PHY604 Lecture 6

September 11, 2025

Today’s lecture:

* Finish discussing interpolation
* Cubic splines

* Root finding

S p‘ | nes (Pang Sec. 2.4)

* So far, we've only worried about going through the specified points

* Large number of points - two distinct options:
e Use a single high-order polynomial that passes through them all
* Fit a (somewhat) high order polynomial to each interval and match all
derivatives at each point—this is a spline
* Splines match the derivatives at end points of intervals
e Piecewise splines can give a high-degree of accuracy

e Cubic spline is the most popular
* Matches first and second derivative at each data point
e Results in a smooth appearance
* Avoids severe oscillations of higher-order polynomial

Splines :

* We have a set of regular-spaced discrete data: f=f(x;) at xg,x1,X5,...,X,

* m-th order polynomial to approximate f(x) for xin [x;,x;,4]:
™m

pi(z) =) cipa
k=0
* Coefficients chosen so p,(x;)=f; and from smoothness condition: all
derivatives (/) match at the endpoints

pgl)(wm) = p§21(£€¢+1), [=0,1,....m—1

* Except for points on the boundary of the curve

Determining the coefficients

 There are n intervals; in each interval: m+1 coefficients for the
polynomial

e Total: (m+1)n coefficients:
* Smoothness condition on interior points: (m)(n-1) equations

e Curve passing through interior points: (n-1) equations

 Remaining m+1 equations from imposing conditions on derivatives at end
points

* Natural spline: Setting highest-order derivative to zero at both endpoints

Most popular: Cubic splines, m =3
e Easy to implement

* Produce a curve that appears to be seamless

* Avoids distortions near the edges

* Only piecewise continuous, third derivatives are discontinuous

Cubic spline example: 3 intervals

* Order: m=3, intervals: n=3, points: x=0, 1, 2, 3

e Constraints: (m+1)n =12

* Interior point 1: PO

* Interior point 2:

s
ot

.3
O\

oI

=
—

RS
N

=
—_ >

N N N /N N N N N

=

=3

=
—

S
—

&
—

&
[

=
N

=
N

=
N

=
N

N— N e N N N N N

—
p—t

—
p—t

g

g

=

=

=

_ =

NS NS

B
—

5
p—

.

fo
*,
Po
I
'_'1_ B
f
f3+
00 05 1.0 15 20 25 3.0

Cubic spline example: 3 intervals

* At the boundaries: +f
3 - :
po(xo) = fo
p2(r3) = f3 |
* Natural spline, second derivatives 1_1;2
at the boundary set to zero
x\po
po (o) = 0 of
pg(l‘g) — 0 e
—1 - f3—1—
010 Oj5 110 1j5 2fo 2j5 3i0

Now solve for the coefficients:

 Linearly interpolate the second derivative:

1
Pfg/(l’) = A [(33 — jS)p{il—l—l —(x — $i+1)l92’}

* Integrate twice:
1
pi(x) = e {p;’ﬂ [(x —x;)° + 6A(x — :C,L)] — [(a: — Ti41)° +6B(x — £U¢+1)} }

* Impose constraints: Di (:E‘L) = fi, pi($i+1) = fi+1

Now solve for the coefficients:

pi(x) = oi(z — 2;)° + Bi(@ — wi11)” + (@ — @) + ni(@ — @iq1)

* Results:
;= Pit1 B; = — Py | —pi11Az% 4+ 6fi 1 - piAx® —6f;
T 6Az T T 6Ax T 6Ax T 6A 1

* For now, in terms of second derivative

* To get second derivative, use continuity condition

pi_1 () = pi(;)

Now solve for the coefficients:

6

pi_1 Az +4p] Ax + pil Ax = — N

(fi1 = 2fi + fit1)
e Applies to all interior points
* Natural boundary conditions:
po =0, p, =0
* Results in a system of linear equations

Results in system of linear equations

* Can be written as a tridiagonal matrix:

/ ANAxr Ax
Axr 4Ax
Ax

* We will discuss linear algebra in a later class

Ax
4A\x

Ax

)

Axr 4Ax Ax

Az 4Az)

[pY
P
ps

!/
pn—2

\P%-l

/ Jo—2f1+ 2 \
J1—2f2+ f3
Jo—2f3+ J4

Fos = 2fn 2+ a1

\ fn—2 o 2fn—1 T fn)

