PHY604 Lecture 3

September 2, 2025

Today's lecture:

- Good programming practices:
 - Debugging
 - Misc. good practices
- Numerical differentiation

Debugging tools

- Simplest debugging: print out information at intermediate points in code execution
- Running with appropriate compiler glags (e.g., -g for gnu compilers) can provide debugging information
 - Can make code run slower, but useful for test purposes
- Interactive debuggers let you step through your code line-by-line, inspect the values of variables as they are set, etc.
 - gdb is the version that works with the GNU compilers. Some graphical frontends exist.
 - Lots of examples online
 - Not very useful for parallel code.
- Particularly difficult errors to find often involve memory management
 - Valgrind is an automated tool for finding memory leaks. No source code modifications are necessary.

Building your code with, e.g., Makefiles

- It is good style to separate your subroutines/functions into files, grouped together by purpose
 - Makes a project easier to manage (for you and version control)
 - Reduces compiler memory needs (although, can prevent inlining across files)
 - Reduces compile time—you only need to recompile the code that changed (and anything that might depend on it)
- Makefiles automate the process of building your code
 - No ambiguity of whether your executable is up-to-date with your changes
 - Only recompiles the code that changed (looks at dates)
 - Very flexible: lots of rules allow you to customize how to build, etc.
 - Written to take into account dependencies

We have not really discussed general coding style

- Depends very much on the language, and is often a matter of opinion (google it)
- Some general rules:
 - 1. Use a consistent programming style
 - 2. Use brief but descriptive variable and function names
 - 3. Avoid "magic numbers"
 - Name your constants, specify your flags
 - 4. Use functions and/or subroutines for repetitive tasks
 - 5. Check return values for errors before proceeding
 - 6. Share information effectively (e.g., using modules or namespaces)
 - 7. Limit the scope of your variables, methods, etc.
 - 8. Think carefully about the most effective way to input and output data
 - 9. Be careful about memory, i.e., allocating and deallocating
 - 10. Make your code readable and portable, you will thank yourself (or your collaborators will thank you) later.

Today's lecture:

- Good programming practices:
 - Debugging
 - Misc. good practices
- Numerical differentiation

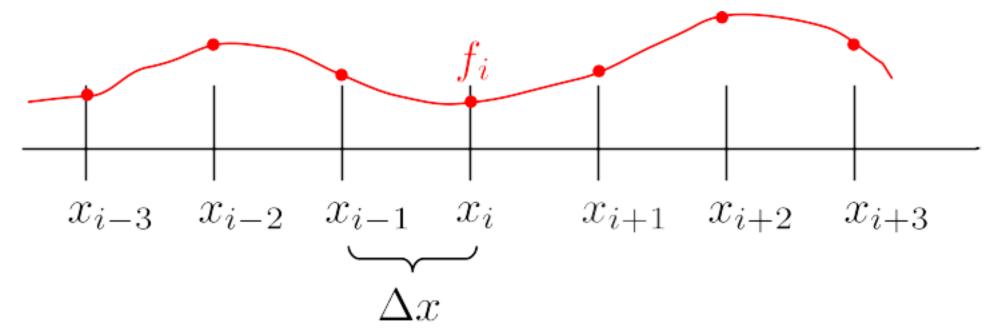
Numerical differentiation, Two situations:

- We have data defined only at a set of (possibly regularly spaced) points
 - Generally speaking, asking for greater accuracy for the derivative involves using more of the discrete points

- We have an analytic expression for f(x) and want to compute the derivative numerically
 - If possible, it would be better to take the analytic derivative of f(x), but we can learn something about error estimation in this case.
 - Used, for example, in computing the numerical Jacobian for integrating a system of ODEs (we'll see this later)

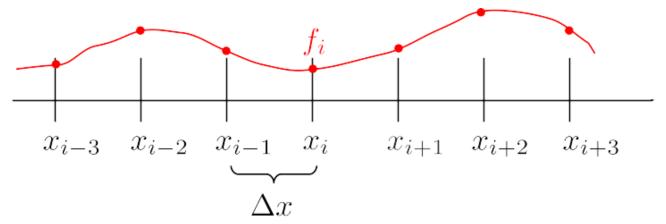
Gridded data

- Discretized data is represented at a finite number of locations
 - Integer subscripts are used to denote the position (index) on the grid
 - Structured/regular: spacing is constant



ullet Data is known only at the grid points: $f_i=f(x_i)$

First derivative



• Taylor expansion:

or expansion:
$$f_{i+1}=f(x_i+\Delta x)=f_i+\frac{df}{dx}\bigg|_{x_i}\Delta x+\frac{1}{2}\frac{d^2f}{dx^2}\bigg|_{x_i}\Delta x^2+...$$

