PHY604 Lecture 5

September 9, 2025



Today’s lecture:

* Finish discussing Numerical Integration

* Begin discussing interpolation
e Lagrange Interpolation
* Cubic splines



Choosing an integration method (newman sec. 5.7)

* Trapezoid method:
* Trivial to program
* Equally spaced points, often true of experimental data
* Good choice for poorly behaved data (noisy, singularities)
* Adaptive method gives guaranteed accuracy level
* Not very accurate for given number of points

 Romberg integration:
e Equally spaced points, often true of experimental data
e Guaranteed accuracy level

e Potentially high accuracy for small number of points
* Will not work well for noisy of pathological data/integrands

e Gaussian Quadrature
» Potentially high accuracy for small number of points

e Simple to program (weights and roots tabulated)

* Will not work well for noisy of pathological data/integrands
* Need to have data on specific, unequally-spaced grid



Today’s lecture:

* Begin discussing interpolation
* Lagrange Interpolation



| nte rpO|atIOﬂ (see Pang Ch. 2)

* Interpolation is needed when we want to infer some local
information from a set of incomplete or discrete data
* E.g., experimental data or from computational simulations

* Many different types of interpolation based on assumptions about
and requirements for the data
* Some ensure no new extrema are introduced
 Some match derivatives at end points
* Need to balance number of points used against pathologies (e.g., oscillations)

* Interpolations and fitting are different!

* Interpolation seeks to fill in missing information in some small region of the
whole dataset

* Fitting a function to the data seeks to produce a model (guided by physical
intuition) so you can learn more about the global behavior of your data



_inear interpolation:
Draw a line between two points

_ L h

(z — 1) + f1
To — 1



Errors in linear interpolation

r — I
* Exact value at x: f(z) = f; 1 — (fix1 — fi) + Af(x)
Li+1 — Ly
Linear interpolant

 What is Af(x)?
* Consider point x = a where a is in [x;,x;,4]
* Fit a quadratic to the function at x;, a, x;,,

Afa) = T3

* As long as f is smooth in the region [x;,x;,4]
* Error of order: O(Axz?)

* Max error: ‘Af(:l?)‘ <

(T —xi) (T — Tig1)

max||Af"(z)]
8

(xq;+1 — %;)2



Simple example of errors in linear interpolation:

1.08
08
06

04

. . 0.2 -
Linear interpolation:

* General case: Fit a parabola as we did for Simpson’s rule



General approach for interpolation schemes

e Continuous curve is constructed from given discrete set of data
* Interpolated value is read off the curve
* The more points, the higher order the curve can be

* One way to achieve higher-order interpolation is through Lagrange
interpolation



Lagrange interpolation

* General method for building a single polynomial that goes through all
the points (alternate formulations exist)

* Given n points: X, X4, ... , X,,.1, With associated function values: f,, f;,
Y fn-l
n—1

* Construct basis functions: [;(z) = H

7=0,17#7
* Note basis function /;is 0 at all x; except for x; (where it is one)

Q?—CUj

ZIZ‘@'—ZUj

n—1

» Function value at xis: f(x) = Z li(x) fi

1=0



Example: Quadratic Lagrange polynomial

* Three points: (xu.fo), (X1.f1), (X5,15)

* Three basis functions:

;T oT1 3T  (z—21)(T — 12)
O_ZEO—CUl.ZBO—ZUQ_ 2A$2

r— Xy T — To (x — xo)(x — 2)
ll — —_ —

1 — To X1 — X2 Ax?

r—x9 T — T (x — o) (x — 1)
l2 p— p—

Ty — T T2 — T 2A 12

* Polynomial:

f(z) = fo (x —x1) (2 — 22) (x — x0)(x — x2) (2 — zo)(z — 21)

— 1

+ f2

2A 12 Ax? 2A 12



Example: Lagrange Interpolation of two

functions
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Example: Lagrange Interpolation of two

functions
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Example: Lagrange Interpolation of two

functions
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Lagrange Interpolation of two

Example
functions

Num. Points: 13

Num. Points: 13
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Lagrange Interpolation of two

Example
functions

Num. Points: 21

Num. Points: 21
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Example: Lagrange Interpolation of two
functions MORE IS NOT ALWAYS BETTER

* For the hyperbolic tangent case, increasing the number of points
beyond a certain limit increases the error
* Runge phenomena: Oscillations at the edges of the interval
* Increasing the number of points causes a divergence in the error

e Can do better by varying the spacing of the interpolating points

* e.g., Chebyshev polynomial roots are concentrated toward the end of the
interval

* Chebyshev polynomial spacing is usually (almost always) convergent with the
number of interpolating points

1 1 2k +1
mki(a+b)+§(b—a)cus( 5 w), k=0,.,n—1



Example: Lagrange Interpolation of two
functions with Chebyshev nodes
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Example: Lagrange Interpolation of two
functions with Chebyshev nodes
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Example: Lagrange Interpolation of two
functions with Chebyshev nodes
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Example: Lagrange Interpolation of two
functions with Chebyshev nodes

