaluate the function to accuracy C f(x) [also C f(x+Ax)]

+ For double precision: C' ~ 107 1°

* Worst-case rounding error on derivative is 2C|f(x)|/ Ax

7
* Also need to worry about associative errors: (x + A$) —r = Ax
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« We can minimize to find: Ax = \/40 % ~ 107°

* SO0 “minimum” error: € = \/40 fifl'] ~ 1078



Increasing accuracy with more points in the
“stencil”

* First-order “forward” or “backward”:

f/ — fi—l_i_ fz f/ — fz _Afi_l 2-point stencil
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e Second-order “central”:
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Second-order central

* Consider two Taylor expansions:
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Error in Second order central
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Assuming double prec.

* Minimize WRT Ax: Ax = §/6C’

* Minimum error; € X i’/CQf(azi)zlf”’(azi)] ~ 1071

Assuming double prec.



Higher order first derivatives

* To get accuracy to order n [i.e.,O(Ax")] follow a similar strategy:
* 1. Write down Taylor expansion for n+1 finite difference points up to order

n+1

e 2.Solve set of polynomial equation in Ax for f

e 3. Obtain an expression involving weighted sum of function evaluated at n+1

points (some weights may be zero)

* Note: may be central, forward, or backward

* For example, for central:
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Higher derivatives
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* Insert central difference first derivatives, e.g.: f] =
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* So we get: f; =



Higher derivatives and error

* We can also use the Taylor expansion strategy:

1 1 1
fic1 = fi + Axfl + §A:z:2f{’ + 5A333f{" + ﬂAx‘{;’;{’” + ...
1 1 1
fici=fi—Axfl + =Az?f — A2 " + — A2 /" + ...
2 § 24
i+1 — 2fi + Ji- 1
* Add together and rearrange: f!' = fit1 fit fima — Az ]
Ax? 12

4
e Error: € = \/gC’\fifi’”’] ~ 107%

/

Assuming double prec.



Partial and mixed derivatives

 Partial derivatives are a simple generalization
 E.g., central differences for function of two variables f(x,y)

of  flw+Aay) —flw—Any)  OF _ fley+Ay) — flay— Ay
or 2Ax Oy 2Ay

e Mixed second derivative:
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Key takeaways from numerical differentiation

* There is a minimum error you can achieve, given by the balance
between roundoff and truncation errors

* Higher-order approximations have better truncation errors, but
(usually) require more function evaluations

* Increasing the precision helps with roundoff errors (as usual)



Some final comments on numerical derivation

Noisy data
oy { g
* Taking derivatives of noisy data makes the AL AL ,": |
noise much worse! ’\,.n‘l'h,’\"v i
* Fit to a smooth curve and take the derivative of | ' v IR / VU J
* Smooth the data, e.g., with a Fourier transform

Derlvatlve

* We can treat data on uneven grids with the
same strategy as before, taking into account
the different Ax’s between points

(Newman)



After class tasks

* If you do not already have one, make an account on github:
https://github.com/

* Readings:
* Wikipedia artical on makefiles
* Blog on numerical differentiation
* Wikipedia page of finite difference coefficients
* Newman Section 5.10
* Garcia Section 10.2
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https://en.wikipedia.org/wiki/Make_(software)
https://en.wikipedia.org/wiki/Make_(software)
http://www.holoborodko.com/pavel/numerical-methods/numerical-derivative/central-differences/
http://www.holoborodko.com/pavel/numerical-methods/numerical-derivative/central-differences/
https://en.wikipedia.org/wiki/Finite_difference_coefficient
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