
PHY604 Lecture 3
September 2, 2025

Today’s lecture:

• Good programming practices:

• Debugging

• Misc. good practices

• Numerical differentiation

Debugging tools

• Simplest debugging: print out information at intermediate points in code execution

• Running with appropriate compiler glags (e.g., -g for gnu compilers) can provide
debugging information
• Can make code run slower, but useful for test purposes

• Interactive debuggers let you step through your code line-by-line, inspect the values of
variables as they are set, etc.
• gdb is the version that works with the GNU compilers. Some graphical frontends exist.
• Lots of examples online
• Not very useful for parallel code.

• Particularly difficult errors to find often involve memory management
• Valgrind is an automated tool for finding memory leaks. No source code modifications are

necessary.

Building your code with, e.g., Makefiles

• It is good style to separate your subroutines/functions into files,
grouped together by purpose
• Makes a project easier to manage (for you and version control)

• Reduces compiler memory needs (although, can prevent inlining across files)

• Reduces compile time—you only need to recompile the code that changed
(and anything that might depend on it)

• Makefiles automate the process of building your code
• No ambiguity of whether your executable is up-to-date with your changes

• Only recompiles the code that changed (looks at dates)

• Very flexible: lots of rules allow you to customize how to build, etc.

• Written to take into account dependencies

We have not really discussed general coding style
• Depends very much on the language, and is often a matter of opinion

(google it)

• Some general rules:
• 1. Use a consistent programming style
• 2. Use brief but descriptive variable and function names
• 3. Avoid “magic numbers”

• Name your constants, specify your flags

• 4. Use functions and/or subroutines for repetitive tasks
• 5. Check return values for errors before proceeding
• 6. Share information effectively (e.g., using modules or namespaces)
• 7. Limit the scope of your variables, methods, etc.
• 8. Think carefully about the most effective way to input and output data
• 9. Be careful about memory, i.e., allocating and deallocating
• 10. Make your code readable and portable, you will thank yourself (or your

collaborators will thank you) later.

Today’s lecture:

• Good programming practices:

• Debugging

• Misc. good practices

• Numerical differentiation

Numerical differentiation, Two situations:

• We have data defined only at a set of (possibly regularly spaced)
points
• Generally speaking, asking for greater accuracy for the derivative involves

using more of the discrete points

• We have an analytic expression for f(x) and want to compute the
derivative numerically
• If possible, it would be better to take the analytic derivative of f(x), but we can

learn something about error estimation in this case.

• Used, for example, in computing the numerical Jacobian for integrating a
system of ODEs (we'll see this later)

Gridded data

• Discretized data is represented at a finite number of locations
• Integer subscripts are used to denote the position (index) on the grid

• Structured/regular: spacing is constant

• Data is known only at the grid points:

First derivative

• Taylor expansion:

• Solve for the first derivative:

Discrete approx. of f' Leading term in the truncation error

Order of accuracy

• The accuracy of the finite difference approximation is determined by
size of x

• So this finite difference expression is accurate to “order” x:

• However: Making x small means that we are subtracting numbers
that are very close to each other, which can result in significant
rounding errors

Maximizing the accuracy
• Say we can evaluate the function to accuracy C f(x) [also C f(x+x)]

• For double precision:

• Worst-case rounding error on derivative is 2C|f(x)|/ x

• Also need to worry about associative errors:

• So total error is:

• We can minimize to find:

• So “minimum” error:

Increasing accuracy with more points in the
“stencil”
• First-order “forward” or “backward”:

• Second-order “central”:

2-point stencil

3-point stencil

Second-order central
• Consider two Taylor expansions:

• We see that:

Error in Second order central

• Minimize WRT x:

• Minimum error:

Assuming double prec.

Assuming double prec.

Higher order first derivatives
• To get accuracy to order n [i.e.,] follow a similar strategy:

• 1. Write down Taylor expansion for n+1 finite difference points up to order
n+1

• 2. Solve set of polynomial equation in x for f’

• 3. Obtain an expression involving weighted sum of function evaluated at n+1
points (some weights may be zero)

• Note: may be central, forward, or backward

• For example, for central:

https://en.wikipedia.org/wiki/Finite_difference_coefficient D

https://en.wikipedia.org/wiki/Finite_difference_coefficient

Higher derivatives

• Write second derivative as:

• Insert central difference first derivatives, e.g.:

• So we get:

Higher derivatives and error

• We can also use the Taylor expansion strategy:

• Add together and rearrange:

• Error:

Assuming double prec.

Partial and mixed derivatives

• Partial derivatives are a simple generalization

• E.g., central differences for function of two variables f(x,y)

• Mixed second derivative:

Key takeaways from numerical differentiation

• There is a minimum error you can achieve, given by the balance
between roundoff and truncation errors

• Higher-order approximations have better truncation errors, but
(usually) require more function evaluations

• Increasing the precision helps with roundoff errors (as usual)

Some final comments on numerical derivation

• Taking derivatives of noisy data makes the
noise much worse!
• Fit to a smooth curve and take the derivative of

that

• Smooth the data, e.g., with a Fourier transform

• We can treat data on uneven grids with the
same strategy as before, taking into account
the different x’s between points

Noisy data

Derivative

(Newman)

After class tasks

• If you do not already have one, make an account on github:
https://github.com/

• Readings:
• Wikipedia artical on makefiles

• Blog on numerical differentiation

• Wikipedia page of finite difference coefficients

• Newman Section 5.10

• Garcia Section 10.2

https://github.com/
https://en.wikipedia.org/wiki/Make_(software)
https://en.wikipedia.org/wiki/Make_(software)
http://www.holoborodko.com/pavel/numerical-methods/numerical-derivative/central-differences/
http://www.holoborodko.com/pavel/numerical-methods/numerical-derivative/central-differences/
https://en.wikipedia.org/wiki/Finite_difference_coefficient
https://en.wikipedia.org/wiki/Finite_difference_coefficient

	Slide 1: PHY604 Lecture 3
	Slide 2: Today’s lecture:
	Slide 3: Debugging tools
	Slide 4: Building your code with, e.g., Makefiles
	Slide 5: We have not really discussed general coding style
	Slide 6: Today’s lecture:
	Slide 7: Numerical differentiation, Two situations:
	Slide 8: Gridded data
	Slide 9: First derivative
	Slide 10: Order of accuracy
	Slide 11: Maximizing the accuracy
	Slide 12: Increasing accuracy with more points in the “stencil”
	Slide 13: Second-order central
	Slide 14: Error in Second order central
	Slide 15: Higher order first derivatives
	Slide 16: Higher derivatives
	Slide 17: Higher derivatives and error
	Slide 18: Partial and mixed derivatives
	Slide 19: Key takeaways from numerical differentiation
	Slide 20: Some final comments on numerical derivation
	Slide 21: After class tasks

