PHY604 Lecture &

September 18, 2025



Today’s lecture:
ODEs and Linear Algebra

* Beyond RK: Other methods for ODEs

e Verlet method
e Bulirsch-Stoer Method

* Boundary Value problems

* Eigenvalue problems



Leapfrog method versus 2" order RK

¢ ,  ita t+ 2At t + 3At [+ 4AL
| t+E§At . | :
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(Newman)



Leapfrog method

e Starts out the same as RK:

ot + A1) = y(t) + 5 Atf(y.1
y(t+ At = y(t) + At f {y(t 4 %At),t 4 %At]
* Then:
y(t + gm) — oyt + %At) AL [yt + A, L+ Al

y(t+ 2A8) = y(t + At) + ALf {y(t + gAt),t + gm}



Why the leapfrog method?

* Time reversal symmetric
e Useful for physics problems where energy conservation is important

* Error is even in step size
* |deal starting point for Richardson extrapolation for Bulirsch-Stoer



Leapfrog method is “time-reversal symmetric”

* If we use —At instead of At, we should retrace our steps

* To see this, start with the equations we repeatedly apply for the
Leapfrog method:

y(t + At) = y(t) + At f {y(t + %At),t + %At}

(t gAt):y(t %At) ALF [y(t + AL). £ + Ad]

* Set step size to —At :

y(t — A = y(t) — Atf [y(t _ %At),t _ %At}

y(t — gAt) oyt — %At) _ALF[y(t — Ab). £ — A



]

Leapfrog method is “time-reversal symmetric’

3
* Now make a trivial shift in time: t — ¢ + §At
* To get:

y(t + %At) — y(t + gAt) — Atf [y(t + Ab), t + Al
y(t) = y(t + At) — Atf {y(t + %At),t + %At}

e Same as the original: (but moving backwards)

y(t + At) = y(t) + At f {y(t + %At),t + %At}

3 1
y(t + §At) = y(t + §At) + Atf [y(t + At), t + At]



What about 2" order Runge-Kutta?
* Original expressions: (¢ + %At) = y(t) + %Atf(y, t)

y(t+ At) = y(t) + Atf {y(t + %At),t + %At}

1 1
e Setstep sizeto—-At: y(t — §At) = y(t) — §Atf(y,t)

y(t — At) = y(t) — Atf {y(t _ %At),t _ %At}

* No way to, e.g., make a shift in t to get back to original operations in the
opposite direction

* Errors will result in broken time-reversal symmetry



Why is time-reversal symmetry important? Energy conservation!
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Leapfrog
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Verlet method for equations of motion using
leapfrog method

e For this method we will limit ourselves to ODEs of the form of
equations of motion:

dx dv
— = V(1 — = f(x,1

* (i.e., where the RHS of the first equation does not depend on x)
* In that case, we can do the leapfrog method with two equations

Position only at integer steps 1
~~ x(t + At) = x(t) + Atv (t + §At>

Velocity only at half-integer steps

TS ;At):v(t %At)+Atf[x(t AL).t+ Al




What if we want to know, e.g., the total
energy at a point?

* Total energy requires knowing x and v at the same point
* Let’s just step the velocity back half a step with Euler’s method:

1 1
v(t + §At) =v(t+ At) — §Atf[x(t + At), t + At

* Rearrange to get:
1 1
v(t + At) = v(t + 5At) + §Atf[x(t + At), t + At]

* Gives velocity at integer points from quantities we have already
calculated



Verlet method: Leapfrog in this specific
situation of, e.g., EOM:

* First do an initial half step:
1 1
v(t + iAt) = v(t) + iAtf x(t), ]

* Then repeatedly apply:
1
x(t+ At) = x(t) + Atv <t + §At)

k = Atf[x(t + At), t + At]
1

1

1
v(t + ;At) =v(t+ §At) +k



Error of leapfrog/Verlet is even in step size

* Error for a single step is proportional to At3to leading order
* What about the other orders? Time reversal symmetry gives:
e(—At) = —e(At)
* So, the error is an odd function:
e(At) = c3sAt? + cs At° 4+ 7 At + ...

* But total error is one order less when we accumulate over all steps:

tr —to
ot (AL) = e(At
€t t( t) E( ) X At

* So:
€cot (AL) = baAt? + by At 4+ bgAt® + ...



