PHY604 Lecture 9

September 23, 2025

Today’s lecture:
ODEs and Linear Algebra

* Boundary Value problems
* Eigenvalue problems

 Linear algebra
e Gaussian elimination
* LU decomposition

Boundary value problems

* The orbital example we have been studying is an initial value
problem: Solving ODEs given some initial value

* Boundary value problems: Conditions needed to specify the solution
given at some different (or additional) points to the initial point

e E.g.: Find a solution for the EOM such that the trajectory passes through a
specific point in the future

* Boundary value problems are more difficult to solve

* Two methods: Shooting method and relaxation method (we will discuss the
latter in terms of PDEs later)

Shooting method example: Ball thrown in the air

* “Trial-and-error” method: Searches for
correct values of initial conditions that
match a given set of boundary
conditions

200

150

100

* Example (from Newman Sec. 8.6):
Height of a ball thrown in the air
d’x t &

— = -G 0o ¥

dt? 1

-50 Time 1

]

- - i L_L_L.,-__l_.l_..“'. | -

Height x

W
VA
1

Boundary value

* Guess initial conditions (initial vertical
velocity) for which the ball will return
to the ground at a given time t

How do we modity initial conditions between
guesses?

* Write the height of the ball at the boundary t; as x = f(v) where v is
the initial velocity

* If we want the ball to be at x =0 at t;, we need to solve f(v) =0

* So, we have reformulated the problem as finding a root of a function
 We can use, e.g., the bisection method, Newton-Raphson method, secant
method
* The function is “evaluated” by solving the differential equation

* We can use any method discussed previously, e.g., Runge-Kutta, Bulirsch-
Stoer, etc.

Today’s lecture:
ODEs and Linear Algebra

* Boundary Value problems
* Eigenvalue problems

 Linear algebra
e Gaussian elimination
* LU decomposition

Eigenvalue problems

 Special type of boundary value problem: Linear and homogeneous
e Every term s linear in the dependent variable

* E.g.: Schrodinger equation:
h? d?a
o+ V(@)b(@) = By(a)

e Consider the Schrodinger equation in a 1D square well with infinite
walls:

(

0 for 0 L
V(x):<’ or U <xr<

o0, elsewhere
\

Schrodinger equation in 1D well

* As usual, make into system of 1D ODE:s:

dw d¢ 2m leo11 E=700 eV
T ZQS) - = —2[‘/(33) _E]w | .
dx de h y
* Know that w=0atx=0and x =L, but
don’t know ¢ L
* Let’s choose a value of E and solve using ¢9=1
some choices for ¢ 0

* Since the equation is linear, scaling the
initial conditions exactly scales the y(x) -1-

* No matter what ¢, we will never get a
valid solution! (only affects overall d J : ! .
magnitude, not shape) le-11

Only specific E has a valid solution

 Solutions only exist for eigenvalues
* Need to vary E, ¢ can be fixed via normalization

* Same strategy, Find the E such that w(L)=0

Today’s lecture:
ODEs and Linear Algebra

 Linear algebra
e Gaussian elimination
* LU decomposition

Numerical linear algebra (carcacn.s

e Basic problemto solve: Ax=Db

* We have already seen many cases where we need to solve linear systems
of equations

* E.g., ODE integration, cubic spline interpolation

* More that we will come across:
* Solving the diffusion PDE
* Multivariable root-finding
e Curve fitting

* We will explore some key methods to understand what they do
* Mostly, efficient and robust libraries exist, so no need to reprogram

* Often itis illustrative to compare between how we would solve linear
algebra by hand and (efficiently) on the computer

Review of matrices: Multiplication

* Matrix-vector multiplication: n
* Ais mx n matrix
* X is n x 1 (column) vector bz — (Ax)z — E Az’jxj
e Result: bis mx 1 (column vector) j=1
* Simple scaling: O(N?) operations

* Matrix-matrix multiplication n
* Ais mx n matrix
* Bis nx p matrix (AB)Z] — E Aszk]
* Result: AB is m x p matrix le—1
* Direct multiplication: O(N?) operations

e Some faster algorithms exist (make use of
organization of sub-matrices for simplification)

Review of matrices: Determinant

* Encodes some information about a square matrix

* Used in some linear systems algorithms
* Solution to linear systems only exists if determinant is nonzero

* Simple algorithm for obtaining determinant is Laplace expansion
* For simple matrices, can be done by hand:

a b

Cd—ad—bc

a b c
def:aef—b|df—|—cd€
g h h 1 g 1 g h

 What about big matrices?