• Solve for the first derivative:

$$\left. \frac{df}{dx} \right|_{x_i} = \frac{f_{i+1} - f_i}{\Delta x} - \frac{1}{2} \frac{d^2 f}{dx^2} \right|_{x_i} \Delta x$$

Discrete approx. of f'

Leading term in the truncation error

Order of accuracy

$$\left. \frac{df}{dx} \right|_{x_i} = \frac{f_{i+1} - f_i}{\Delta x} - \frac{1}{2} \frac{d^2 f}{dx^2} \right|_{x_i} \Delta x$$

- The accuracy of the finite difference approximation is determined by size of Δx
- So this finite difference expression is accurate to "order" Δx : $\mathcal{O}(\Delta x)$

• However: Making Δx small means that we are subtracting numbers that are very close to each other, which can result in significant rounding errors

Maximizing the accuracy

- Say we can evaluate the function to accuracy C f(x) [also $C f(x+\Delta x)$]
 - For double precision: $C \simeq 10^{-16}$
- Worst-case rounding error on derivative is $2C|f(x)|/\Delta x$
 - Also need to worry about associative errors: $(x+\Delta x)-x\stackrel{?}{=}\Delta x$
- So total error is: $\left| \frac{df}{dx} \right|_{x_i} \frac{f_{i+1} f_i}{\Delta x} \right| \leq \frac{1}{2} \frac{d^2 f}{dx^2} \bigg|_{x_i} \Delta x + \frac{2C|f_i|}{\Delta x}$
- We can minimize to find: $\Delta x = \sqrt{4C \left| \frac{f_i}{f_i^{\prime\prime}} \right|} \sim 10^{-8}$
- So "minimum" error: $\epsilon = \sqrt{4C \, |f_i f_i^{\prime\prime}|} \sim 10^{-8}$

Increasing accuracy with more points in the "stencil"

• First-order "forward" or "backward":

$$f' = \frac{f_{i+1} - f_i}{\Delta x}$$

$$f' = \frac{f_i - f_{i-1}}{\Delta x}$$

2-point stencil

Second-order "central":

$$f' = \frac{-\frac{1}{2}f_{i-1} + 0f_i + \frac{1}{2}f_{i+1}}{\Delta x}$$

3-point stencil

Second-order central

Consider two Taylor expansions:

$$f_{i+1} = f_i + \frac{df}{dx} \Big|_{x_i} \Delta x + \frac{1}{2} \frac{d^2 f}{dx^2} \Big|_{x_i} \Delta x^2 + \dots$$

$$f_{i-1} = f_i - \frac{df}{dx} \Big|_{x_i} \Delta x + \frac{1}{2} \frac{d^2 f}{dx^2} \Big|_{x_i} \Delta x^2 + \dots$$

• We see that:

$$\left. \frac{df}{dx} \right|_{x_i} = \frac{f_{i+1} - f_{i-1}}{2\Delta x} + \mathcal{O}(\Delta x^2) + \dots$$

Error in Second order central

$$\left| \frac{df}{dx} \right|_{x_i} - \frac{f_{i+1} - f_{i-1}}{2\Delta x} \right| \le \frac{1}{6} \frac{d^3 f}{dx^3} \bigg|_{x_i} \Delta x^2 + \frac{C|f_i|}{\Delta x}$$

• Minimize WRT
$$\Delta x$$
: $\Delta x = \sqrt[3]{6C \left| \frac{f(x_i)}{f'''(x_i)} \right|} \sim 10^{-5}$ Assuming double prec.

• Minimum error:
$$\epsilon \propto \sqrt[3]{C^2 f(x_i)^2 |f'''(x_i)|} \sim 10^{-11}$$

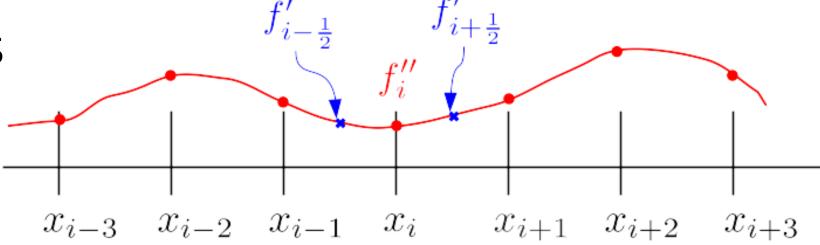
Assuming double prec.

