PHY604 Lecture 5

September 9, 2025

Today's lecture:

Finish discussing Numerical Integration

- Begin discussing interpolation
 - Lagrange Interpolation
 - Cubic splines

Choosing an integration method (Newman Sec. 5.7)

Trapezoid method:

- Trivial to program
- Equally spaced points, often true of experimental data
- Good choice for poorly behaved data (noisy, singularities)
- Adaptive method gives guaranteed accuracy level
- Not very accurate for given number of points

Romberg integration:

- Equally spaced points, often true of experimental data
- Guaranteed accuracy level
- Potentially high accuracy for small number of points
- Will not work well for noisy of pathological data/integrands

Gaussian Quadrature

- Potentially high accuracy for small number of points
- Simple to program (weights and roots tabulated)
- Will not work well for noisy of pathological data/integrands
- Need to have data on specific, unequally-spaced grid

Today's lecture:

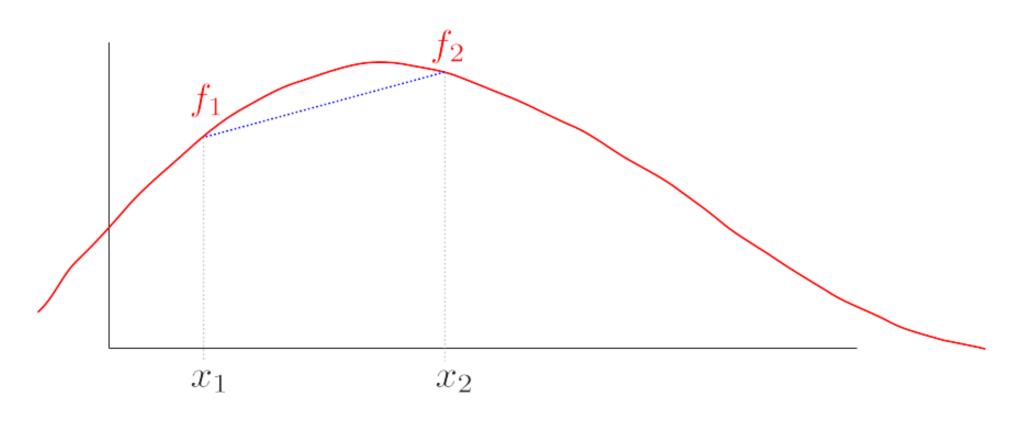
Finish discussing Numerical Integration

- Begin discussing interpolation
 - Lagrange Interpolation

Interpolation (see Pang Ch. 2)

- Interpolation is needed when we want to infer some local information from a set of incomplete or discrete data
 - E.g., experimental data or from computational simulations
- Many different types of interpolation based on assumptions about and requirements for the data
 - Some ensure no new extrema are introduced
 - Some match derivatives at end points
 - Need to balance number of points used against pathologies (e.g., oscillations)
- Interpolations and fitting are different!
 - Interpolation seeks to fill in missing information in some small region of the whole dataset
 - Fitting a function to the data seeks to produce a model (guided by physical intuition) so you can learn more about the global behavior of your data

Linear interpolation: Draw a line between two points



$$f(x) = \frac{f_2 - f_1}{x_2 - x_1}(x - x_1) + f_1$$

Errors in linear interpolation

• Exact value at
$$x$$
: $f(x) = f_i + \frac{x - x_i}{x_{i+1} - x_i} (f_{i+1} - f_i) + \Delta f(x)$
Linear interpolant

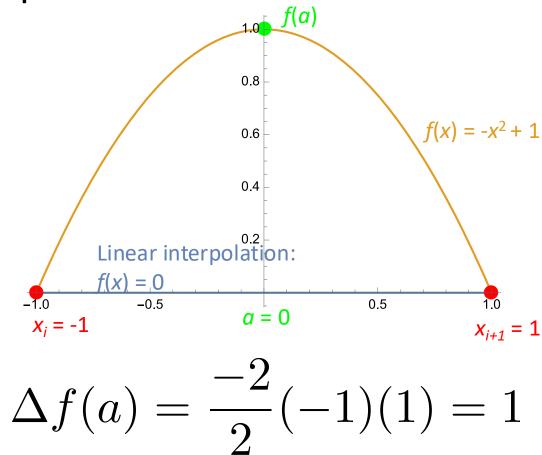
- What is $\Delta f(x)$?
 - Consider point x = a where a is in $[x_i, x_{i+1}]$
 - Fit a quadratic to the function at x_i , a, x_{i+1}

$$\Delta f(x) = \frac{f''(x)}{2} (x - x_i)(x - x_{i+1}) \bigg|_{x=a}$$

- As long as f is smooth in the region $[x_i, x_{i+1}]$
- Error of order: $\mathcal{O}(\Delta x^2)$