Review of matrices: Determinant

* Encodes some information about a square matrix

* Used in come linear systems algorithms
* Solution to linear systems only exists if determinant is nonzero

* By hand: Simple algorithm for obtaining determinant is Laplace

expansion

* For simple matric

a
C

a

d
g

b
d

b
e

h

es, can be done by hand:

= ad — bc
‘ e f d f d e
{;:ah i —b|g i—l_cg .

* What about big matrices? Will need a more efficient
implementation!

Review of matrices: Inverse
* AlA=AA =]

e Formally, the solution to a linear system Ax=b isx=A1lb
e Usually less expensive to get the solution without computing the inverse first

* Non-invertible (i.e., singular) if determinantis O

By hand: Cramer’s rule

* One simple way to solve Ax =b is:
_ A
Al
* Where A, is A with the jith column replaced by b

L

 Comparable speed to calculating the inverse

By hand: Gaussian elimination

* Main general technique for solving Ax=Db
* Does not involve matrix inversion
* For “special” matrices, faster techniques may apply

* Involves forward-elimination and back-substitution

* Consider a simple example (from Garcia Ch. 4):

1 T L9 —|—CIZ‘3 =0

—XL1 T 2262 — 3
211 +x3 = 9

By hand: Forward elimination

* 1. Eliminate x, from second and third equation. Add first equation to
the second and subtract twice the first equation from the third:

r1+xo +x3 =0

3ro+x3 =9
—2332—5133 = —7

* 2. Eliminate x, from third equation. Multiply the second equation by
(-2/3) and subtract it from the third

T1+To T3 — 0

35132 TIX3 — 9

By hand: Back substitution

T1+To T3 = 0

3re +x3 =29

1
— x5

3

—1

* 3. Solve for x5 = 3.
* 4, Substitute x5 into the second equation to get x, = 2
* 5. Substitute x; and x, into the first equation to get x; =1

* In general, for N variables and N equations:
* Use forward elimination make the last equation provide the solution for x,
* Back substitute from the Nth equation to the first
* Scales like N3 (can do better for “sparse” equations)

Pitfalls of Gaussian substitution: Roundoff errors

e Consider a different example (also from Garcia):
ex1+xrotrs =5
L1 TI92 =3

r1+ +IT3 = 4

* First, lets take ¢ — 0 and solve:

Subtract second from third: Add first to third: Back substitute:
To+Ts =95 To+x3 = O Ty =
T1+T2 =3 T1+To =3 rT1 =
—xaotwy =1 203 = 6 T3 =

Roundoft error example: Now solve with &

* Forward elimination starts by multiplying first equation by 1/cand
subtracting it from second and third:
€T + To +x3 =95
(1—1/€)xzs —(1/€)xs =3 —5/¢
—(1/e)xes +(1 —1/€)x3 =4 —5/¢

* Clearly have an issue if ¢is near zero, e.g., if C —1/e — —1/e for C
order unity:

ET1 + 9 —I—ZIZ‘3 =9

~ (1 ~(1fe)zs = =5/ e
—(1/e)xes —(1/€)x3 = —5/€

equations, three
unknowns

Simple fix: Pivoting

* Interchange the order of the equations before performing the forward
elimination r1+To — 3

€x1t+xot+xry =95

L1 ry = 4
* Now the first step of forward elimination gives us:
r1+To =3
(1 —€)zo+xz3 =5 — 3¢
— I I3 = 1
* Now we round off:
T1+I9 =3
Same as when we
I1 X3 — 5

initially took ¢to 0.