Higher order first derivatives

- To get accuracy to order n [i.e., $\mathcal{O}(\Delta x^n)$] follow a similar strategy:
 - 1. Write down Taylor expansion for n+1 finite difference points up to order n+1
 - 2. Solve set of polynomial equation in Δx for f'
 - 3. Obtain an expression involving weighted sum of function evaluated at n+1 points (some weights may be zero)
- Note: may be central, forward, or backward
- For example, for central:

Derivative	Accuracy	- 5	-4	-3	-2	-1	0	1	2	3	4	5
1	2					-1/2	0	1/2				
	4				1/12	-2/3	0	2/3	-1/12			
	6			-1/60	3/20	-3/4	0	3/4	-3/20	1/60		
	8		1/280	-4/105	1/5	-4/5	0	4/5	-1/5	4/105	-1/280	

Higher derivatives



$$ullet$$
 Write second derivative as: $f_i'' = rac{f_{i+1/2}' - f_{i-1/2}'}{\Delta x}$

• Insert central difference first derivatives, e.g.: $f_i' = \frac{f_{i+1} - f_i}{\Lambda}$

• So we get:
$$f_i'' = rac{f_{i+1} - 2f_i + f_{i-1}}{\Delta x^2}$$

Higher derivatives and error

• We can also use the Taylor expansion strategy:

$$f_{i+1} = f_i + \Delta x f_i' + \frac{1}{2} \Delta x^2 f_i'' + \frac{1}{6} \Delta x^3 f_i''' + \frac{1}{24} \Delta x^4 f_i'''' + \dots$$
$$f_{i-1} = f_i - \Delta x f_i' + \frac{1}{2} \Delta x^2 f_i'' - \frac{1}{6} \Delta x^3 f_i''' + \frac{1}{24} \Delta x^4 f_i'''' + \dots$$

• Add together and rearrange: $f_i''=rac{f_{i+1}-2f_i+f_{i-1}}{\Delta x^2}-rac{1}{12}\Delta x^2f_i''''$

• Error:
$$\epsilon = \sqrt{\frac{4}{3}C|f_if_i''''|} \sim 10^{-8}$$

Partial and mixed derivatives

- Partial derivatives are a simple generalization
- E.g., central differences for function of two variables f(x,y)

$$\frac{\partial f}{\partial x} = \frac{f(x + \Delta x, y) - f(x - \Delta x, y)}{2\Delta x} \qquad \frac{\partial f}{\partial y} = \frac{f(x, y + \Delta y) - f(x, y - \Delta y)}{2\Delta y}$$

Mixed second derivative:

$$\frac{\partial^2 f}{\partial y \partial x} = \frac{f(x + \Delta x, y + \Delta y) - f(x - \Delta x, y + \Delta y) - f(x + \Delta x, y - \Delta y) + f(x - \Delta x, y - \Delta y)}{4\Delta x \Delta y}$$

Key takeaways from numerical differentiation

 There is a minimum error you can achieve, given by the balance between roundoff and truncation errors

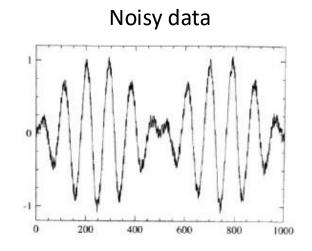
 Higher-order approximations have better truncation errors, but (usually) require more function evaluations

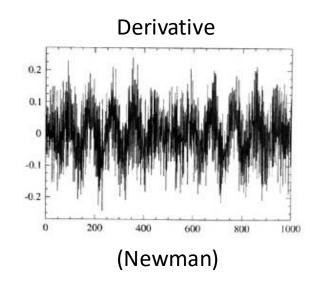
Increasing the precision helps with roundoff errors (as usual)

Some final comments on numerical derivation

- Taking derivatives of noisy data makes the noise much worse!
 - Fit to a smooth curve and take the derivative of that
 - Smooth the data, e.g., with a Fourier transform

• We can treat data on uneven grids with the same strategy as before, taking into account the different Δx 's between points





After class tasks

 If you do not already have one, make an account on github: https://github.com/

Readings:

- Wikipedia artical on makefiles
- Blog on numerical differentiation
- Wikipedia page of finite difference coefficients
- Newman Section 5.10
- Garcia Section 10.2