• Max error:
$$|\Delta f(x)| \leq \frac{\max[|\Delta f''(x)|]}{8}(x_{i+1}-x_i)^2$$

Simple example of errors in linear interpolation:



• General case: Fit a parabola as we did for Simpson's rule

General approach for interpolation schemes

Continuous curve is constructed from given discrete set of data

Interpolated value is read off the curve

• The more points, the higher order the curve can be

One way to achieve higher-order interpolation is through Lagrange interpolation

Lagrange interpolation

- General method for building a single polynomial that goes through all the points (alternate formulations exist)
- Given n points: x_0, x_1, \dots, x_{n-1} , with associated function values: f_0, f_1, \dots, f_{n-1}
 - Construct basis functions: $l_i(x) = \prod_{j=0, i \neq j}^{n-1} \frac{x-x_j}{x_i-x_j}$
 - Note basis function I_i is 0 at all x_i except for x_i (where it is one)
 - Function value at \mathbf{x} is: $f(\mathbf{x}) = \sum_{i=0}^{n-1} l_i(\mathbf{x}) f_i$

Example: Quadratic Lagrange polynomial

- Three points: (x_0,f_0) , (x_1,f_1) , (x_2,f_2)
- Three basis functions:

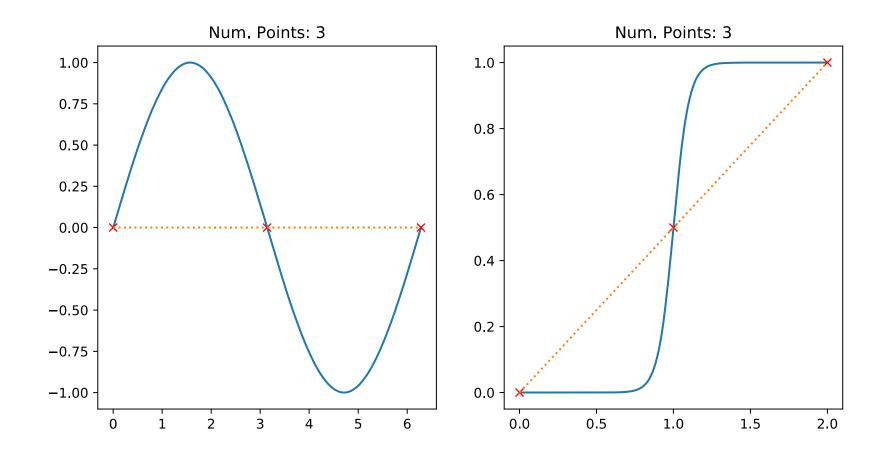
$$l_0 = \frac{x - x_1}{x_0 - x_1} \frac{x - x_2}{x_0 - x_2} = \frac{(x - x_1)(x - x_2)}{2\Delta x^2}$$

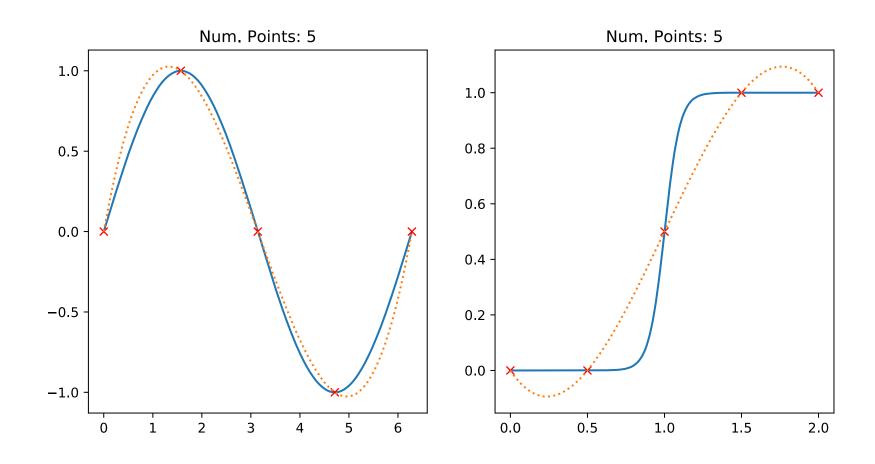
$$l_1 = \frac{x - x_0}{x_1 - x_0} \frac{x - x_2}{x_1 - x_2} = \frac{(x - x_0)(x - x_2)}{\Delta x^2}$$

