PHY604 Lecture 4

September 4, 2025



Today’s lecture:

* Numerical integration



Numerical integration
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Strategy for numerical integration:

N—1
* Quadrature rule: method that represents the b ]
integral as a (weighted) sum at a discrete f(aj)dx — hm Az
number of points a N —o00 “
* Newton-Cotes quadrature: Fixed spacing 1=0
between points
* 1. Discretize: Break up the interval into sub- 8; 4
intervals of
e 2. Approximate the area under the curve in a i
subinterval by a simple polygon (rectangle, < 2
trapezoid) or a simple function (polynomial) - o:/j\ |
e 3.Sum the areas of the subintervals -2 : W :
I | |
* 4. Converge the integral by making more and 4 | |
more subintervals or using a more ek e

sophisticated weighting method X



Approach 1: Midpoint rule

* Approximate area as rectangle with height equal to the midpoint of
the subinterval f(x;,,,,) and width AX°
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Approach 2: Trapezoid rule

* Area of subintervals approximated as a trapezoid with subinterval
endpoints on the curve

* Area of trapezoid: Ax(a+b)/2
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A more accurate technique: Simpson’s Rule

* Approximate area of each subinterval by area under a
parabola passing through points f(x;), f(x;,1/),f(x;,1)




A more accurate technique: Simpson’s Rule
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Where does Simpson’s rule come from?

* Consider the parabolic curve:
g(z) = Az* + Bx + C

* We require it passes through the endpoints and midpoint of
our function f(x):
g(z;) = Ax; + Bx; + C = f(xy)
g(xH%) = Ax?+% —|—B£IJZ-_|_% +C = f(:CZ-Jr%)

g(xit1) = Aziyy + Brips + C = f(zi11)

e Solve for A,B,C

(=24 ) (@ — 241) (=) (@ — ;)

9(x) = f(z:)

(zi — fEH%)(ZEi — Tiy1) Tit1 — i) (Tit1 — $i+§)



Where does Simpson’s rule come from?

(2 —23) (2 — 2,y )

i+1) (@ — Tiy1) (x —x;)(x — xi01)

(zi — i+ @i — Tit1) 2 (%Jr% - iUi)(iUH% — Li+1

) +f(37z'+1)(

Tit1 — ) (Tit1 — Tiq1)

* Now we integrate over the subinterval:

/. i+1 g(x)dr = x; —6$z'+1 |:f(377,) + 4f(377;+%) + f(g;ZJrl)}



Errors in NC quadrature integration

* Error can be reduced by increasing the order of the polynomial or
increasing the number of subintervals

* We can estimate errors in a similar way as we did for numerical
differentiation (Taylor expand around points and take integrals), see,
e.g., Newman Section 5.2.

* For example, for the trapezoid rule:
1
27 ¢/ /
e = —Az”[f(a) — f(b)
12
 First term in Euler-Maclaurin formula
* Simpson’s rule is O(Ax?)
* |If we know the derivatives at the endpoints, we can calculate the error



Example: Evaluating the Fresnel integral

* Fresnel functions are used in optics to describe near-field diffraction
* They can be written as an integral (or infinite sum):
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Adaptive integration

* If we do not know f(x), we can still estimate the error:
* 1. Perform the integration with N; and N,=2*N, subintervals
* 2. For, e.g., the trapezoid rule, the error using N, will be four times that using
N2
e 3. The “exact” result, Iis: I = I + cAxy = Iy + cAx;
* 4. Then the error on the second estimate is:
1

€2 = cAx; = g(lg — 1)

* We can use this approach to decide when our integral is converged to
our satisfaction
e Keep doubling the number of subintervals until the error is small enough
e Can use the results from previous function evaluations (See Newman Sec. 5.3
and 5.4 or Garcia Sec. 10.2)



Romberg Integration

e If i indicates a step in the procedure on the previous slide (i.e.,
doubling the number of subintervals), then we can write the integral
as:

1
=1+ §(12- —I;_1) + O(Az*)
e Equivalent to Simpson’s rule!

* For every additional step (doubling of subintervals), we can build
more and more accurate estimates

e See Newman Sec. 5.4 or Garcia Sec. 10.2 for more details



Dealing with infinity as a limit (Newman Sec. 5.8)

» Say we need to integrate over half of the number line:

I /OOO F(2)da

* It is impractical to simply increase the upper bound until convergence

* Instead, make a change of variables:

x z
= — I =
r+1 1 —=2
d
dr = ©
(1—2)°
* So the integral is: Lt (1;)
[:/ dz



Beyond Newton-Cotes: Gaussian Quadrature

* As an extra degree of freedom, lets vary the space between
Integration points

* We must first determine integration rules for unequal spacing
 How do we determine weights?

/ flz)dr ~ wif(x1) + ... + wnf(xn)

* Then, we choose a particular optimal choice of nonuniform points

* Many types of Gaussian quadrature



Theorem behind Gaussian integration

* Lt g(x) be a polynomial of degree N such that:

b
Q/qwm@nwx:o

* k=0,...,N-1 and p(x) is a specified weight function
* Choose x4, x,,...,xy as the roots of the polynomial g(x), and use them as grid points:

L/f@M@Mmsz@ﬂ+wﬁ@ﬂ+m+wwﬂmﬂ

There exists a set of w’s where this formula is exact if f(x) is a polynomial of degree
<2N (!1)

Note that with N values, we can fit an N-1 degree polynomial and derive an
integration formula exact for polynomials of order <N

* Very accurate for curves well approximated as high-degree polynomials
* Many choices of weighting function, p(x), leading to different g's and x's and w's



