
PHY604 Lecture 6
September 11, 2025



Today’s lecture:

• Finish discussing interpolation
• Cubic splines

• Root finding



Splines (Pang Sec. 2.4)

• So far, we've only worried about going through the specified points

• Large number of points → two distinct options:
• Use a single high-order polynomial that passes through them all

• Fit a (somewhat) high order polynomial to each interval and match all 
derivatives at each point—this is a spline

• Splines match the derivatives at end points of intervals
• Piecewise splines can give a high-degree of accuracy

• Cubic spline is the most popular
• Matches first and second derivative at each data point

• Results in a smooth appearance

• Avoids severe oscillations of higher-order polynomial



Splines

• We have a set of regular-spaced discrete data: fi=f(xi) at x0,x1,x2,…,xn

• m-th order polynomial to approximate f(x) for x in [xi,xi+1]: 

• Coefficients chosen so pi(xi)=fi and from smoothness condition: all 
derivatives (l) match at the endpoints

• Except for points on the boundary of the curve



Determining the coefficients

• There are n intervals; in each interval: m+1 coefficients for the 
polynomial 

• Total: (m+1)n coefficients:
• Smoothness condition on interior points: (m)(n-1) equations

• Curve passing through interior points: (n-1) equations

• Remaining m+1 equations from imposing conditions on derivatives at end 
points
• Natural spline: Setting highest-order derivative to zero at both endpoints



Most popular: Cubic splines, m = 3

• Easy to implement

• Produce a curve that appears to be seamless

• Avoids distortions near the edges

• Only piecewise continuous, third derivatives are discontinuous



Cubic spline example: 3 intervals
• Order: m=3, intervals: n=3, points: x = 0, 1, 2, 3 

• Constraints: (m+1)n = 12

• Interior point 1:

• Interior point 2:
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Cubic spline example: 3 intervals

• At the boundaries:

• Natural spline, second derivatives 
at the boundary set to zero
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Now solve for the coefficients:

• Linearly interpolate the second derivative:

• Integrate twice:

• Impose constraints:



Now solve for the coefficients:

• Results:

• For now, in terms of second derivative

• To get second derivative, use continuity condition



Now solve for the coefficients:

• Applies to all interior points

• Natural boundary conditions:

• Results in a system of linear equations



Results in system of linear equations

• Can be written as a tridiagonal matrix:

• We will discuss linear algebra in a later class 



Example: Cubic spline for random numbers



Example: Derivatives of cubic splines



Today’s lecture:

• Finish discussing interpolation
• Cubic splines

• Root finding



Purpose: Find the root of a function
• Root of a function f(x) is xr such that:

• Why? We can cast more general solutions in the form of finding 
roots.
• Example: Suppose I have the following equation for velocity of a free-

falling mass m with a coefficient of drag cd:

• I would like to find the mass that would give me a velocity of 36 m/s after 
4s of free fall. We can do this by rewriting the equation as:

• And finding the root of f(m) for t = 4s and v = 36 m/s



Purpose: Find the root of a function

• For very simple functions, we can find the root analytically
• For more complicated functions, we must do this numerically

• First rule of root finding: If possible, plot the function to get an idea 
of where roots are, how many, etc.:



Bisection method
• 1. Choose two initial guesses for the root, a lower (xl) and upper (xu)

• Chosen such that the function evaluated at xl and xu have different signs 

• This can be checking by ensuring that: f(xl) f(xu) < 0

• 2. An estimate for the root is determined as the midpoint between 
the guesses 

• 3. Make the following evaluations to determine in which subinterval 
the root lies, and thus obtain a refined guess:
• If f(xl) f(xr) < 0, set xu = xr, return to step 2

• If f(xl) f(xr) > 0, set xl = xr, return to step 2

• If f(xl) f(xr) = 0 to some tolerance, xr is the root and the calculation is complete



Newton-Raphson method
• Let xr be a root of f(x). Expand f(x) in a Taylor series about around a 

different point x0 that is close to xr :

