
PHY604 Lecture 6
September 11, 2025

Today’s lecture:

• Finish discussing interpolation
• Cubic splines

• Root finding

Splines (Pang Sec. 2.4)

• So far, we've only worried about going through the specified points

• Large number of points → two distinct options:
• Use a single high-order polynomial that passes through them all

• Fit a (somewhat) high order polynomial to each interval and match all
derivatives at each point—this is a spline

• Splines match the derivatives at end points of intervals
• Piecewise splines can give a high-degree of accuracy

• Cubic spline is the most popular
• Matches first and second derivative at each data point

• Results in a smooth appearance

• Avoids severe oscillations of higher-order polynomial

Splines

• We have a set of regular-spaced discrete data: fi=f(xi) at x0,x1,x2,…,xn

• m-th order polynomial to approximate f(x) for x in [xi,xi+1]:

• Coefficients chosen so pi(xi)=fi and from smoothness condition: all
derivatives (l) match at the endpoints

• Except for points on the boundary of the curve

Determining the coefficients

• There are n intervals; in each interval: m+1 coefficients for the
polynomial

• Total: (m+1)n coefficients:
• Smoothness condition on interior points: (m)(n-1) equations

• Curve passing through interior points: (n-1) equations

• Remaining m+1 equations from imposing conditions on derivatives at end
points
• Natural spline: Setting highest-order derivative to zero at both endpoints

Most popular: Cubic splines, m = 3

• Easy to implement

• Produce a curve that appears to be seamless

• Avoids distortions near the edges

• Only piecewise continuous, third derivatives are discontinuous

Cubic spline example: 3 intervals
• Order: m=3, intervals: n=3, points: x = 0, 1, 2, 3

• Constraints: (m+1)n = 12

• Interior point 1:

• Interior point 2:

f0

f1

f2

f3

p0

p1

p2

Cubic spline example: 3 intervals

• At the boundaries:

• Natural spline, second derivatives
at the boundary set to zero

f0

f1

f2

f3

p0

p1

p2

Now solve for the coefficients:

• Linearly interpolate the second derivative:

• Integrate twice:

• Impose constraints:

Now solve for the coefficients:

• Results:

• For now, in terms of second derivative

• To get second derivative, use continuity condition

Now solve for the coefficients:

• Applies to all interior points

• Natural boundary conditions:

• Results in a system of linear equations

Results in system of linear equations

• Can be written as a tridiagonal matrix:

• We will discuss linear algebra in a later class

Example: Cubic spline for random numbers

Example: Derivatives of cubic splines

Today’s lecture:

• Finish discussing interpolation
• Cubic splines

• Root finding

Purpose: Find the root of a function
• Root of a function f(x) is xr such that:

• Why? We can cast more general solutions in the form of finding
roots.
• Example: Suppose I have the following equation for velocity of a free-

falling mass m with a coefficient of drag cd:

• I would like to find the mass that would give me a velocity of 36 m/s after
4s of free fall. We can do this by rewriting the equation as:

• And finding the root of f(m) for t = 4s and v = 36 m/s

Purpose: Find the root of a function

• For very simple functions, we can find the root analytically
• For more complicated functions, we must do this numerically

• First rule of root finding: If possible, plot the function to get an idea
of where roots are, how many, etc.:

Bisection method
• 1. Choose two initial guesses for the root, a lower (xl) and upper (xu)

• Chosen such that the function evaluated at xl and xu have different signs

• This can be checking by ensuring that: f(xl) f(xu) < 0

• 2. An estimate for the root is determined as the midpoint between
the guesses

• 3. Make the following evaluations to determine in which subinterval
the root lies, and thus obtain a refined guess:
• If f(xl) f(xr) < 0, set xu = xr, return to step 2

• If f(xl) f(xr) > 0, set xl = xr, return to step 2

• If f(xl) f(xr) = 0 to some tolerance, xr is the root and the calculation is complete

Newton-Raphson method
• Let xr be a root of f(x). Expand f(x) in a Taylor series about around a

different point x0 that is close to xr :

• Then:

• So:

• Of course, this is only accurate if x0 is close to xr, but we can use
this relation to refine the guess for the root

Newton-Raphson method procedure

• 1. Make an initial guess for the root: x0

• 2. Use the Taylor series expansion to find a better estimate of the
root:

• 3. Use x1 as an improved estimate at the root and employ the
Taylor series expansion again to get a better estimate x2

• Repeat process until the answer is accurate enough at the nth
estimate:

Geometrical Interpretation of Newton-
Raphson Iteration

Initial guess at root

True
root

First improved estimate of root based on
intercept of tangent line with slope

2nd improved estimate of root based on
intercept of tangent line with slope

3rd estimate

1

2

34

56

Failure of Newton-Raphson

• Example of a simple function that will defeat Newton-Raphson Iteration:

• Each estimate gets further from the true root. Estimates are diverging
not converging

3rd estimate1st estimate

2nd
estimate

Stopping criteria for iterations must be
chosen carefully
• Could stop when we reach some maximum number of iterations

• Estimate may be no where near the root

• We can consider this case a failure of the method and warn user about it.