Example: Cubic spline for random numbers

1.0 1

; .
’ ’ H i
N y 5 - a
0.4 | ;) ; ; . —+
L i L] ’ X
L] L] y »
L] '] 'y v v
;

a M »
. y hd
. y »
L) " v
L) hd A
02_ a ’ »
. N :)
.
’ y a
" 3 D
. g .
. L
y

:
)
-
L)
-
'_l'_

0.0 0.2 0.4 0.6 0.8 1.0

INes

Derivatives of cubic spl

Example

Third Derivative

First Derivative Second Derivative

Interpolation

L
o
. o
.......... <
: o
L N
o
o
o
T T T + . i _ _
o o o o o o o 0
o o o S S = S
o o o S S S S
o o o S 8 S S
%2 ~N — S S S S
| | | i
o
~—— | ©
T~ —
||||||||||
I
‘I\I"
[
p
‘\‘\ IB
“‘ pa
e
llllll
=TT =~
== o
lllllllllllllllllllll p
T
e=zzz--————TTTT
llllllll
llllll
> L
|||||||||||| :
\r""
IIII
—~c
>
l‘\ I2
||||||||||| o
e e _
\\\\\ =
-
N\
: o
o
T T T + . . _ _
o o o o o o o s
N o N A b1 2 S
~ n ~ 9 S 0 S
! | | —
|
o
.- L <
.\.ll:l._l:l._l..ll...\.‘ 5
i
o
./.I | ®
’.’-,.'-'.'-l. o
———
T
_~
—_ e ———e ©
 —— = .
et o
.".-.“.-_“..”.-l.l.l.l
e
—em—
e <
=l 3
-'-'-l-'l
———
e—
\.Il-\.ll.\.‘ —
I
a—— o
A"'l.l o
e ————
-
e — "
<
N o
o
T T . . _ _ _
n o N o n S A
- - | — —
I |
L <
—
L 9
o
L <
o
L
o
L N
o
o
Ks)
T : . _ _ _
3 pac © < ~ o
— o S 3 o 2

Today’s lecture:

* Root finding

Purpose: Find the root of a function
» Root of a function f(x) is x. such that: f(x,) =0

* Why? We can cast more general solutions in the form of finding
roots.

 Example: Suppose | have the following equation for velocity of a free-
falling mass m with a coefficient of drag c,:

o(t) = /9™ tanh (« /@t)
Cd m

* | would like to find the mass that would give me a velocity of 36 m/s after
4s of free fall. We can do this by rewriting the equation as:

f(m) = % tanh (ﬁt) —w(t)

* And finding the root of f(m) for t = 4s and v =36 m/s

Purpose: Find the root of a function

* For very simple functions, we can find the root analytically
* For more complicated functions, we must do this numerically

* First rule of root finding: If possible, plot the function to get an idea
of where roots are, how many, etc.:

oot

)
A N O N O~ O o

X
o
@)
—t
X
o
)
—t

Bisection method

* 1. Choose two initial guesses for the root, a lower (x;) and upper (x,)
* Chosen such that the function evaluated at x; and x, have different signs
* This can be checking by ensuring that: f(x)) f(x,) <0

e 2. An estimate for the root is determined as the midpoint between

the guesses Ty T Ty,
Ty = 5

* 3. Make the following evaluations to determine in which subinterval
the root lies, and thus obtain a refined guess:
* If fix) f(x,) <0, set x, = x,, return to step 2
* If f{x) fix,) >0, set x, = x,, return to step 2
* If f{x)) f(x,) = 0 to some tolerance, x, is the root and the calculation is complete

Newton-Raphson method

* Let x, be a root of f(x). Expand f(x) in a Taylor series about around a
different point x, that is close to x,:

f(x) ~ f(zo) + f(zo)(2z — z0)

* Then:
f(xr) =0~ f(zo) + f/(aj())(mfr — o)
* So:
o f (o)
T f' (o)

* Of course, this is only accurate if x, is close to x,, but we can use
this relation to refine the guess for the root

Newton-Raphson method procedure

* 1. Make an initial guess for the root: x,
e 2. Use the Taylor series expansion to find a better estimate of the

root:
f (o)
f'(zo)

* 3. Use x; as an improved estimate at the root and employ the
Taylor series expansion again to get a better estimate x,

L1 =X Xy —

* Repeat process until the answer is accurate enough at the nth
estimate:
f(xn_1)

f/(xn—l)

Geometrica
Raphson lte

A

Interpretation of Newton-

-ation

Initial guess at root x

\

S|
Q x
Q I »
\ n
' u
o I y
o "
Q | "
0 "
Q x
I "
»
I L]
r

3rd estimate '3

>

intercept of tangent line with slope f’'(xo)

2nd improved estimate of root 9 based on
intercept of tangent line with slope f/(x1)

\ \Flrst improved estimate of root X1 based on

Failure of Newton-Raphson

* Example of a simple function that will defeat Newton-Raphson Iteration:

|
L1St estimate 3" estimate

J >

.*
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.®
.

/
2nd

v estimate

* Each estimate gets further from the true root. Estimates are diverging
not converging

Stopping criteria for iterations must be
chosen carefully

* Could stop when we reach some maximum number of iterations
e Estimate may be no where near the root

 We can consider this case a failure of the method and warn user about it.

|
|
i‘ﬂ st eastimate

31 estimate
- >

o
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
*
Ad

/
2nd estimate

Stopping criteria for iterations must be
chosen carefully

e Could stop when we reach some maximum number of iterations
e Estimate may be no where near the root

 We can consider this case a failure of the method and warn user about it.

