
PHY604 Lecture 7
September 16, 2025

Today’s lecture

• Ordinary differential equations:
• Euler method

• Runge-Kutta methods and adaptive RK

• Beyond Runge-Kutta
• Leapfrog/Verlet/modified midpoint

• Bulirsch-Stoer Method

Differential equations (Newman Ch. 8)

• One of the major applications of computation to science and
engineering is solving differential equations
• Even for very simple-looking equations if they are “nonlinear,” they are difficult

or imposible to solve analytically

• Classifications:
• Initial value problems

• Boundary value problems

• Eigenvalue problems

• Often problems are described by systems of coupled differential
equations

• As with the other topics, there are many different methods
• We just want to see the basic ideas and popular methods

Example of system of differential equations:
Equations of motion
• We know that the equations of motion for a point particle with

mass are given by:

• In order to fully describe the trajectory of this particle, we need to
specify initial conditions, i.e., the position and velocity, of the
particle at the initial time t = 0:

Approximating the Equations of Motion

• If we consider a time interval that is sufficiently short, we can
approximate the differential by

• We can then approximate the time derivative of the position by:

• Similarly, the time derivative of the velocity can be approximated by

Euler’s method for integrating the
equations of motion
• We can then substitute the approximate derivatives into the

equations of motion to obtain:

• We can then solve for the new values of the position and velocity

• This algorithm for “integrating” the equations of motion forward in
time in known as Euler’s method

Example: A body orbiting the sun

• We consider the Sun’s location to be at the origin and the plane of
the orbit to be the x-y plane

• In this case we have:

• Where:

• The components of the acceleration are then given by:

Euler’s method for body orbiting the sun

• Now we discretize in time and apply Euler’s method:

Parameters for orbit problem

• We’ll use units of solar masses, and Astronomical Units (AU) for
distance
• In these units, Msun=1 and G = 39.47 AU3Msun

-1yr-2

• Initial conditions:
• At t = 0 we’ll place the body along the x-axis at a distance of 1 AU from the

sun and give it the Earth’s velocity in the y-direction:
• x(0) = 1, y(0) =0

• vy (0) = 6.283185 AU/yr

• We will try a time step of 1 day: t = 1/365 yr

Example program for Euler orbit problem

• See orbit_examples.ipynb

More accurate ODE numerical methods
• The problem with Euler’s method is that the right-

hand-side of the equations is evaluated at the
beginning of the timestep

• The right-hand-side usually changes over the course of
each timestep and we may be getting an inaccurate
answer as a result

• It would be better if we could evaluate the right-hand-side
in the middle of the timestep.

• However, we can’t do that unless we know the solution in
advance

• We could use higher-order finite differences, however
this is not a common approach

• Strategy: Use Euler’s method to estimate the solution
at the midpoint of the timestep. And then use this
estimate to evaluate the right-hand-side

• This is called a second order Runge-Kutta method

Aside: Notation for coupled systems of
ordinary differential equations
• The equations we were solving with Euler’s method were of the

form:

• This is a set of coupled first-order ordinary differential equations
(ODEs)

Aside: Euler’s Method for Coupled Systems
of ODEs
• Use shorthand notation for the time at the nth step: tn, and denote

yi(t
n) as yi

n

• Then approximate the derivatives are written:

• And Euler’s method for a set of coupled ODEs is:

Aside: Coupled systems of ODEs in vector
notation
• In order to simplify the description of the second order Runge-

Kutta algorithm we use the following vector notation to simplify
the equations:

• Using this notation, the original set of ODEs is:

• In this notation Euler’s method is:

Second-order Runge-Kutta method

Fadlisyah, Muhammad thesis (2014)

Second-order Runge-Kutta method

• Taylor expand around t + 1/2 t :

• Subtract the two expressions

Need f evaluated at midpoint

Second-order Runge-Kutta method

• Step 1: Estimate change due of the right-hand side using Euler's
method:

• Step 2: Use estimate to predict value of solution at midpoint of the
timestep. Evaluate right hand side at midpoint:

• See orbit_examples.ipynb

Second and fourth-order Runge-Kutta
methods

2nd order 4th order

Fadlisyah, Muhammad thesis (2014)

The fourth-order Runge-Kutta method
• In practice, the workhorse algorithm for first-order sets of ODEs is the

fourth-order Runge-Kutta algorithm which (we state here without
derivation)

• Step 1:

• Step 2:

• Step 3:

• Step 4:

• Step 5:

Runge-Kutta methods

• Euler method can be thought of as the first-order RK method
• Accurate to first order in t, i.e., error is order t2

• Second-order RK method accurate to t2, so error t3

• Fourth-order RK method accurate to t4, so error t5

• By far the most common method for the numerical solution of ODEs
• Balances accuracy and complexity

• Quoted accuracies are for one step, errors accumulate over the number of
steps needed in the calculation, usually loose an order of accuracy (see
Newman)

Adaptive step size
• So far, we have set by hand a constant

step size t

• Often, we can get better results by
varying the step size
• Increase in regions where function

varies rapidly, decrease where it varies
slowly

• Approach: vary t so the error
introduced per unit interval is
roughly constant
• First we need to estimate the error in

the steps

(Newman)

Adaptive step size: Estimating the error
• 1. Choose initial (small) t

• 2. Use RK method to do two t
steps of the solution

• 3. Go back to initial t and do an
RK step with 2t

• 4. Compare the results to
estimate the error

t + 2tt

2t

t t

Adaptive step size: Estimating the error

• True value of function related to estimate yt :

• For doubled step size y2t :

• So per step error is:

• Take  to be the target accuracy per step. Then the step size
necessary to get that accuracy is:

Adaptive step size: Complete approach

• 1. Choose initial t

• 2. Use RK method to do two t steps of the solution

• 3. Go back to initial t and do an RK step with 2t

• 4. Compare the results to estimate the error

• 5. Calculate ideal step size t’
• If  > , then redo the calculation with t’
• If  < , take the results obtained using t and move on to time t + t. In the

next iteration use t’ as the timestep

• Requires at least 3 RK steps for every two actually used, but usually
results in an overall speedup for a given accuracy

• Usually limit how much t’ can differ from t (e.g., by less than a
factor of two) in case the denominator happens to diverge

Example: Elliptical orbit with adaptive 4th-order RK

Circular:
x0= 1 AU
vy0 =6.283185 AU/year

Elliptical:
x0= 0.3 AU
vy0 =14.955378 AU/year

Improving the results with local extrapolation

• We can use our knowledge of the error to improve our estimate for
y(t+t) recall that:

• And:

• So:

• No estimate of the error but presumably better than previous 4th
order result

Today’s lecture

• Ordinary differential equations:
• Euler method

• Runge-Kutta methods and adaptive RK

• Beyond Runge-Kutta
• Leapfrog/Verlet/modified midpoint

• Bulirsch-Stoer Method

Leapfrog method
• Recall the second-order RK method:

• Using the Euler method applied to t to estimate the value of a variable at the
midpoint of the interval t + 1/2t

• Leapfrog method uses a similar approach, except calculates the next
midpoint by using the Euler method evaluated at the previous
midpoint

Leapfrog method versus 2nd order RK

(Newman)

2nd order RK:

Leapfrog:

Leapfrog method

• Starts out the same as RK:

• Then:

Why the leapfrog method?

• Time reversal symmetric
• Useful for physics problems where energy conservation is important

• Error is even in step size
• Ideal starting point for Richardson extrapolation for Bulirsch-Stoer

Leapfrog method is “time-reversal symmetric”
• If we use –t instead of t, we should retrace our steps

• To see this, start with the equations we repeatedly apply for the
Leapfrog method:

• Set step size to –t :

Leapfrog method is “time-reversal symmetric”

• Now make a trivial shift in time:

• To get:

• Same as the original: (but moving backwards)

What about 2nd order Runge-Kutta?
• Original expressions:

• Set step size to –t :

• No way to, e.g., make a shift in t to get back to original operations in the
opposite direction
• Errors will result in broken time-reversal symmetry

Why is time-reversal symmetry important? Energy conservation!
2nd order RK Leapfrog

Circular Elliptical Circular Elliptical

Total energy Total energy
Total energy

Total energy

Verlet method for equations of motion using
leapfrog method
• For this method we will limit ourselves to ODEs of the form of

equations of motion:

• (i.e., where the RHS of the first equation does not depend on x)

• In that case, we can do the leapfrog method with two equations

Position only at integer steps

Velocity only at half-integer steps

What if we want to know, e.g., the total
energy at a point?
• Total energy requires knowing x and v at the same point

• Let’s just step the velocity back half a step with Euler’s method:

• Rearrange to get:

• Gives velocity at integer points from quantities we have already
calculated

• First do an initial half step:

• Then repeatedly apply:

Verlet method: Leapfrog in this specific
situation of, e.g., EOM:

After class tasks

• Homework 1 due Sept. 17 (end of the day)
• Let me know if you have HW questions or questions/issues on github

classroom

• Readings:
• Newman Ch. 8

	Slide 1: PHY604 Lecture 7
	Slide 2: Today’s lecture
	Slide 3: Differential equations (Newman Ch. 8)
	Slide 4: Example of system of differential equations: Equations of motion
	Slide 5: Approximating the Equations of Motion
	Slide 6: Euler’s method for integrating the equations of motion
	Slide 7: Example: A body orbiting the sun
	Slide 8: Euler’s method for body orbiting the sun
	Slide 9: Parameters for orbit problem
	Slide 10: Example program for Euler orbit problem
	Slide 11: More accurate ODE numerical methods
	Slide 12: Aside: Notation for coupled systems of ordinary differential equations
	Slide 13: Aside: Euler’s Method for Coupled Systems of ODEs
	Slide 14: Aside: Coupled systems of ODEs in vector notation
	Slide 15: Second-order Runge-Kutta method
	Slide 16: Second-order Runge-Kutta method
	Slide 17: Second-order Runge-Kutta method
	Slide 18: Second and fourth-order Runge-Kutta methods
	Slide 19: The fourth-order Runge-Kutta method
	Slide 20: Runge-Kutta methods
	Slide 21: Adaptive step size
	Slide 22: Adaptive step size: Estimating the error
	Slide 23: Adaptive step size: Estimating the error
	Slide 24: Adaptive step size: Complete approach
	Slide 25: Example: Elliptical orbit with adaptive 4th-order RK
	Slide 26: Improving the results with local extrapolation
	Slide 27: Today’s lecture
	Slide 28: Leapfrog method
	Slide 29: Leapfrog method versus 2nd order RK
	Slide 30: Leapfrog method
	Slide 31: Why the leapfrog method?
	Slide 32: Leapfrog method is “time-reversal symmetric”
	Slide 33: Leapfrog method is “time-reversal symmetric”
	Slide 34: What about 2nd order Runge-Kutta?
	Slide 35: Why is time-reversal symmetry important? Energy conservation!
	Slide 36: Verlet method for equations of motion using leapfrog method
	Slide 37: What if we want to know, e.g., the total energy at a point?
	Slide 38: Verlet method: Leapfrog in this specific situation of, e.g., EOM:
	Slide 39: After class tasks