—Xo2TIL3 — 1

Gaussian elimination with pivoting

* Partial-pivoting:
* Interchange of rows to move the one with the largest element in the current
column to the top
* (Full pivoting would allow for row and column swaps—more complicated)

e Scaled pivoting
* Consider largest element relative to all entries in its row
* Further reduces roundoff when elements vary in magnitude greatly

e Row echelon form: This is the form that the matrix is in after forward
elimination

Matrix determinants with Gaussian elimination

* Once we have done forward substitution and obtained a row echelon
matrix it is trivial to calculate the determinant:

N
det(A) = (_1)Npivot H Aggw—echelon
1=1

* Every time we pivoted in the forward substitution, we change the sign

Matrix inverse with Gaussian elimination
* \We can also use Gaussian elimination to fin the inverse of a matrix
 We would like to find AA1 =1

* We can use Gaussian elimination to solve: A x; = e,
* e;is a column of the identity:

0 0 ;
0 1 0 ‘

€1 =10, €2= 10|, €e3 = |1}|+---» N — 8
1

* X;is a column of the inverse:

A_lz[xl Xo X3 ... XN]

Singular matrix

* If a matrix has a vanishing determinant, then the system is not
solvable

« Common way for this to enter, one equation in the system is a linear
combination of some others

* Not always easy to detect from the start

Singular and close to singular matrices

* Condition number: Measures how close to singular we are
* How much x would change with a small change in b

cond(A) = [|A[| [[A™]]

* Requires defining a norm of A
e https://en.wikipedia.org/wiki/Matrix_norm
e See, e.g., numpy implementation:
e https://numpy.org/doc/stable/reference/generated/numpy.linalg.cond.html

HXexact __ ~calc ||

X
‘ ‘ Xexact ‘ ‘

* Rule of thumb: ~ cond(A) - gmachine

https://en.wikipedia.org/wiki/Matrix_norm
https://en.wikipedia.org/wiki/Matrix_norm
https://numpy.org/doc/stable/reference/generated/numpy.linalg.cond.html
https://numpy.org/doc/stable/reference/generated/numpy.linalg.cond.html

Tridiagonal and banded matrices

* We saw this type of matrix when solving for cubic spline coefficients:

/ A4Nx Ax
Ax 4Azx
Ax

Ax

)

A4Axr Az

Axr 4Ax Ax

Axr 4Azx /

[
P
P

p%—Q
7,
\pn—l

e Often come up in physical situations

)

/ Jo—2f1+ /2
J1—2f2+ f3

Jo—2f3+ J4

fn—S _ 2fT.L—2 + fn—l

* These types of matrices can be efficiently solved with Gaussian
elimination

)

\ fn—2 T 2fn—1 + fn /

Gaussian elimination for banded matrices

* Only need to do Gaussian elimination steps for m nonzero elements

below given row (m is less than the number of diagonal bands)

* Example:
2 1 0 O
3 4 -5 0| .
0O —4 3 5 ’
0 0 1 3)

1 0 0
25 —5 o\
—4 3 5

0 1 3

0 0
—5 0
5 5

3,‘

(2 1
0 2.5
0 0

\0 0

0
—9

I_U deCOm pOSItIOﬂ (Newman Ch. 6)

* Often happens that we would like to solve: Ax; = v, for the same
A but many v
* For example, our implementation for the inverse

* Wasteful to do Gaussian elimination over and over, we will always get the
same row echelon matrix, just v; will be different

* Instead, we should keep track of operations we did to v, and use them over
and over

e Consider a general 4 x 4 matrix:

 Let’s perform Gaussian elimination

aoo

LU decomposition: First GE step

* Write the first step of the GE as:

(1

—aio

0

aoo
0

0

0
0

/ oo aAo1
ajp a1l
az2p d21

\a:so a3i

a03\
a13
a23
as33

(1

\0

* Where the b’s are some linear combination of g coefficients

* The first matrix on the LHS is a lower triangular matrix we call:

Lo

1

a0

(1
—aio
—Aano

\—a:so

0

aoo
0

0

0
0
ao
0

0
0

o O
aoo/

LU decomposition: Second LU step

b
(b

o

0
1

—bay
—b31

0
0
b11
0

0y
0

0
b11 /

(1
0
0

\ 0
(bll

0
0

\ 0

bo1
b11

ba1
b31

bo2
b12
ba2
b32

0
1

—ba1
—b31

503\

b13

ba3
b33 /

0
0
b11
0

0')
0
0

b11)

