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September 4, 2025



Today’s lecture:

• Numerical integration



Numerical integration



Strategy for numerical integration:

• Quadrature rule: method that represents the 
integral as a (weighted) sum at a discrete 
number of points
• Newton-Cotes quadrature: Fixed spacing 

between points

• 1. Discretize: Break up the interval into sub-
intervals

• 2. Approximate the area under the curve in a 
subinterval by a simple polygon (rectangle, 
trapezoid) or a simple function (polynomial)

• 3. Sum the areas of the subintervals

• 4. Converge the integral by making more and 
more subintervals or using a more 
sophisticated weighting method



Approach 1: Midpoint rule 

• Approximate area as rectangle with height equal to the midpoint of 
the subinterval f(xi+1/2) and width x:



Approach 2: Trapezoid rule

• Area of subintervals approximated as a trapezoid with subinterval 
endpoints on the curve

• Area of trapezoid: x(a+b)/2

a b

x



A more accurate technique: Simpson’s Rule
• Approximate area of each subinterval by area under a 

parabola passing through points f(xi), f(xi+1/2),f(xi+1)



A more accurate technique: Simpson’s Rule



Where does Simpson’s rule come from?

• Consider the parabolic curve:

• We require it passes through the endpoints and midpoint of 
our function f(x):

• Solve for A,B,C



Where does Simpson’s rule come from?

• Now we integrate over the subinterval:



Errors in NC quadrature integration
• Error can be reduced by increasing the order of the polynomial or 

increasing the number of subintervals

• We can estimate errors in a similar way as we did for numerical 
differentiation (Taylor expand around points and take integrals), see, 
e.g.,  Newman Section 5.2.
• For example, for the trapezoid rule: 

• First term in Euler-Maclaurin formula

• Simpson’s rule is O(x4)

• If we know the derivatives at the endpoints, we can calculate the error



Example: Evaluating the Fresnel integral

• Fresnel functions are used in optics to describe near-field diffraction

• They can be written as an integral (or infinite sum):

(Wikipedia)
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Adaptive integration
• If we do not know f’(x), we can still estimate the error:

• 1. Perform the integration with N1  and N2=2*N1 subintervals

• 2. For, e.g.,  the trapezoid rule, the error using N1 will be four times that using 
N2 

• 3. The “exact” result, I is: 

• 4. Then the error on the second estimate is:

• We can use this approach to decide when our integral is converged to 
our satisfaction
• Keep doubling the number of subintervals until the error is small enough

• Can use the results from previous function evaluations (See Newman Sec. 5.3 
and 5.4 or Garcia Sec. 10.2)



Romberg Integration 

• If i indicates a step in the procedure on the previous slide (i.e., 
doubling the number of subintervals), then we can write the integral 
as:

• Equivalent to Simpson’s rule!

• For every additional step (doubling of subintervals), we can build 
more and more accurate estimates

• See Newman Sec. 5.4 or Garcia Sec. 10.2 for more details



Dealing with infinity as a limit (Newman Sec. 5.8)

• Say we need to integrate over half of the number line:

• It is impractical to simply increase the upper bound until convergence

• Instead, make a change of variables:

• So the integral is:



Beyond Newton-Cotes: Gaussian Quadrature

• As an extra degree of freedom, lets vary the space between 
integration points

• We must first determine integration rules for unequal spacing
• How do we determine weights?

• Then, we choose a particular optimal choice of nonuniform points

• Many types of Gaussian quadrature 



Theorem behind Gaussian integration

• Lt q(x) be a polynomial of degree N such that:

• k=0,…,N-1 and (x) is a specified weight function

• Choose x1, x2,…,xN as the roots of the polynomial q(x), and use them as grid points:

• There exists a set of w’s where this formula is exact if f(x) is a polynomial of degree 
< 2N (!!!)

• Note that with N values, we can fit an N-1 degree polynomial and derive an 
integration formula exact for polynomials of order <N
• Very accurate for curves well approximated as high-degree polynomials

• Many choices of weighting function, ρ(x), leading to different q's and x's and w's 



Example from Garcia Sec. 10.3: 
Three-point Gauss-Legendre rule

• Three-point: Three grid points in the interval [-1,1]
• q(x) is cubic

• Take as the weight function (x)=1 (Gauss-Legendre)

• We can convert an arbitrary interval [a,b] to [1,-1]:



Step 1: Find polynomial q(x)

• Apply the theorem to get three equations for the coefficients:

General Solution:

• a is an arbitrary constant, if we take it 
to be 3/2, we get the Legendre 
polynomial P3(x):



Step 2: Find the roots 

• Easily factors to:

• So out quadrature becomes:



Step 3: Find the weights

• The theorem tells us that this quadrature is exact for polynomials up 
to degree 2N-1

• Start with f(x)=1:

• Now f(x)=x:

• Finally f(x)=x2:

• Solve to get:



Put it together: 
3 point Gauss-Legendre quadrature



Example: Error function

Exact: 0.8427007929497148

3-point Trapezoid: 0.8252629555967492 , Error: -0.017437837352965557

3-point Simpsons: 0.843102830042981 , Error: 0.0004020370932662498

3-point Gauss-Legendre: 0.8426900184845107 , Error: -1.0774465204033135e-05

• Evaluate erf(1):



Example: 5th degree polynomial

Exact: 2.4499999999999997

3-point Trapezoid: 2.734375 , Error: 0.28437500000000027

3-point Simpsons: 2.4791666666666665 , Error: 0.029166666666666785

3-point Gauss-Legendre: 2.45 , Error: 4.440892098500626e-16



Weights and positions have been tabulated

• From Newman Sec. 5.6:

• From Garcia 10.3:



Types of Gaussian Quadrature

• Roots and weights are tabulated, so no need to compute them

(Wikipedia)



Choosing an integration method (Newman Sec. 5.7)

• Trapezoid method:
• Trivial to program
• Equally spaced points, often true of experimental data
• Good choice for poorly behaved data (noisy, singularities)
• Adaptive method gives guaranteed accuracy level
• Not very accurate for given number of points

• Romberg integration:
• Equally spaced points, often true of experimental data
• Guaranteed accuracy level
• Potentially high accuracy for small number of points
• Will not work well for noisy of pathological data/integrands

• Gaussian Quadrature
• Potentially high accuracy for small number of points
• Simple to program (weights and roots tabulated)
• Will not work well for noisy of pathological data/integrands
• Need to have data on specific, unequally-spaced grid



After class tasks

• If you do not already have one, make an account on github: 
https://github.com/

• Let me know if you having issues with github classroom!

• Readings:
• Newman Chapter 5

• Garcia Section 10.2

https://github.com/
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