Wait, what about initial Euler half step?

v(t + %At) = v(t) + %Atf x(t), ]

* Introduces odd (and even) higher-order errors

* We can get rid of these errors with the following procedure.



Removing errors tfrom initial Euler half step
st = a(t
* Define variable at integer and half steps: | 1 .
ZC]ilalf _ xbnt 4+ §Atf(£ljbnt, t)
* Then: i = gt At (Mt 4 %At)
wht = 2P ALf (2 L+ At

. . 3
£E12nt _ .”I)llnt £+ Atf(fgalf,t 4 §At)

PRl — g ALF (o, ¢ 4 mAY

. . 1
Tt | =t 4 Atf(:vgffl, t+ (m+ §)At)



Removing errors from initial Euler half step:
Modified midpoint method

* Take t; as the final time of the calculation, achieved at step n

* We can write the final solution for x(t+ty) in two ways:

. 1 .
r(t +tp) =zt = ghalf | §Atf(a;;;?t,t +ty)
* Or we can use the average of the two:

1 [ . 1 |
p(t+i5) =5 o' + Tt 4 SALf ("t + t5)

* This cancels the error from the initial Euler step!
* Proved by mathematician William Gragg in 1965

* Modified midpoint method: Using the iterative steps from the
previous slide and the above expression for x(t+t)



Bulirsch-Stoer Method

* Why do we care about the modified midpoint method and even-
powered errors? They are the basis of the Bulirsch-Stoer Method

* This method combines the modified midpoint method with
Richardson extrapolation (e.g., the Romberg method for integrals)



Simple example of Bulirsch-Stoer: First order
ODE with one variable

. dx
* Equation: — — t
q o f(z,t)

* We would like to solve from t to t;, with x(t) given

* Start by using the modified midpoint method with a single step At;=t;

* More specifically, two half steps
* Call this estimate R, ,

* Now perform the calculation for At,=1/2 trto get R,



Performing Richardson extrapolation

* We can write the “exact” expressions since we know the form of the
errors (using At; = 2At,)

z(t+t7) = Roq + ci At + O(AL)
r(t+tr) = Ry +ciAt: + O(At]) = Ry + 4 At + O(AL)

e G- 1
S0: ClAtg = g(RQ,l — Rl,l)

. New estimate accurate to fourth order!
* And:

\

1
r(t+1r) = 52,1 + §(R2,1 — Rl,l} T O(At;l)
e
Ry,




Performing Richardson extrapolation, cont.

* Let’s do another step: Calculate R; ; with At;=1/3 t;
* Following the same steps as before:

R3o = R3 1+ 5(331—321)
* Then we can write the “exact” result:
z(t+t) = Raz2 + coAty + O(At3)

* From what we had previously:

81
.CI?(t + tf) — RQ’Q + CgAtél —+ O(AtG) = RQ,Q —+ 1—662At§ + O(Atg)
16

* Equating these gives: 02At§ = 65 — (R3,2 — Ra2)



Performing Richardson extrapolation, cont.
16

* So, we have: x(t+1tf) = R3o+ %(33,2 — Ra2) + O(ALS)
\_ / T
Y
R3 3 New estimate
' accurate to sixth
order!
16
* Where: R3 3= Rz o+ @(33,2 - R2,2)

* Three modified midpoint steps, and already have a sixth-order error
e Gain two orders of accuracy with each step



General Richardson extrapolation

* nis the number of modified midpoint
steps, which givesus R, ,

* CanobtainR,, . form<n T
’ =12 R1,1
R . | Rn,m _ Rn—l,m L
n.m-+1 — 4Lin,m 7 ’
n/(n—1)*m -1 n=2: Ra1 — Ra;
. b
* See Newman Sec. 8.5 n=3: R31 — Ra2 — Rag3
hY h¥ N\
n==¢4: R4,| » R."Q - 1{4.3 — ]{4'4
. . . \// N -~ _J
* Which gives an estimate of the result: Modified Richardson extrapolation

midpoint

ZE(t —+ tf) — Rn,m—l—l —+ O(A?Lm—I_Q)

(Newman)




Comments about Bulirsch-Stoer

* Adaptive method: Provides error and estimate
e Continue until error is below a given accuracy

e Similar approach to Romberg integration with some key differences
* Increase number of intervals by one in BS instead of doubling in Romberg
* Not possible to “reuse” previous points like in Romberg

* Only provides accurate estimate for final result x(t+t)

e At intermediate points, we just get raw midpoint method estimates (accurate
to At?)