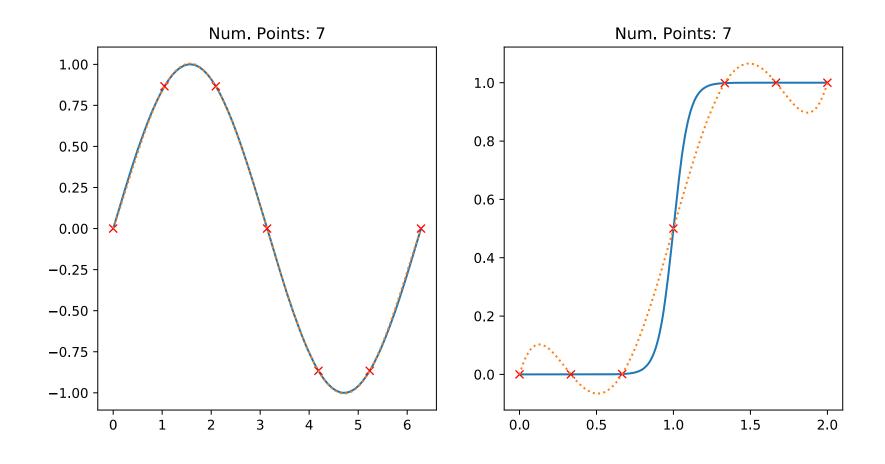
$$l_2 = \frac{x - x_0}{x_2 - x_0} \frac{x - x_1}{x_2 - x_1} = \frac{(x - x_0)(x - x_1)}{2\Delta x^2}$$

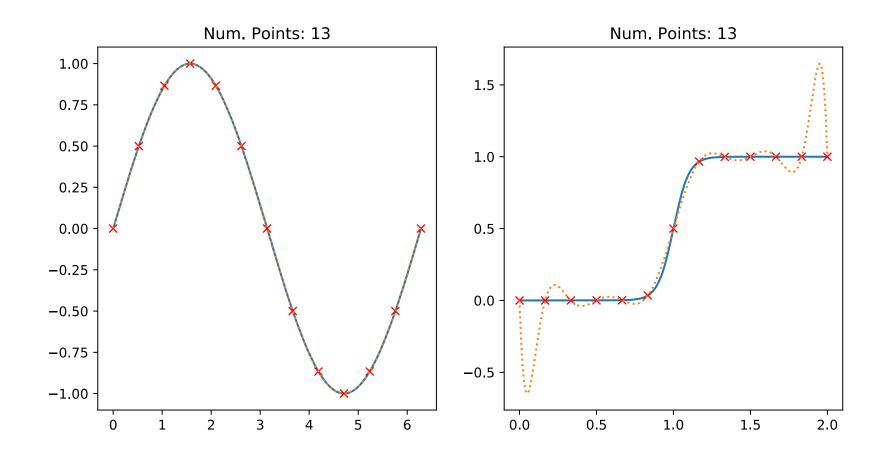
Polynomial:

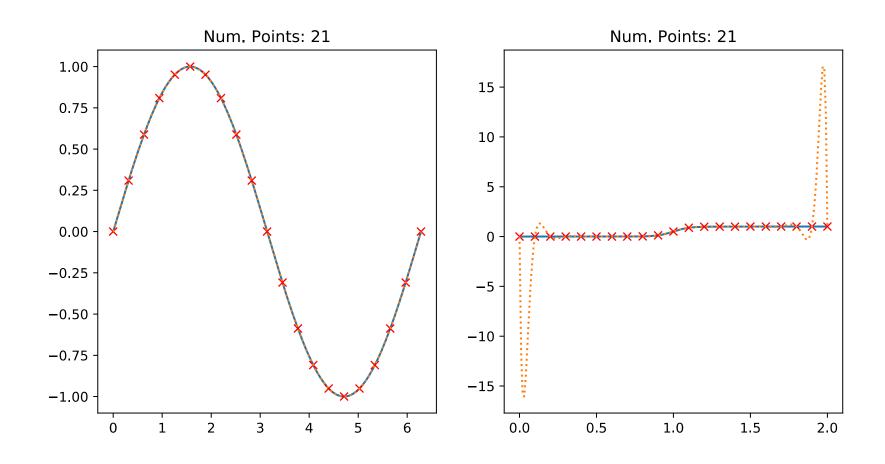
$$f(x) = f_0 \frac{(x - x_1)(x - x_2)}{2\Delta x^2} - f_1 \frac{(x - x_0)(x - x_2)}{\Delta x^2} + f_2 \frac{(x - x_0)(x - x_1)}{2\Delta x^2}$$







