PHY604 Lecture /

September 16, 2025

Today’s lecture

* Ordinary differential equations:
* Euler method
* Runge-Kutta methods and adaptive RK

* Beyond Runge-Kutta
* Leapfrog/Verlet/modified midpoint
* Bulirsch-Stoer Method

Differential equations wewmanch. s

* One of the major applications of computation to science and
engineering is solving differential equations

* Even for very simple-looking equations if they are “nonlinear,” they are difficult
or imposible to solve analytically

e Classifications:
* Initial value problems

* Boundary value problems

* Eigenvalue problems

» Often problems are described by systems of coupled differential
equations

* As with the other topics, there are many different methods
* We just want to see the basic ideas and popular methods

Example of system of differential equations:
Equations of motion

* We know that the equations of motion for a point particle with
mass are given by:

dx dv

= v(t), = a(x,v,t)

* In order to fully describe the trajectory of this particle, we need to
specify initial conditions, i.e., the position and velocity, of the
particle at the initial time t = O:

x(0) =xqg, Vv(0)= vy

Approximating the Equations of Motion

* If we consider a time interval that is sufficiently short, we can
approximate the differential by

dt ~ At

* We can then approximate the time derivative of the position by:

dx x(t+ At) —x(?)

Y

dt At

e Similarly, the time derivative of the velocity can be approximated by

dv v(t+ At) — v(?)

I) W

dt At

Euler’'s method for integrating the
equations of motion

* We can then substitute the approximate derivatives into the
equations of motion to obtain:

x(t + At) —x(t) (t) v(t + At) — v(t)
At - At

~ a(x,Vv,1)

* We can then solve for the new values of the position and velocity
v(t + At) ~v(t) + a(x,v,t)At
x(t + At) ~ x(t) + v(t) At

* This algorithm for “integrating” the equations of motion forward in
time in known as Euler’s method

Example: A body orbiting the sun

 We consider the Sun’s location to be at the origin and the plane of
the orbit to be the x-y plane

—GMgyn .
* In this case we have: a(x) = > e
* Where: x — * ®

* The components of the acceleration are then given by:

- GMSU.II:’C
TS

_GMsuny
7‘3

ax(ili‘,y) — ; ay(x,y) —

Euler’'s method for body orbiting the sun

* Now we discretize in time and apply Euler’s method:

Ve (t+ At) = v, (t) —

0, (t + At) = v, (t) -

G Mgunz(t)At

(x(t)? + y(1)2)*

G Mguny(t) At

(x(t)? + y(1)2)*?

r(t + At) = x(t) + v (1) At

y(t

At) = y(t)

v, (1) At

Parameters for orbit problem

* We'll use units of solar masses, and Astronomical Units (AU) for
distance

* In these units, M,,,=1 and G = 39.47 AU3M_ " lyr?

sun

* Initial conditions:

At t =0 we’ll place the body along the x-axis at a distance of 1 AU from the
sun and give it the Earth’s velocity in the y-direction:
* x(0)=1,y(0)=0
* v, (0) = 6.283185 AU/yr
* We will try a time step of 1 day: At =1/365 yr

Example program for Euler orbit problem

*Seeorbit examples.ipynb

More accurate ODE numerical methods

* The problem with Euler’s method is that the right-
hand-side of the equations is evaluated at the
beginning of the timestep

* The right-hand-side usually changes over the course of it
each timestep and we may be getting an inaccurate i }e”o,

answer as a result s

* |t would be better if we could evaluate the right-hand-side
in the middle of the timestep.

* However, we can’t do that unless we know the solution in
advance

1]
1 h I

* We could use higher-order finite differences, however 2 fisy t
this is not a common approach

* Strategy: Use Euler’s method to estimate the solution
at the midpoint of the timestep. And then use this
estimate to evaluate the right-hand-side

* This is called a second order Runge-Kutta method

Aside: Notation for coupled systems of
ordinary differential equations

* The equations we were solving with Euler’s method were of the
form:

dy;
— = JYDy e T
dt fl(yl Y2 YN)
dys
— = JYDy e T
At fz(yl Y2 YN)
dynN
W:fN(ylvaw"vyNat)

* This is a set of coupled first-order ordinary differential equations
(ODEs)

Aside: Euler’'s Method for Coupled Systems
of ODEs

e Use shorthand notation for the time at the nth step: t”, and denote
y(t") asy;"
* Then approximate the derivatives are written:

dy; yrt—yr
dt At
 And Euler’s method for a set of coupled ODEs is:
it =yl + Atfi(ys,ye, - YN)
ys T = + Atfa(yr, Y2, .- YN, t)

y]?;bf+1 — er +Ath(ylay27 ... 7yN7t)