* Not well suited if we need many (100’s or 1000’s) steps, so only for rather
small regions, where we can get accuracy with < 8 steps

e Can divide larger intervals into smaller ones and apply the BS method

* Often gives better accuracy with less work then RK, especially for
relatively smooth functions

* RK should be used for ODEs with pathological behavior, large fluctuations,
divergences, etc.



Bulirsch-Stoer Method: Summary

* Say we would like to solve an ODE from t to t; up to accuracy o per
step

* First, divide the total range into N equal intervals of length t,. Then do
the following steps for each interval:

* 1. Perform a modified midpoint step with one interval from tto t, to
getR;

* 2. Increase the number of intervals by one to n and calculate R,, ; with
the modified midpoint method

* 3. Calculate the “row” via Richardson extrapolation, i.e., R,,,...R, ,

* 4, Compare the error to the target accuracy o't,. If it is larger than the
target accuracy, return to step 2. If it is less than the target accuracy,
go to the next interval.



Example: Orbits with the Bulirsch-Stoer
method
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Today’s lecture:
ODEs and Linear Algebra

* Boundary Value problems

* Eigenvalue problems



Boundary value problems

* The orbital example we have been studying is an initial value
problem: Solving ODEs given some initial value

* Boundary value problems: Conditions needed to specify the solution
given at some different (or additional) points to the initial point

e E.g.: Find a solution for the EOM such that the trajectory passes through a
specific point in the future

* Boundary value problems are more difficult to solve

* Two methods: Shooting method and relaxation method (we will discuss the
latter in terms of PDEs later)



Shooting method example: Ball thrown in the air

* “Trial-and-error” method: Searches for
correct values of initial conditions that
match a given set of boundary
conditions

200

150

100

* Example (from Newman Sec. 8.6):
Height of a ball thrown in the air
d’x t &

— = -G 0o ¥

dt? 1

-50 Time 1

]

- - i L_L_L.,-__l_.l_..“'. | -

Height x

W
VA
1

Boundary value

* Guess initial conditions (initial vertical
velocity) for which the ball will return
to the ground at a given time t



How do we modity initial conditions between
guesses?

* Write the height of the ball at the boundary t; as x = f(v) where v is
the initial velocity

* If we want the ball to be at x =0 at t;, we need to solve f(v) =0

* So, we have reformulated the problem as finding a root of a function
 We can use, e.g., the bisection method, Newton-Raphson method, secant
method
* The function is “evaluated” by solving the differential equation

* We can use any method discussed previously, e.g., Runge-Kutta, Bulirsch-
Stoer, etc.



Today’s lecture:
ODEs and Linear Algebra

* Eigenvalue problems



Eigenvalue problems

 Special type of boundary value problem: Linear and homogeneous
e Every term s linear in the dependent variable

* E.g.: Schrodinger equation:
h? d?a
o+ V(@)b(@) = By(a)

e Consider the Schrodinger equation in a 1D square well with infinite
walls:

(

0 for 0 L
V(x):<’ or U <xr<

o0, elsewhere
\



Schrodinger equation in 1D well

* As usual, make into system of 1D ODE:s:

dw d¢ 2m leo11 E=700 eV
T ZQS) - = —2[‘/(33) _E]w | .
dx de  h y
* Know that w=0atx=0and x =L, but
don’t know ¢ L
* Let’s choose a value of E and solve using ¢9=1
some choices for ¢ 0

* Since the equation is linear, scaling the
initial conditions exactly scales the y(x) -1-

* No matter what ¢, we will never get a
valid solution! (only affects overall d J : ! .
magnitude, not shape) le-11




Only specific E has a valid solution

 Solutions only exist for eigenvalues
* Need to vary E, ¢ can be fixed via normalization

* Same strategy, Find the E such that w(L)=0



After class tasks

* Homework 2 due Oct. 1 by the end of the day

* Readings:
* Newman Ch. 8
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