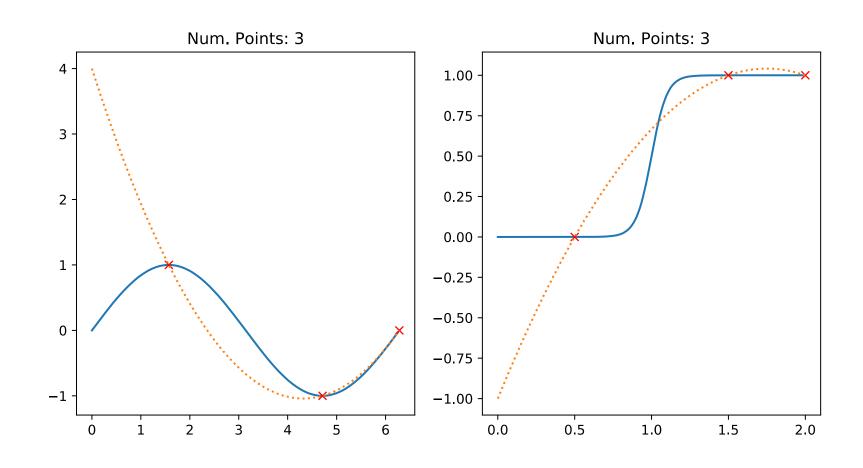


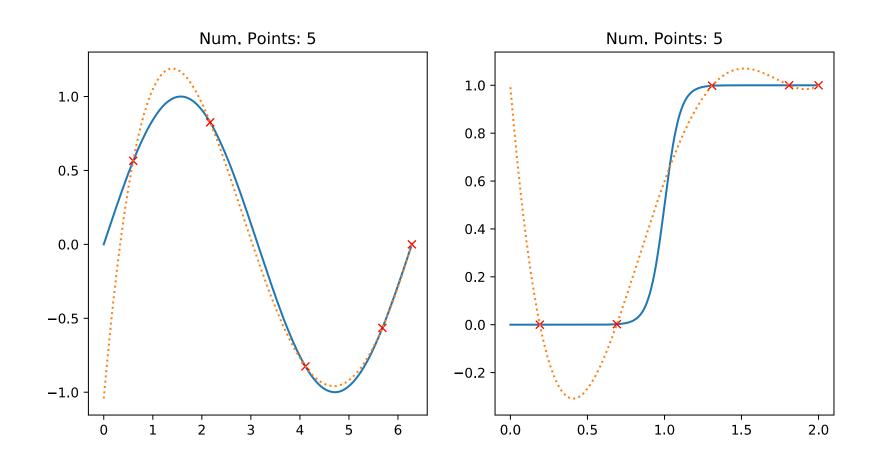


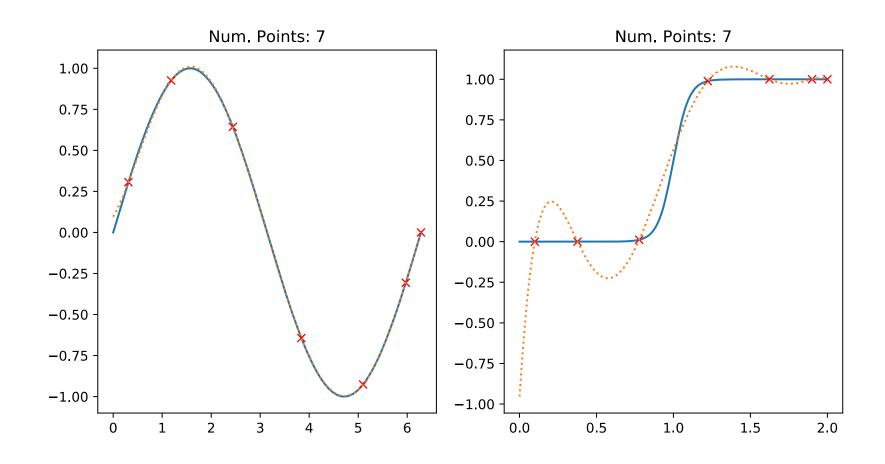
Example: Lagrange Interpolation of two functions MORE IS NOT ALWAYS BETTER