* Could stop when value of the function evaluated at the nth estimate
less than small number : | f(z,)| < €

 But this can be deceptive; final estimate may not be near the root, might just be
close to zero ’

Stopping criteria for iterations must be
chosen carefully

* Could stop when we reach some maximum number of iterations
e Estimate may be no where near the root
* We can consider this case a failure of the method and warn user about it.

* Could stop when value of the function evaluated at the nth estimate less
than small number: |f(z,)| < €

* But this can be deceptive; final estimate may not be near the root, might just be
close to zero

* Could stop when change between estimates becomes small relative to
the current (nth) estimate:|Zn4+1 — Tn| < €|z, 3
* Better, but still fails when root is located at zero if /

Il Il Il
-2 -1 1 2

Stopping criteria for iterations must be
chosen carefully

* Could stop when we reach some maximum number of iterations

e Estimate may be no where near the root
 We can consider this case a failure of the method and warn user about it.

* Could stop when value of the function evaluated at the nth estimate less
than small number : | f(z,)| < ¢

e But this can be deceptive; final estimate may not be near the root, might just be
close to zero

* Could stop when change between estimates becomes small relative to
the current (nth) estimate:|Zn+1 — Tn| < €|xy
» Better, but still fails when root is located at zero
° ! .
So let's use: €|z,|, when |z,| # 0

T —Tp| <
Tnt1 = €, when |x,,| = 0

Pseudocode of Newton-Raphson Algorithm

* 1. Choose initial guess at the root (x;), and the convergence
tolerance (¢&).

* 2. Loop through n up to a maximum number N_ ., (exit and tell the
user that the root finding has failed if it reaches N,.,)

* 3. Make sure f’(x) #0
* 4. Compute new estimate of root: =, @ Tn—1 —

f(xn—l)
f’(mn—l)

e 5. Check convergence criteria:

€|lx,|, when |x,| # 0
Ln4+1 — xn’ <
€, when |2, | =0

Example: f(x) =x> + 6 W

-60 -

20 -

0

_20L

*See NR root.ipynb

Secant method

e Similar to the Newton-Raphson method, but does not require
calculating the derivative of the function

* Start with two initial guesses, x;; and x;

* Use finite difference derivative to get a new guess x;,,

S (@) (wio1 — ;)
flwi1) — f(z:)

* Proceed in the same way as the Newton-Raphson method

Lit1 — L5 —

Summary of root-finding methods

* Bisection:

* Robust (with appropriate initial guesses)
* Slow, each iteration reduces error by a factor of two
* Need to make sure root is within initial guesses

* Newton-Raphson:
e Fast: often only takes a few iterations
* Need to know derivative of function, and they must exist
e Can diverge, e.g., in cases with small second derivatives

* Secant method
e Similar convergence speed as NR method
 Don’t need analytical derivatives
 Same divergence properties as NR method
 Numerical derivatives may be noisy

After class tasks

* Readings:
e Pang Section 2.1 and 3.3
 Wikipedia page on root finding

https://en.wikipedia.org/wiki/Root-finding_algorithms
https://en.wikipedia.org/wiki/Root-finding_algorithms

	Slide 1: PHY604 Lecture 6
	Slide 2: Today’s lecture:
	Slide 3: Splines (Pang Sec. 2.4)
	Slide 4: Splines
	Slide 5: Determining the coefficients
	Slide 6: Most popular: Cubic splines, m = 3
	Slide 7: Cubic spline example: 3 intervals
	Slide 8: Cubic spline example: 3 intervals
	Slide 9: Now solve for the coefficients:
	Slide 10: Now solve for the coefficients:
	Slide 11: Now solve for the coefficients:
	Slide 12: Results in system of linear equations
	Slide 13: Example: Cubic spline for random numbers
	Slide 14: Example: Derivatives of cubic splines
	Slide 15: Today’s lecture:
	Slide 16: Purpose: Find the root of a function
	Slide 17: Purpose: Find the root of a function
	Slide 18: Bisection method
	Slide 19: Newton-Raphson method
	Slide 20: Newton-Raphson method procedure
	Slide 21: Geometrical Interpretation of Newton-Raphson Iteration
	Slide 22: Failure of Newton-Raphson
	Slide 23: Stopping criteria for iterations must be chosen carefully
	Slide 24: Stopping criteria for iterations must be chosen carefully
	Slide 25: Stopping criteria for iterations must be chosen carefully
	Slide 26: Stopping criteria for iterations must be chosen carefully
	Slide 27: Pseudocode of Newton-Raphson Algorithm
	Slide 28: Example: f(x) = x3 + 6
	Slide 29: Secant method
	Slide 30: Summary of root-finding methods
	Slide 31: After class tasks

