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Today’s lecture: 
ODEs and Linear Algebra

• Beyond RK: Other methods for ODEs
• Verlet method

• Bulirsch-Stoer Method

• Boundary Value problems

• Eigenvalue problems



Leapfrog method versus 2nd order RK

(Newman)

2nd order RK:

Leapfrog:



Leapfrog method 

• Starts out the same as RK:

• Then: 



Why the leapfrog method?

• Time reversal symmetric
• Useful for physics problems where energy conservation is important

• Error is even in step size
• Ideal starting point for Richardson extrapolation for Bulirsch-Stoer



Leapfrog method is “time-reversal symmetric”
• If we use –t instead of t, we should retrace our steps

• To see this, start with the equations we repeatedly apply for the 
Leapfrog method:

• Set step size to –t :



Leapfrog method is “time-reversal symmetric”

• Now make a trivial shift in time:

• To get:

• Same as the original: (but moving backwards)



What about 2nd order Runge-Kutta?
• Original expressions:

• Set step size to –t :

• No way to, e.g., make a shift in t to get back to original operations in the 
opposite direction
• Errors will result in broken time-reversal symmetry



Why is time-reversal symmetry important? Energy conservation!
2nd order RK Leapfrog

Circular Elliptical Circular Elliptical

Total energy Total energy
Total energy

Total energy



Verlet method for equations of motion using 
leapfrog method
• For this method we will limit ourselves to ODEs of the form of 

equations of motion:

• (i.e., where the RHS of the first equation does not depend on x)

• In that case, we can do the leapfrog method with two equations

Position only at integer steps

Velocity only at half-integer steps



What if we want to know, e.g., the total 
energy at a point?
• Total energy requires knowing x and v at the same point

• Let’s just step the velocity back half a step with Euler’s method:

• Rearrange to get:

• Gives velocity at integer points from quantities we have already 
calculated



• First do an initial half step:

• Then repeatedly apply:

Verlet method: Leapfrog in this specific 
situation of, e.g., EOM:



Error of leapfrog/Verlet is even in step size

• Error for a single step is proportional to t3 to leading order

• What about the other orders? Time reversal symmetry gives: 

• So, the error is an odd function:

• But total error is one order less when we accumulate over all steps:

• So:



Wait, what about initial Euler half step?

• Introduces odd (and even) higher-order errors

• We can get rid of these errors with the following procedure.



Removing errors from initial Euler half step

• Define variable at integer and half steps:

• Then:



Removing errors from initial Euler half step: 
Modified midpoint method
• Take tf as the final time of the calculation, achieved at step n

• We can write the final solution for x(t+tf) in two ways:

• Or we can use the average of the two:

• This cancels the error from the initial Euler step!
• Proved by mathematician William Gragg in 1965

• Modified midpoint method: Using the iterative steps from the 
previous slide and the above expression for x(t+tf)



Bulirsch-Stoer Method

• Why do we care about the modified midpoint method and even-
powered errors? They are the basis of the Bulirsch-Stoer Method

• This method combines the modified midpoint method with 
Richardson extrapolation (e.g., the Romberg method for integrals)



Simple example of Bulirsch-Stoer: First order 
ODE with one variable

• Equation:

• We would like to solve from t to tf, with x(t) given 

• Start by using the modified midpoint method with a single step t1=tf

• More specifically, two half steps

• Call this estimate R1,1

• Now perform the calculation for t2=1/2 tf to get R2,1



Performing Richardson extrapolation

• We can write the “exact” expressions since we know the form of the 
errors (using t1 = t2)

• So:

• And: New estimate accurate to fourth order! 

R2,2



Performing Richardson extrapolation, cont.

• Let’s do another step: Calculate R3,1 with t3=1/3 tf 

• Following the same steps as before:

• Then we can write the “exact” result:

• From what we had previously:

• Equating these gives:



Performing Richardson extrapolation, cont.

• So, we have: 

• Where:

• Three modified midpoint steps, and already have a sixth-order error
• Gain two orders of accuracy with each step

New estimate 
accurate to sixth 
order! 