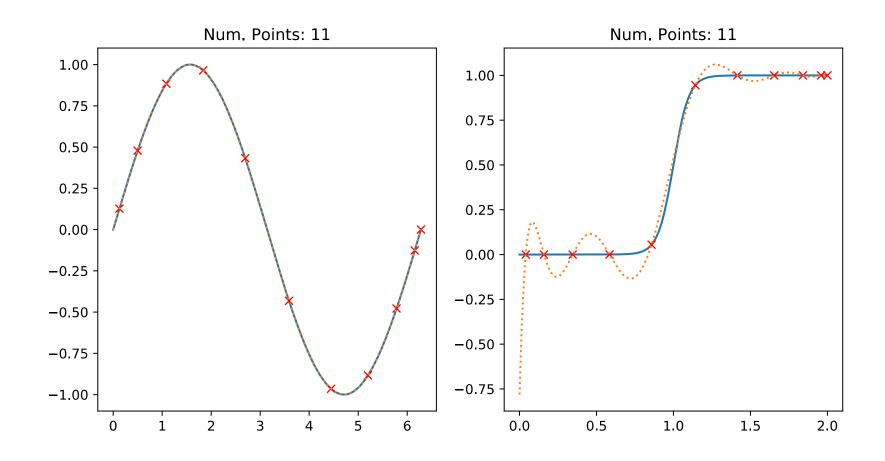
- For the hyperbolic tangent case, increasing the number of points beyond a certain limit increases the error
 - Runge phenomena: Oscillations at the edges of the interval
 - Increasing the number of points causes a divergence in the error
- Can do better by varying the spacing of the interpolating points
 - e.g., Chebyshev polynomial roots are concentrated toward the end of the interval
 - Chebyshev polynomial spacing is usually (almost always) convergent with the number of interpolating points

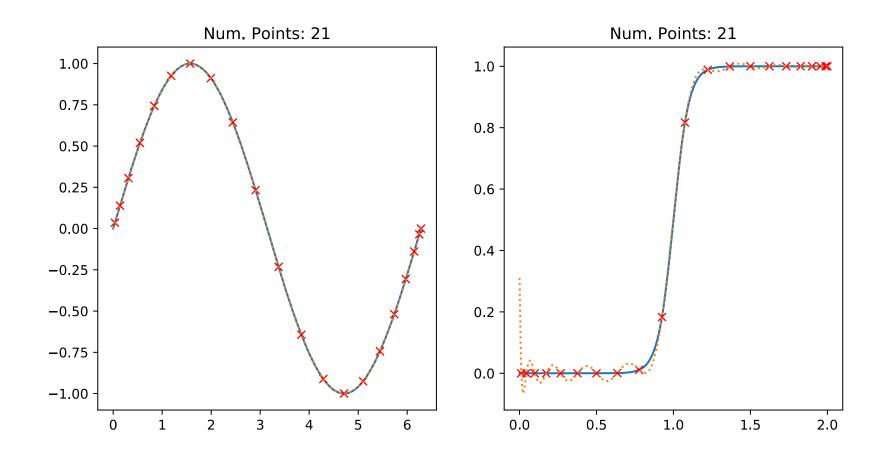
$$x_k = \frac{1}{2}(a+b) + \frac{1}{2}(b-a)\cos\left(\frac{2k+1}{2n}\pi\right), \quad k = 0, ..., n-1$$