Example from Garcia Sec. 10.3:
Three-point Gauss-Legendre rule

* Three-point: Three grid points in the interval [-1,1]
* g(x) is cubic

* Take as the weight function p(x)=1 (Gauss-Legendre)
* We can convert an arbitrary interval [a,b] to [1,-1]:

z— 2(b+a)

1 1
:§(b—|-a)+§(b—a)z = z=

1
dx (b—a

[ o5 [ i

2(b—a)




Step 1: Find polynomial g(x)

q(x) = co + c12 + cax® + c3x”

* Apply the theorem to get three equations for the coefficients:

1
\
/_1 q(z)dz =0 General Solution:
1 _ — _ _
/ vq(2)dz = 0 . Co 0_7 C1 | a, Cs O? C3 5-a/3
1 * g is an arbitrary constant, if we take it
1 to be 3/2, we get the Legendre
/ QjQQ(Qj)d:}j — 0 polynomial P5(x):
-1 ~ 5 4 3

q(z) = 5% 5%



Step 2: Find the roots

* Easily factors to:

e So out quadrature becomes:

/_1 f(z)dx ~ UJlf(_\/%) + wa f(0) + w3 f(1/3/5)



Step 3: Find the weights

* The theorem tells us that this quadrature is exact for polynomials up

to degree 2N-1
1

e Start with f(x)=1: /1 dr =2 = wy + wg + ws

1
* Now f(x)=x: / rdr = 0= —+/3/5w1 + \/3/5ws

—1

2 /1 2 = 2 = Sy 4 2
e Ei —y2- rdr = - = -w — W
Finally f(x)=x*: » 3 — W1 T EWs

R AU BN
* Solve to get: 1= W2=73 Ws=g



Put It together:
3 point Gauss-Legendre quadrature

[ e 2B + 10+ 2i/3P



Example: Error function
2 T
erf(x):—/ e ¥ dy
0

e Evaluate erf(1):

Exact: 0.8427007929497148

3-point Trapezoid: 0.8252629555967492 , Error: -0.017437837352965557
3-point Simpsons: 0.843102830042981 , Error: 0.0004020370932662498

3-point Gauss-Legendre: 0.8426900184845107 , Error: -1.0774465204033135e-05



Example: 5" degree polynomial

1
[:/ (1+ 2% +2° + 2* + 2°)dz
0

Exact: 2.4499999999999997

3-point Trapezoid: 2.734375 , Error: 0.28437500000000027

3-point Simpsons: 2.4791666666666665 , Error: 0.029166666666666785
3-point Gauss-Legendre: 2.45 , Error: 4.440892098500626e-16



Weights and positions have been tabulated
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* From Newman Sec. 5.6: |
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Figure 5.4: Sample points and weights for Gaussian quadrature. The positions and heights of the bars represent

the sample points and their associated weights for Gaussian quadrature with (a) N = 10.and (b) N = 100

Table 10.7: Grid points and weights for Gauss-Legendre integration.

* From Garcia 10.3:

[:t.’l.’i
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N=2
0.5773502692
N'=3
0.0000000000
0.7745966692
N =4
0.3399810436
0.8611363116
N =35
0.0000000000
0.5384693101
LO.9061 798459

1.0000000000

0.8888888889
0.55555H65556

0.6521451549
0.3478548451

0.5688888889
0.4786286705
0.2369268850

N =8
0.1834346425
0.5255324099
0.7966664774
0.9602898565
N =12
0.1252334085
0.3678314990
0.5873179543
0.7699026742
0.9041172564
0.9815606342

0.3626837834
0.3137066459
0.2223810345
0.1012285363

0.2491470458
0.2334925365
0.2031674267
0.1600783285
0.1069393260
0.0471753364




Types of Gaussian Quadrature

Orthogonal polynomials

Interval wix)
-1, 1] 1 Legendre palynamials
-0 (1 —a2)* (14 -_1:'].'3, o, 3> —1 Jacobi polynomials
o 1 Chebyshey polynomials
1.1 V;]- — 2 (first kind)
— Chebyshewv polynomials

-1,1 .
=111 V1—w (second kind)
Laguerre palynomials

[0, =) e "

(0, =) o —x Generalized Laguerre
- N polynomials

[ C—EE Hermite palynomials

For more information, see ...

A&S
25 4 29 Section Gauss—Legendre
guadrature, above

2;4:3?.]5 Gauss—Jacobi quadrature
25.4.38 Chebyshev—Gauss quadrature
25440 Chebyshev—Gauss quadrature
25445 Gauss—Laguerre quadrature
Gauss—Laguerre quadrature
254 46 Gauss—Hermite quadrature

(Wikipedia)

* Roots and weights are tabulated, so no need to compute them



Choosing an integration method (newman sec. 5.7)

* Trapezoid method:
* Trivial to program
* Equally spaced points, often true of experimental data
* Good choice for poorly behaved data (noisy, singularities)
* Adaptive method gives guaranteed accuracy level
* Not very accurate for given number of points

 Romberg integration:
e Equally spaced points, often true of experimental data
e Guaranteed accuracy level

e Potentially high accuracy for small number of points
* Will not work well for noisy of pathological data/integrands

e Gaussian Quadrature
» Potentially high accuracy for small number of points

e Simple to program (weights and roots tabulated)

* Will not work well for noisy of pathological data/integrands
* Need to have data on specific, unequally-spaced grid



After class tasks

* If you do not already have one, make an account on github:
https://github.com/

* Let me know if you having issues with github classroom!

* Readings:
* Newman Chapter 5
* Garcia Section 10.2


https://github.com/
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