Aside: Coupled systems of ODEs in vector
notation

* In order to simplify the description of the second order Runge-
Kutta algorithm we use the following vector notation to simplify
the equations:

Yy = (y17y27y37'°°7yN)
= (f17f27f37"'7fN)

e Using this notation, the original set of ODEs is:

dy
= = f(y, ¢

* In this notation Euler’s method is:

y" T =y" o+ Atf(y", ")

Second-order Runge-Kutta method

ty(t)

tn tn + Sh tn+h

Fadlisyah, Muhammad thesis (2014)

Second-order Runge-Kutta method

* Taylor expand around t + 1/2 At :

1 1 . dy 5 3

+ AL =y(t+ =At) + —At—= + AP +O(A
y(t t) =y(t 5 t) 5 tdt 3 t 172 O(At?)
t+3 At t+3 At

dy L 2d%y 3
At — — O(At

dt " 8 dt? O(AF)

t+5 At t+5 At

y(t) = y(t + At) — —A

e Subtract the two expressions

d
y(t + At) = y(t) + Atd_?; +O(AB)

t—|—%At P Need f evaluated at midpoint

—y(t) + AtF(y(t + %At), - %At) L O(A#)

Second-order Runge-Kutta method

» Step 1: Estimate change due of the right-hand side using Euler's
method:

e Step 2: Use estimate to predict value of solution at midpoint of the
timestep. Evaluate right hand side at midpoint:

1 1
y" =y 4 Atf(y" + Sk 1"+ 5At)

*See orbit examples.ipynb

Second and fourth-order Runge-Kutta
methods

2nd order 4t order

Fadlisyah, Muhammad thesis (2014)

he fourth-order Runge-Kutta method

* |n practice, the workhorse algorithm for first-order sets of ODEs is the
fourth-order Runge-Kutta algorithm which (we state here without
derivation)

e Step 1: k, = At f(y",t")

e Step 2: ko = At f(y +§k1,t +§At)
1 1

* Step 3: ks = At f(y"™ + §k2,t” + §At)

e Step 4: k, = At f(y"™ + ks, t" + At)

1
¢ Step 5: yn—l—l p— yn —|— 6 (kl —|— 2k2 —|— 2k3 —|— k4)

Runge-Kutta methods

* Euler method can be thought of as the first-order RK method
e Accurate to first order in At, i.e., error is order At?

e Second-order RK method accurate to At?, so error At3

* Fourth-order RK method accurate to At?, so error At°
* By far the most common method for the numerical solution of ODEs
* Balances accuracy and complexity

* Quoted accuracies are for one step, errors accumulate over the number of
steps needed in the calculation, usually loose an order of accuracy (see
Newman)

Adaptive step size

* So far, we have set by hand a constant
step size At

* Often, we can get better results by
varying the step size

* Increase in regions where function
varies rapidly, decrease where it varies
slowly

e Approach: vary At so the error
introduced per unit interval is
roughly constant

* First we need to estimate the errorin
the steps

(Newman)

Adaptive step size: Estimating the error

e 1. Choose initial (small) At

A
e 2. Use RK method to do two At /_/_,,//’ il
steps of the solution | e F
* 3. Go back to initial t and do an ﬂ // A A
RK step with 2At 1’ TN] >
: t t+ 2At

e 4. Compare the results to
estimate the error

Adaptive step size: Estimating the error

* True value of function related to estimate y,,:
y(t + 2At) = yas + 2cAt’
* For doubled step size y,u;:
y(t + 2At) = yaas + 32cAt°
* So per step error is:

1
€ = cAt® = %(ym — YaAr)

* Take 0 to be the target accuracy per step. Then the step size
necessary to get that accuracy is:

At = At/ 309
\ym — yzAt’

Adaptive step size: Complete approach

* 1. Choose initial At

e 2. Use RK method to do two At steps of the solution
* 3. Go back to initial t and do an RK step with 2At

e 4. Compare the results to estimate the error

* 5. Calculate ideal step size At’
e If & >0, then redo the calculation with At’

e If ¢ <0, take the results obtained using At and move on to time t + At. In the
next iteration use At’ as the timestep

* Requires at least 3 RK steps for every two actually used, but usually
results in an overall speedup for a given accuracy

e Usually limit how much At’ can differ from At (e.g., by less than a
factor of two) in case the denominator happens to diverge

Example: Elliptical orbit with adaptive 4™-order RK

Circular:
Xo= 1 AU
v, =6.283185 AU/year

y position (AU)

1.00 A
0.75 1

0.50 1

s @
0.00 A z

—0.25 A1
—0.50 A
—0.75 A

—1.00 A

velocity (AU/year)

4th order Adaptive Runge Kutta method

o0 09
oF %,

' 4
...' 00 00..