• Then:

• So:

• Of course, this is only accurate if x0 is close to xr, but we can use 
this relation to refine the guess for the root



Newton-Raphson method procedure

• 1. Make an initial guess for the root: x0

• 2. Use the Taylor series expansion to find a better estimate of  the 
root:

• 3. Use x1 as an improved estimate at the root and employ the 
Taylor series expansion again to get a better estimate x2

• Repeat process until the answer is accurate enough at the nth 
estimate:



Geometrical Interpretation of Newton-
Raphson Iteration

Initial guess at root

True 
root

First improved estimate of root       based on 
intercept of tangent line with slope

2nd improved estimate of root       based on 
intercept of tangent line with slope

3rd estimate

1
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Failure of Newton-Raphson

• Example of a simple function that will defeat Newton-Raphson Iteration:

• Each estimate gets further from the true root. Estimates are diverging 
not converging

3rd estimate1st estimate

2nd 
estimate



Stopping criteria for iterations must be 
chosen carefully
• Could stop when we reach some maximum number of iterations

• Estimate may be no where near the root

• We can consider this case a failure of the method and warn user about it.

3rd estimate1st estimate

2nd estimate



Stopping criteria for iterations must be 
chosen carefully
• Could stop when we reach some maximum number of iterations

• Estimate may be no where near the root

• We can consider this case a failure of the method and warn user about it.

• Could stop when value of the function evaluated at the nth estimate 

less than small number :    

• But this can be deceptive; final estimate may not be near the root, might just be 

close to zero



Stopping criteria for iterations must be 
chosen carefully
• Could stop when we reach some maximum number of iterations

• Estimate may be no where near the root

• We can consider this case a failure of the method and warn user about it.

• Could stop when value of the function evaluated at the nth estimate less 
than small number :    
• But this can be deceptive; final estimate may not be near the root, might just be 

close to zero

• Could stop when change between estimates becomes small relative to 
the current (nth) estimate:

• Better, but still fails when root is located at zero

 



Stopping criteria for iterations must be 
chosen carefully
• Could stop when we reach some maximum number of iterations

• Estimate may be no where near the root

• We can consider this case a failure of the method and warn user about it.

• Could stop when value of the function evaluated at the nth estimate less 
than small number :    
• But this can be deceptive; final estimate may not be near the root, might just be 

close to zero

• Could stop when change between estimates becomes small relative to 
the current (nth) estimate:

• Better, but still fails when root is located at zero

• So let's use:



Pseudocode of Newton-Raphson Algorithm

• 1. Choose initial guess at the root (x0), and the convergence 
tolerance ().

• 2. Loop through n up to a maximum number Nmax (exit and tell the 
user that the root finding has failed if it reaches Nmax)

• 3. Make sure f’(x)  0

• 4. Compute new estimate of root:

• 5. Check convergence criteria:



Example: f(x) = x3 + 6

• See NR_root.ipynb

D



Secant method

• Similar to the Newton-Raphson method, but does not require 
calculating the derivative of the function

•  Start with two initial guesses, xi-1 and xi

• Use finite difference derivative to get a new guess xi+1

• Proceed in the same way as the Newton-Raphson method



Summary of root-finding methods

• Bisection:
• Robust (with appropriate initial guesses)
• Slow, each iteration reduces error by a factor of two
• Need to make sure root is within initial guesses

• Newton-Raphson:
• Fast: often only takes a few iterations
• Need to know derivative of function, and they must exist
• Can diverge, e.g., in cases with small second derivatives

• Secant method
• Similar convergence speed as NR method
• Don’t need analytical derivatives
• Same divergence properties as NR method
• Numerical derivatives may be noisy 



After class tasks

• Readings:
• Pang Section 2.1 and 3.3

• Wikipedia page on root finding

https://en.wikipedia.org/wiki/Root-finding_algorithms
https://en.wikipedia.org/wiki/Root-finding_algorithms
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