3rd estimate1st estimate

2nd estimate

Stopping criteria for iterations must be
chosen carefully
• Could stop when we reach some maximum number of iterations

• Estimate may be no where near the root

• We can consider this case a failure of the method and warn user about it.

• Could stop when value of the function evaluated at the nth estimate

less than small number :

• But this can be deceptive; final estimate may not be near the root, might just be

close to zero

Stopping criteria for iterations must be
chosen carefully
• Could stop when we reach some maximum number of iterations

• Estimate may be no where near the root

• We can consider this case a failure of the method and warn user about it.

• Could stop when value of the function evaluated at the nth estimate less
than small number :
• But this can be deceptive; final estimate may not be near the root, might just be

close to zero

• Could stop when change between estimates becomes small relative to
the current (nth) estimate:

• Better, but still fails when root is located at zero

Stopping criteria for iterations must be
chosen carefully
• Could stop when we reach some maximum number of iterations

• Estimate may be no where near the root

• We can consider this case a failure of the method and warn user about it.

• Could stop when value of the function evaluated at the nth estimate less
than small number :
• But this can be deceptive; final estimate may not be near the root, might just be

close to zero

• Could stop when change between estimates becomes small relative to
the current (nth) estimate:

• Better, but still fails when root is located at zero

• So let's use:

Pseudocode of Newton-Raphson Algorithm

• 1. Choose initial guess at the root (x0), and the convergence
tolerance ().

• 2. Loop through n up to a maximum number Nmax (exit and tell the
user that the root finding has failed if it reaches Nmax)

• 3. Make sure f’(x)  0

• 4. Compute new estimate of root:

• 5. Check convergence criteria:

Example: f(x) = x3 + 6

• See NR_root.ipynb

D

Secant method

• Similar to the Newton-Raphson method, but does not require
calculating the derivative of the function

• Start with two initial guesses, xi-1 and xi

• Use finite difference derivative to get a new guess xi+1

• Proceed in the same way as the Newton-Raphson method

Summary of root-finding methods

• Bisection:
• Robust (with appropriate initial guesses)
• Slow, each iteration reduces error by a factor of two
• Need to make sure root is within initial guesses

• Newton-Raphson:
• Fast: often only takes a few iterations
• Need to know derivative of function, and they must exist
• Can diverge, e.g., in cases with small second derivatives

• Secant method
• Similar convergence speed as NR method
• Don’t need analytical derivatives
• Same divergence properties as NR method
• Numerical derivatives may be noisy

After class tasks

• Readings:
• Pang Section 2.1 and 3.3

• Wikipedia page on root finding

https://en.wikipedia.org/wiki/Root-finding_algorithms
https://en.wikipedia.org/wiki/Root-finding_algorithms

	Slide 1: PHY604 Lecture 6
	Slide 2: Today’s lecture:
	Slide 3: Splines (Pang Sec. 2.4)
	Slide 4: Splines
	Slide 5: Determining the coefficients
	Slide 6: Most popular: Cubic splines, m = 3
	Slide 7: Cubic spline example: 3 intervals
	Slide 8: Cubic spline example: 3 intervals
	Slide 9: Now solve for the coefficients:
	Slide 10: Now solve for the coefficients:
	Slide 11: Now solve for the coefficients:
	Slide 12: Results in system of linear equations
	Slide 13: Example: Cubic spline for random numbers
	Slide 14: Example: Derivatives of cubic splines
	Slide 15: Today’s lecture:
	Slide 16: Purpose: Find the root of a function
	Slide 17: Purpose: Find the root of a function
	Slide 18: Bisection method
	Slide 19: Newton-Raphson method
	Slide 20: Newton-Raphson method procedure
	Slide 21: Geometrical Interpretation of Newton-Raphson Iteration
	Slide 22: Failure of Newton-Raphson
	Slide 23: Stopping criteria for iterations must be chosen carefully
	Slide 24: Stopping criteria for iterations must be chosen carefully
	Slide 25: Stopping criteria for iterations must be chosen carefully
	Slide 26: Stopping criteria for iterations must be chosen carefully
	Slide 27: Pseudocode of Newton-Raphson Algorithm
	Slide 28: Example: f(x) = x3 + 6
	Slide 29: Secant method
	Slide 30: Summary of root-finding methods
	Slide 31: After class tasks