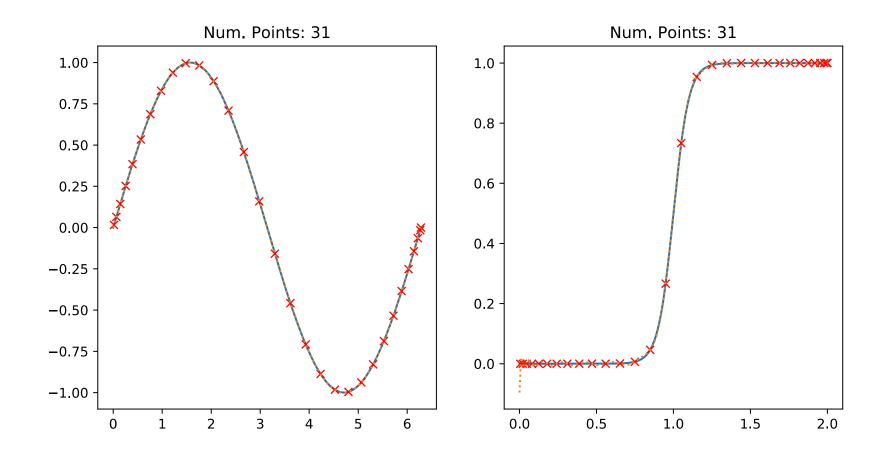


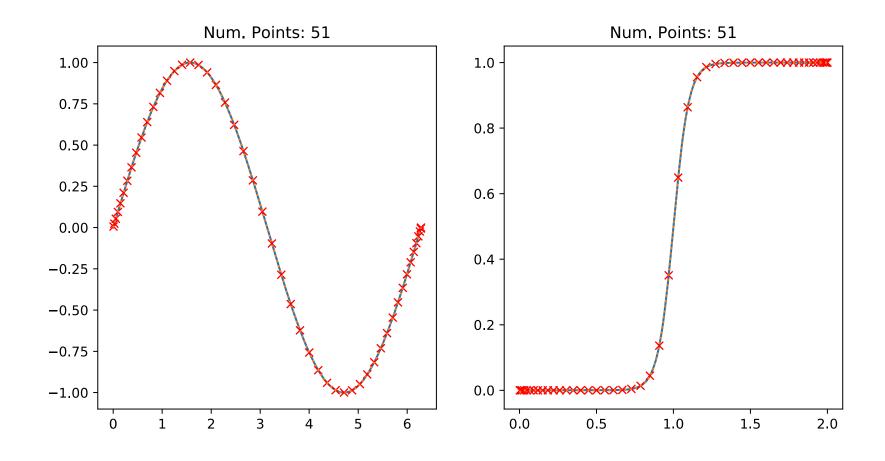












Today's lecture:

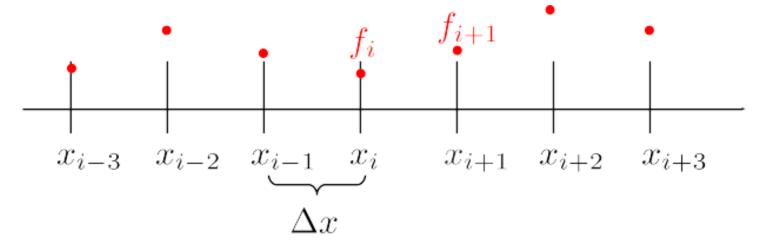
Finish discussing Numerical Integration

- Begin discussing interpolation
 - Lagrange Interpolation
 - Cubic splines

Splines (Pang Sec. 2.4)

- So far, we've only worried about going through the specified points
- Large number of points → two distinct options:
 - Use a single high-order polynomial that passes through them all
 - Fit a (somewhat) high order polynomial to each interval and match all derivatives at each point—this is a spline
- Splines match the derivatives at end points of intervals
 - Piecewise splines can give a high-degree of accuracy
- Cubic spline is the most popular
 - Matches first and second derivative at each data point
 - Results in a smooth appearance
 - Avoids severe oscillations of higher-order polynomial

Splines



- We have a set of regular-spaced discrete data: $f_i = f(x_i)$ at $x_0, x_1, x_2, ..., x_n$
- m-th order polynomial to approximate f(x) for x in $[x_i, x_{i+1}]$:

$$p_i(x) = \sum_{k=0}^{m} c_{ik} x^k$$

• Coefficients chosen so $p_i(x_i)=f_i$ and from smoothness condition: all derivatives (*I*) match at the endpoints

$$p_i^{(l)}(x_{i+1}) = p_{i+1}^{(l)}(x_{i+1}), \quad l = 0, 1, ..., m-1$$

Except for points on the boundary of the curve

Splines: Determining the coefficients

• There are *n* intervals; in each interval: *m*+1 coefficients for the polynomial

- Total: (m+1)n coefficients:
 - Smoothness condition on interior points: (m)(n-1) equations
 - Curve passing through interior points: (*n*-1) equations
 - Remaining m+1 equations from imposing conditions on derivatives at end points
 - Natural spline: Setting highest-order derivative to zero at both endpoints