-1.00-0.75-0.50-0.25 0.00 0.25 0.50 0.75 1.00
X position (AU)

x velocity
y velocity
speed

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Time (year)

y position (AU)

1.00 A

0.75 1

0.50 1

0.25 A1

0.00 1

—0.25 4

—0.50 A

—0.75 4

—1.00 4

velocity (AU/year)

4th order Adaptive Runge Kutta method

-1.75-1.50-1.25-1.00-0.75-0.50-0.25 0.00 0.25

X position (AU)

15 A

10 1

X velocity
—— y velocity

— speed

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time (year)

Elliptical:
x,= 0.3 AU

v,0 =14.955378 AU/year

Improving the results with local extrapolation

* We can use our knowledge of the error to improve our estimate for

y(t+At) recall that: -
y(t + 2At) = yas + 2cAt

 And:

1
€ = cAt’ = %(ym — YaAr)

* So:

1
y(t + 2At) = yar + 1—5(ym — yont) + O(AL°)

* No estimate of the error but presumably better than previous 4t
order result

Today’s lecture

* Ordinary differential equations:
* Euler method
* Runge-Kutta methods and adaptive RK

* Beyond Runge-Kutta
* Leapfrog/Verlet/modified midpoint
* Bulirsch-Stoer Method

Leapfrog method

e Recall the second-order RK method:

e Using the Euler method applied to t to estimate the value of a variable at the
midpoint of the interval t + 1/2At

(i + A1) = y(t) + 5 Atf(y.1

1 1
y(t+ At) = y(t) + Atf |y(t + §At),t+ §At

* Leapfrog method uses a similar approach, except calculates the next
midpoint by using the Euler method evaluated at the previous
midpoint

Leapfrog method versus 2" order RK

¢ , ita t+ 2At t + 3At [+ 4AL
| t+E§At . | :

2"d order RK:

ooy AN AN NN

(Newman)

Leapfrog method

e Starts out the same as RK:

ot + A1) = y(t) + 5 Atf(y.1
y(t+ At = y(t) + At f {y(t 4 %At),t 4 %At]
* Then:
y(t + gm) — oyt + %At) AL [yt + A, L+ Al

y(t+ 2A8) = y(t + At) + ALf {y(t + gAt),t + gm}

Why the leapfrog method?

* Time reversal symmetric
e Useful for physics problems where energy conservation is important

* Error is even in step size
* |deal starting point for Richardson extrapolation for Bulirsch-Stoer

Leapfrog method is “time-reversal symmetric”

* If we use —At instead of At, we should retrace our steps

* To see this, start with the equations we repeatedly apply for the
Leapfrog method:

y(t + At) = y(t) + At f {y(t + %At),t + %At}

(t gAt):y(t %At) ALF [y(t + AL). £ + Ad]

* Set step size to —At :

y(t — A = y(t) — Atf [y(t _ %At),t _ %At}

y(t — gAt) oyt — %At) _ALF[y(t — Ab). £ — A

]

Leapfrog method is “time-reversal symmetric’

3
* Now make a trivial shift in time: t — ¢ + §At
* To get:

y(t + %At) — y(t + gAt) — Atf [y(t + Ab), t + Al
y(t) = y(t + At) — Atf {y(t + %At),t + %At}

e Same as the original: (but moving backwards)

y(t + At) = y(t) + At f {y(t + %At),t + %At}

3 1
y(t + §At) = y(t + §At) + Atf [y(t + At), t + At]

What about 2" order Runge-Kutta?
* Original expressions: (¢ + %At) = y(t) + %Atf(y, t)

y(t+ At) = y(t) + Atf {y(t + %At),t + %At}

1 1
e Setstep sizeto—-At: y(t — §At) = y(t) — §Atf(y,t)

y(t — At) = y(t) — Atf {y(t _ %At),t _ %At}

* No way to, e.g., make a shift in t to get back to original operations in the
opposite direction

* Errors will result in broken time-reversal symmetry

Why is time-reversal symmetry important? Energy conservation!