1 ¢

I
0 0
\0 0

LU decomposition: Last two steps for 4x4 matrix

(622 0 0 0 \ /d33 0 0 O\
L, = L 0 C29 0 0 L. = L 0 d33 0 0
T |0 0 1 0" P T dw| 0 0 dyz O
\ 0 0 —c3 o) \0 0 0 1/

* SO, we can write:
L3L2L1LOA — L3L2L1L0V

» Afterwards, the equation is ready for back substitution

 Mathematically identical to Gaussian elimination, but we only have to
find Ly-L; once, and then we can operate on many v’s

Slightly different formulation of LU decomposition

* From the properties of upper triangular matrices (same holds for
lower):
* Product of two upper triangular matrices is an upper triangular matrix.
* Inverse of an upper triangular matrix is an upper triangular matrix

* Consider the lower-diagonal matrix L and the upper-diagonal matrix
U:
L=L;'L7'Ly'L;', U =LsL,L;LoA

* Then trivially: LU = A, so for AX = v,, we can write LUx =v

Expression for L

* We can confirm that for our 4 x 4 example,

apo 0 0 O 1 0 0 0
-1 aio 1 0 O -1 0 b11 0 O -1
LO - aso 0O 1 0}’ Ll |0 1721 1 0}’ L2 -
azp 0 0 1 0 b33 0 1

OO O =

S O = O

C22
C32

o O O =

SO = O

o= O O

o O O

Solving the equation with L and U

* Break into two steps:

e 1. Ly = v can be solved by back substitution:

e 2. Now solve Ux =y by back substitution:

0

X

0

l11
l21

I3 sz l33)

Uil
0

0

0
0

[22

/ Upoo U1 U2

Ui

U2
0

0
0
0

\W iﬁ?\
)

(io\

(50\
s

23/

(yo\
Y1

s/

Some comments about LU decomposition

* Most common method for solving simultaneous equations

* Decomposition needs to be done once, then only back substitution is
needed for different v

* In general, still may need to pivot
* Every time you swap rows, you have to do the sameto L
* Need to perform the same sequence of swaps on v

After class tasks

e Readings:
* Newman Ch. 6
 GarciaCh. 4
* Pang Sec. 5.3

	Slide 1: PHY604 Lecture 9
	Slide 2: Today’s lecture: ODEs and Linear Algebra
	Slide 3: Boundary value problems
	Slide 4: Shooting method example: Ball thrown in the air
	Slide 5: How do we modify initial conditions between guesses?
	Slide 6: Today’s lecture: ODEs and Linear Algebra
	Slide 7: Eigenvalue problems
	Slide 8: Schrodinger equation in 1D well
	Slide 9: Only specific E has a valid solution
	Slide 10: Today’s lecture: ODEs and Linear Algebra
	Slide 11: Numerical linear algebra (Garcia Ch. 4)
	Slide 12: Review of matrices: Multiplication
	Slide 13: Review of matrices: Determinant
	Slide 14: Review of matrices: Determinant
	Slide 15: Review of matrices: Inverse
	Slide 16: By hand: Cramer’s rule
	Slide 17: By hand: Gaussian elimination
	Slide 18: By hand: Forward elimination
	Slide 19: By hand: Back substitution
	Slide 20: Pitfalls of Gaussian substitution: Roundoff errors
	Slide 21: Roundoff error example: Now solve with e
	Slide 22: Simple fix: Pivoting
	Slide 23: Gaussian elimination with pivoting
	Slide 24: Matrix determinants with Gaussian elimination
	Slide 25: Matrix inverse with Gaussian elimination
	Slide 26: Singular matrix
	Slide 27: Singular and close to singular matrices
	Slide 28: Tridiagonal and banded matrices
	Slide 29: Gaussian elimination for banded matrices
	Slide 30: LU decomposition (Newman Ch. 6)
	Slide 31: LU decomposition: First GE step
	Slide 32: LU decomposition: Second LU step
	Slide 33: LU decomposition: Last two steps for 4x4 matrix
	Slide 34: Slightly different formulation of LU decomposition
	Slide 35: Expression for L
	Slide 36: Solving the equation with L and U
	Slide 37: Some comments about LU decomposition
	Slide 38: After class tasks