Most popular: Cubic splines, m = 3

Easy to implement

Produce a curve that appears to be seamless

Avoids distortions near the edges

• Only piecewise continuous, third derivatives are discontinuous

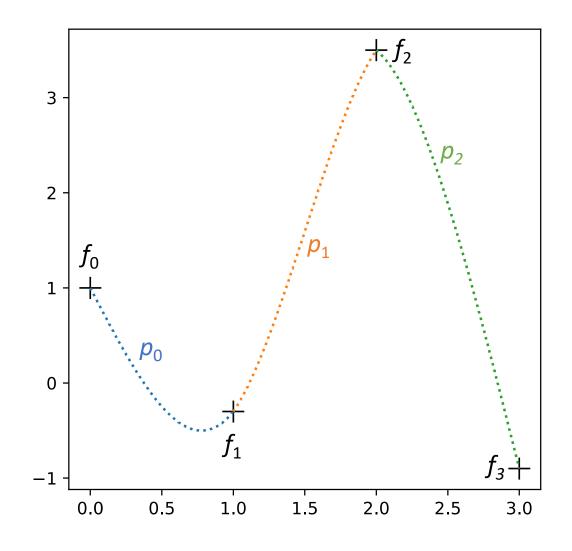
Cubic spline example: 3 intervals

• Order: m=3, intervals: n=3, points: x=0, 1, 2, 3

• Constraints: (m+1)n = 12

• Interior point 1: $p_0(x_1) = f_1$ $p_1(x_1) = f_1$ $p_0'(x_1) = p_1'(x_1)$ $p_0''(x_1) = p_1''(x_1)$

• Interior point 2: $p_1(x_2) = f_2$ $p_2(x_2) = f_2$ $p_1'(x_2) = p_2'(x_2)$ $p_1''(x_2) = p_2''(x_2)$



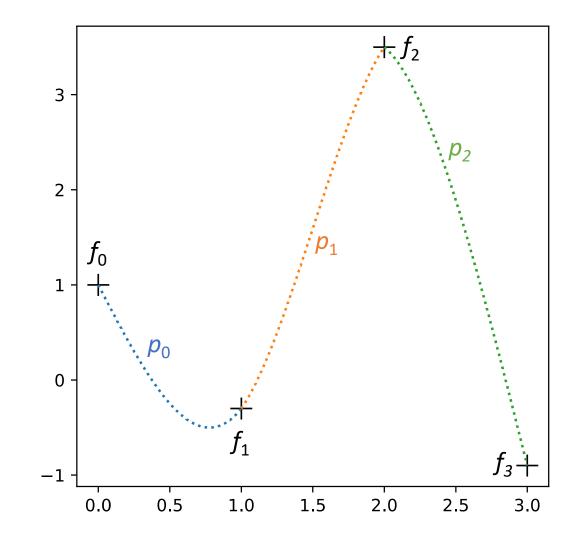
Cubic spline example: 3 intervals

• At the boundaries:

$$p_0(x_0) = f_0$$
$$p_2(x_3) = f_3$$

• Natural spline, second derivatives at the boundary set to zero

$$p_0''(x_0) = 0$$
$$p_2''(x_3) = 0$$



Now solve for the coefficients:

• Linearly interpolate the second derivative:

$$p_i''(x) = \frac{1}{\Delta x} \left[(x - x_i) p_{i+1}'' - (x - x_{i+1}) p_i'' \right]$$

• Integrate twice:

$$p_i(x) = \frac{1}{6\Delta x} \left\{ p_{i+1}'' \left[(x - x_i)^3 + 6A(x - x_i) \right] - p_i'' \left[(x - x_{i+1})^3 + 6B(x - x_{i+1}) \right] \right\}$$

• Impose constraints: $p_i(x_i) = f_i$, $p_i(x_{i+1}) = f_{i+1}$

Now solve for the coefficients:

$$p_i(x) = \alpha_i(x - x_i)^3 + \beta_i(x - x_{i+1})^3 + \gamma_i(x - x_i) + \eta_i(x - x_{i+1})^3$$

• Results:

$$\alpha_i = \frac{p''_{i+1}}{6\Delta x}, \ \beta_i = -\frac{p''_{i}}{6\Delta x}, \ \gamma_i = \frac{-p''_{i+1}\Delta x^2 + 6f_{i+1}}{6\Delta x}, \ \eta_i = \frac{p''_{i}\Delta x^2 - 6f_{i}}{6\Delta x}$$