2nd order RK

Circular

0.000050 ~

0.000025 -

0.000000 A

—0.000025 A

—0.000050 A

—0.000075 A

—0.000100 A

—0.000125 -

—— Potential energy
—— Kinetic energy

oA

T T T
1000 2000 3000

—0.0000592495 -

—0.0000592500 -

—0.0000592505 -

—0.0000592510 A

—0.0000592515 A

Total energy

1000 2000 3000

Elliptical

0.0003 ~

0.0002 ~

0.0001 -

0.0000 ~

—0.0001 A

—0.0002 A

—0.0003 4

—0.0004

==

T T T
1000 2000 3000

o4

—0.00005800 A

—0.00005825 -

—0.00005850 A

—0.00005875 A

—0.00005900 H

—0.00005925 A

—0.00005950 ~

—0.00005975 -

Total energy

=

o4

1000 2000 3000

] |

Leapfrog

Circular

0.000050

0.000025 -

0.000000 -

—0.000025 -

—0.000050 -

—0.000075 -

—0.000100 -

—— Potential energy
—— Kinetic energy

—0.000125 A

0

T T T T T T T
500 1000 1500 2000 2500 3000 3500

—0.000059244 -

—0.000059246

—0.000059248 -

—0.000059250 -

PV

—0.000059252 +—
0

\

T T T T T T T
500 1000 1500 2000 2500 3000 3500

Elliptical

0.0003 4

0.0002 A

0.0001 A

0.0000 A

—0.0001 A

—0.0002

—0.0003 A

—0.0004 -

T T T T T T T
0 500 1000 1500 2000 2500 3000 3500

0.0002 A

0.0001 A

0.0000 A

—0.0001

—0.0002 A

—0.0003 A

Total energy

T T T T T T T T
0 500 1000 1500 2000 2500 3000 3500

Verlet method for equations of motion using
leapfrog method

e For this method we will limit ourselves to ODEs of the form of
equations of motion:

dx dv
— = V(1 — = f(x,1

* (i.e., where the RHS of the first equation does not depend on x)
* In that case, we can do the leapfrog method with two equations

Position only at integer steps 1
~~ x(t + At) = x(t) + Atv (t + §At>

Velocity only at half-integer steps

TS ;At):v(t %At)+Atf[x(t AL).t+ Al

What if we want to know, e.g., the total
energy at a point?

* Total energy requires knowing x and v at the same point
* Let’s just step the velocity back half a step with Euler’s method:

1 1
v(t + §At) =v(t+ At) — §Atf[x(t + At), t + At

* Rearrange to get:
1 1
v(t + At) = v(t + 5At) + §Atf[x(t + At), t + At]

* Gives velocity at integer points from quantities we have already
calculated

Verlet method: Leapfrog in this specific
situation of, e.g., EOM:

* First do an initial half step:
1 1
v(t + iAt) = v(t) + iAtf x(t),]

* Then repeatedly apply:
1
x(t+ At) = x(t) + Atv <t + §At)

k = Atf[x(t + At), t + At]
1

1

1
v(t + ;At) =v(t+ §At) +k

After class tasks

* Homework 1 due Sept. 17 (end of the day)

* Let me know if you have HW questions or questions/issues on github
classroom

* Readings:
* Newman Ch. 8

	Slide 1: PHY604 Lecture 7
	Slide 2: Today’s lecture
	Slide 3: Differential equations (Newman Ch. 8)
	Slide 4: Example of system of differential equations: Equations of motion
	Slide 5: Approximating the Equations of Motion
	Slide 6: Euler’s method for integrating the equations of motion
	Slide 7: Example: A body orbiting the sun
	Slide 8: Euler’s method for body orbiting the sun
	Slide 9: Parameters for orbit problem
	Slide 10: Example program for Euler orbit problem
	Slide 11: More accurate ODE numerical methods
	Slide 12: Aside: Notation for coupled systems of ordinary differential equations
	Slide 13: Aside: Euler’s Method for Coupled Systems of ODEs
	Slide 14: Aside: Coupled systems of ODEs in vector notation
	Slide 15: Second-order Runge-Kutta method
	Slide 16: Second-order Runge-Kutta method
	Slide 17: Second-order Runge-Kutta method
	Slide 18: Second and fourth-order Runge-Kutta methods
	Slide 19: The fourth-order Runge-Kutta method
	Slide 20: Runge-Kutta methods
	Slide 21: Adaptive step size
	Slide 22: Adaptive step size: Estimating the error
	Slide 23: Adaptive step size: Estimating the error
	Slide 24: Adaptive step size: Complete approach
	Slide 25: Example: Elliptical orbit with adaptive 4th-order RK
	Slide 26: Improving the results with local extrapolation
	Slide 27: Today’s lecture
	Slide 28: Leapfrog method
	Slide 29: Leapfrog method versus 2nd order RK
	Slide 30: Leapfrog method
	Slide 31: Why the leapfrog method?
	Slide 32: Leapfrog method is “time-reversal symmetric”
	Slide 33: Leapfrog method is “time-reversal symmetric”
	Slide 34: What about 2nd order Runge-Kutta?
	Slide 35: Why is time-reversal symmetry important? Energy conservation!
	Slide 36: Verlet method for equations of motion using leapfrog method
	Slide 37: What if we want to know, e.g., the total energy at a point?
	Slide 38: Verlet method: Leapfrog in this specific situation of, e.g., EOM:
	Slide 39: After class tasks