Num. Points: 11
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Example: Lagrange Interpolation of two
functions with Chebyshev nodes
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Lagrange Interpolation of two
functions with Chebyshev nodes

Example

Num. Points: 31

Num. Points: 31
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Example: Lagrange Interpolation of two
functions with Chebyshev nodes
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Today’s lecture:

* Begin discussing interpolation

* Cubic splines



S p‘ | nes (Pang Sec. 2.4)

* So far, we've only worried about going through the specified points

* Large number of points - two distinct options:
e Use a single high-order polynomial that passes through them all
* Fit a (somewhat) high order polynomial to each interval and match all
derivatives at each point—this is a spline
* Splines match the derivatives at end points of intervals
e Piecewise splines can give a high-degree of accuracy

e Cubic spline is the most popular
* Matches first and second derivative at each data point
e Results in a smooth appearance
* Avoids severe oscillations of higher-order polynomial



Splines :

* We have a set of regular-spaced discrete data: f=f(x;) at xg,x1,X5,...,X,

* m-th order polynomial to approximate f(x) for xin [x;,x;,4]:
™m

pi(z) =) cipa
k=0
* Coefficients chosen so p,(x;)=f; and from smoothness condition: all
derivatives (/) match at the endpoints

pgl)(wm) = p§21(£€¢+1), [=0,1,....m—1

* Except for points on the boundary of the curve



Splines: Determining the coefficients

 There are n intervals; in each interval: m+1 coefficients for the
polynomial

e Total: (m+1)n coefficients:
* Smoothness condition on interior points: (m)(n-1) equations

e Curve passing through interior points: (n-1) equations

 Remaining m+1 equations from imposing conditions on derivatives at end
points

* Natural spline: Setting highest-order derivative to zero at both endpoints



Most popular: Cubic splines, m =3
e Easy to implement

* Produce a curve that appears to be seamless

* Avoids distortions near the edges

* Only piecewise continuous, third derivatives are discontinuous



Cubic spline example: 3 intervals

* Order: m=3, intervals: n=3, points: x=0, 1, 2, 3

e Constraints: (m+1)n =12

* Interior point 1: PO

* Interior point 2:
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Cubic spline example: 3 intervals

* At the boundaries: +f
3 - :
po(xo) = fo
p2(r3) = f3 |
* Natural spline, second derivatives 1_1;2
at the boundary set to zero
x\po
po (o) = 0 of
pg(l‘g) — 0 e
—1 - f3—1—
010 Oj5 110 1j5 2fo 2j5 3i0




Now solve for the coefficients:

 Linearly interpolate the second derivative:

1
Pfg/(l’) = A [(33 — jS)p{il—l—l —(x — $i+1)l92’}

* Integrate twice:
1
pi(x) = e {p;’ﬂ [(x —x;)° + 6A(x — :C,L)] — [(a: — Ti41)° +6B(x — £U¢+1)} }

* Impose constraints: Di (:E‘L) = fi, pi($i+1) = fi+1



Now solve for the coefficients:

pi(x) = oi(z — 2;)° + Bi(@ — wi11)” + (@ — @) + ni(@ — @iq1)

* Results:
;= Pit1 B; = — Py | —pi11Az% 4+ 6fi 1 - piAx® —6f;
T 6Az T T 6Ax T 6Ax T 6A 1

* For now, in terms of second derivative

* To get second derivative, use continuity condition

pi_1 () = pi(;)



Now solve for the coefficients:

6

pi_1 Az +4p] Ax + pil  Ax = — N

(fi1 = 2fi + fit1)
e Applies to all interior points
* Natural boundary conditions:
po =0, p, =0
* Results in a system of linear equations



Results in system of linear equations

* Can be written as a tridiagonal matrix:

/ ANAxr Ax
Axr 4Ax
Ax

* We will discuss linear algebra in a later class

Ax
4A\x

Ax

)

Axr 4Ax Ax

Az 4Az)

[ pY
P
ps

!/
pn—2

\P%-l

/ Jo—2f1+ 2 \
J1—2f2+ f3
Jo—2f3+ J4

Fos = 2fn 2+ a1

\ fn—2 o 2fn—1 T fn )



Example: Cubic spline for random numbers
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INes

Derivatives of cubic spl

Example

Third Derivative

First Derivative Second Derivative

Interpolation
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After class tasks

* Readings:
e Pang Section 2.1 and 3.3
* Wikipedia article on Chebyshev nodes
* Myths about polynomial interpolation



https://en.wikipedia.org/wiki/Chebyshev_nodes
https://en.wikipedia.org/wiki/Chebyshev_nodes
https://people.maths.ox.ac.uk/trefethen/mythspaper.pdf
https://people.maths.ox.ac.uk/trefethen/mythspaper.pdf
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