For now, in terms of second derivative

To get second derivative, use continuity condition

$$p'_{i-1}(x_i) = p'_i(x_i)$$

Now solve for the coefficients:

$$p_{i-1}'' \Delta x + 4p_i'' \Delta x + p_{i+1}'' \Delta x = \frac{6}{\Delta x} (f_{i-1} - 2f_i + f_{i+1})$$

- Applies to all interior points
- Natural boundary conditions:

$$p_0'' = 0, \ p_n'' = 0$$

Results in a system of linear equations

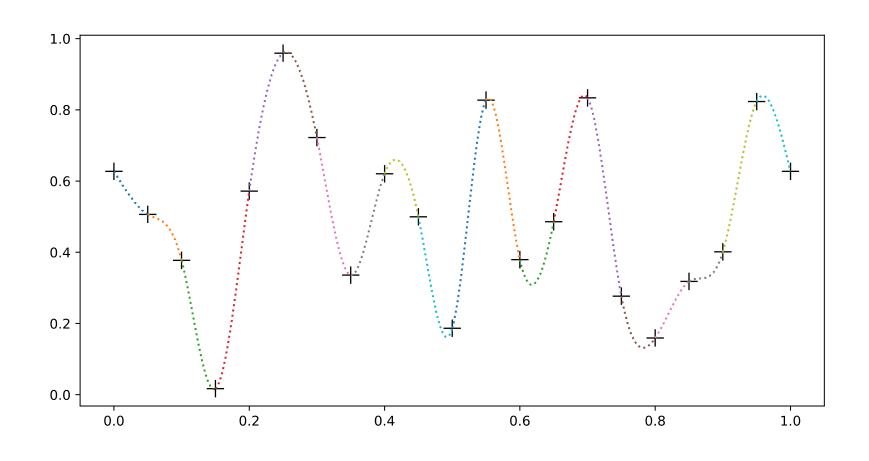
Results in system of linear equations

Can be written as a tridiagonal matrix:

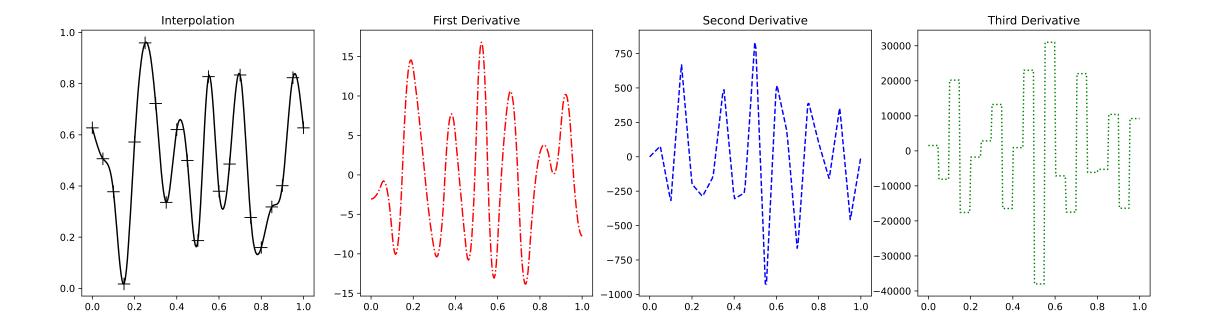
$$\begin{pmatrix} 4\Delta x & \Delta x & & & & \\ \Delta x & 4\Delta x & \Delta x & & & \\ & \Delta x & 4\Delta x & \Delta x & & \\ & & \ddots & \ddots & \ddots & \\ & & & \Delta x & 4\Delta x & \Delta x \\ & & & \Delta x & 4\Delta x & \Delta x \\ & & & \Delta x & 4\Delta x & \Delta x \\ \end{pmatrix} \begin{pmatrix} p_1'' \\ p_2'' \\ p_3'' \\ \vdots \\ p_{n-2}'' \\ p_{n-1}'' \end{pmatrix} = \frac{6}{\Delta x} \begin{pmatrix} f_0 - 2f_1 + f_2 \\ f_1 - 2f_2 + f_3 \\ f_2 - 2f_3 + f_4 \\ \vdots \\ f_{n-3} - 2f_{n-2} + f_{n-1} \\ f_{n-2} - 2f_{n-1} + f_n \end{pmatrix}$$

We will discuss linear algebra in a later class

Example: Cubic spline for random numbers



Example: Derivatives of cubic splines



After class tasks

- Readings:
 - Pang Section 2.1 and 3.3
 - Wikipedia article on Chebyshev nodes
 - Myths about polynomial interpolation