R3,3



General Richardson extrapolation
• n is the number of modified midpoint 

steps, which gives us Rn,1

• Can obtain Rn,m for m < n

• See Newman Sec. 8.5

• Which gives an estimate of the result:

(Newman)



Comments about Bulirsch-Stoer
• Adaptive method: Provides error and estimate

• Continue until error is below a given accuracy

• Similar approach to Romberg integration with some key differences
• Increase number of intervals by one in BS instead of doubling in Romberg
• Not possible to “reuse” previous points like in Romberg

• Only provides accurate estimate for final result x(t+tf)
• At intermediate points, we just get raw midpoint method estimates (accurate 

to t2)
• Not well suited if we need many (100’s or 1000’s) steps, so only for rather 

small regions, where we can get accuracy with < 8 steps

• Can divide larger intervals into smaller ones and apply the BS method

• Often gives better accuracy with less work then RK, especially for 
relatively smooth functions
• RK should be used for ODEs with pathological behavior, large fluctuations, 

divergences, etc. 



Bulirsch-Stoer Method: Summary

• Say we would like to solve an ODE from t to tf up to accuracy  per 
step

• First, divide the total range into N equal intervals of length tH. Then do 
the following steps for each interval:

• 1. Perform a modified midpoint step with one interval from t to tH  to 
get R1,1

• 2. Increase the number of intervals by one to n and calculate Rn,1 with 
the modified midpoint method

• 3. Calculate the “row” via Richardson extrapolation, i.e., Rn,2…Rn,n

• 4. Compare the error to the target accuracy  tH. If it is larger than the 
target accuracy, return to step 2. If it is less than the target accuracy, 
go to the next interval. D



Example: Orbits with the Bulirsch-Stoer 
method 



Today’s lecture: 
ODEs and Linear Algebra

• Beyond RK: Other methods for ODEs
• Verlet method

• Bulirsch-Stoer Method

• Boundary Value problems

• Eigenvalue problems



Boundary value problems

• The orbital example we have been studying is an initial value 
problem: Solving ODEs given some initial value

• Boundary value problems: Conditions needed to specify the solution 
given at some different (or additional) points to the initial point
• E.g.: Find a solution for the EOM such that the trajectory passes through a 

specific point in the future

• Boundary value problems are more difficult to solve
• Two methods: Shooting method and relaxation method (we will discuss the 

latter in terms of PDEs later)



Shooting method example: Ball thrown in the air

• “Trial-and-error” method: Searches for 
correct values of initial conditions that 
match a given set of boundary 
conditions

• Example (from Newman Sec. 8.6): 
Height of a ball thrown in the air

• Guess initial conditions (initial vertical 
velocity) for which the ball will return 
to the ground at a given time t

Guesses

Boundary value



How do we modify initial conditions between 
guesses?
• Write the height of the ball at the boundary t1 as x = f(v) where v is 

the initial velocity

• If we want the ball to be at x = 0 at t1, we need to solve f(v) = 0

• So, we have reformulated the problem as finding a root of a function
• We can use, e.g., the bisection method, Newton-Raphson method, secant 

method

• The function is “evaluated” by solving the differential equation
• We can use any method discussed previously, e.g., Runge-Kutta, Bulirsch-

Stoer, etc.
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Eigenvalue problems

• Special type of boundary value problem: Linear and homogeneous
• Every term is linear in the dependent variable

• E.g.: Schrodinger equation:

• Consider the Schrodinger equation in a 1D square well with infinite 
walls:

D



Schrodinger equation in 1D well
• As usual, make into system of 1D ODEs:

• Know that  = 0 at x = 0 and x = L, but 
don’t know 

• Let’s choose a value of E and solve using 
some choices for  :

• Since the equation is linear, scaling the 
initial conditions exactly scales the (x)

• No matter what , we will never get a 
valid solution! (only affects overall 
magnitude, not shape)

E=700 eV

 = 1

 = 2

 = 3



Only specific E has a valid solution

• Solutions only exist for eigenvalues

• Need to vary E,  can be fixed via normalization

• Same strategy, Find the E such that  (L)= 0

D



After class tasks

• Homework 2 due Oct. 1 by the end of the day

• Readings:
• Newman Ch. 8
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