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Today’s lecture: 
ODEs and Linear Algebra

• Boundary Value problems

• Eigenvalue problems

• Linear algebra
• Gaussian elimination

• LU decomposition



Boundary value problems

• The orbital example we have been studying is an initial value 
problem: Solving ODEs given some initial value

• Boundary value problems: Conditions needed to specify the solution 
given at some different (or additional) points to the initial point
• E.g.: Find a solution for the EOM such that the trajectory passes through a 

specific point in the future

• Boundary value problems are more difficult to solve
• Two methods: Shooting method and relaxation method (we will discuss the 

latter in terms of PDEs later)



Shooting method example: Ball thrown in the air

• “Trial-and-error” method: Searches for 
correct values of initial conditions that 
match a given set of boundary 
conditions

• Example (from Newman Sec. 8.6): 
Height of a ball thrown in the air

• Guess initial conditions (initial vertical 
velocity) for which the ball will return 
to the ground at a given time t

Guesses

Boundary value



How do we modify initial conditions between 
guesses?
• Write the height of the ball at the boundary t1 as x = f(v) where v is 

the initial velocity

• If we want the ball to be at x = 0 at t1, we need to solve f(v) = 0

• So, we have reformulated the problem as finding a root of a function
• We can use, e.g., the bisection method, Newton-Raphson method, secant 

method

• The function is “evaluated” by solving the differential equation
• We can use any method discussed previously, e.g., Runge-Kutta, Bulirsch-

Stoer, etc.
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Eigenvalue problems

• Special type of boundary value problem: Linear and homogeneous
• Every term is linear in the dependent variable

• E.g.: Schrodinger equation:

• Consider the Schrodinger equation in a 1D square well with infinite 
walls:

D



Schrodinger equation in 1D well
• As usual, make into system of 1D ODEs:

• Know that  = 0 at x = 0 and x = L, but 
don’t know 

• Let’s choose a value of E and solve using 
some choices for  :

• Since the equation is linear, scaling the 
initial conditions exactly scales the (x)

• No matter what , we will never get a 
valid solution! (only affects overall 
magnitude, not shape)

E=700 eV

 = 1

 = 2

 = 3



Only specific E has a valid solution

• Solutions only exist for eigenvalues

• Need to vary E,  can be fixed via normalization

• Same strategy, Find the E such that  (L)= 0

D
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Numerical linear algebra (Garcia Ch. 4)

• Basic problem to solve: A x = b

• We have already seen many cases where we need to solve linear systems 
of equations
• E.g., ODE integration, cubic spline interpolation

• More that we will come across:
• Solving the diffusion PDE
• Multivariable root-finding
• Curve fitting

• We will explore some key methods to understand what they do
• Mostly, efficient and robust libraries exist, so no need to reprogram

• Often it is illustrative to compare between how we would solve linear 
algebra by hand and (efficiently) on the computer



Review of matrices: Multiplication

• Matrix-vector multiplication:
• A is m x n matrix
• x is n x 1 (column) vector
• Result: b is m x 1 (column vector)
• Simple scaling: O(N2) operations

• Matrix-matrix multiplication
• A is m x n matrix
• B is n x p matrix
• Result: AB is m x p matrix
• Direct multiplication: O(N3) operations

• Some faster algorithms exist (make use of 
organization of sub-matrices for simplification)



Review of matrices: Determinant
• Encodes some information about a square matrix

• Used in some linear systems algorithms

• Solution to linear systems only exists if determinant is nonzero

• Simple algorithm for obtaining determinant is Laplace expansion

• For simple matrices, can be done by hand:

• What about big matrices? 

D



Review of matrices: Determinant
• Encodes some information about a square matrix

• Used in come linear systems algorithms
• Solution to linear systems only exists if determinant is nonzero

• By hand: Simple algorithm for obtaining determinant is Laplace 
expansion

• For simple matrices, can be done by hand:

• What about big matrices? Will need a more efficient 
implementation!

D



Review of matrices: Inverse

• A-1A=AA-1=I

• Formally, the solution to a linear system A x = b is x = A-1b
• Usually less expensive to get the solution without computing the inverse first

• Non-invertible (i.e., singular) if determinant is 0



By hand: Cramer’s rule

• One simple way to solve A x = b is:

• Where Ai is A with the ith column replaced by b 

• Comparable speed to calculating the inverse

D



By hand: Gaussian elimination 
• Main general technique for solving A x = b 

• Does not involve matrix inversion

• For “special” matrices, faster techniques may apply

• Involves forward-elimination and back-substitution

• Consider a simple example (from Garcia Ch. 4):



By hand: Forward elimination
• 1. Eliminate x1 from second and third equation. Add first equation to 

the second and subtract twice the first equation  from the third:

• 2. Eliminate x2 from third equation. Multiply the second equation by 
(-2/3) and subtract it from the third 



By hand: Back substitution

• 3. Solve for x3 = 3. 

• 4. Substitute x3 into the second equation to get x2 = 2

• 5. Substitute x3 and x2 into the first equation to get x1 = 1

• In general, for N variables and N equations: 
• Use forward elimination make the last equation provide the solution for xN

• Back substitute from the Nth equation to the first

• Scales like N3 (can do better for “sparse” equations)



Pitfalls of Gaussian substitution: Roundoff errors 

• Consider a different example (also from Garcia):

• First, lets take        and solve:
Subtract second from third: Add first to third:  Back substitute:



Roundoff error example: Now solve with 
• Forward elimination starts by multiplying first equation by 1/ and 

subtracting it from second and third:

• Clearly have an issue if  is near zero, e.g., if      for C 
order unity:

Cannot solve, 
now have two 
equations, three 
unknowns



Simple fix: Pivoting
• Interchange the order of the equations before performing the forward 

elimination

• Now the first step of forward elimination gives us:

• Now we round off:

Same as when we 

initially took  to 0.



Gaussian elimination with pivoting

• Partial-pivoting: 
• Interchange of rows to move the one with the largest element in the current 

column to the top

• (Full pivoting would allow for row and column swaps—more complicated)

• Scaled pivoting
• Consider largest element relative to all entries in its row

• Further reduces roundoff when elements vary in magnitude greatly

• Row echelon form: This is the form that the matrix is in after forward 
elimination



Matrix determinants with Gaussian elimination

• Once we have done forward substitution and obtained a row echelon 
matrix it is trivial to calculate the determinant:

• Every time we pivoted in the forward substitution, we change the sign



Matrix inverse with Gaussian elimination
• We can also use Gaussian elimination to fin the inverse of a matrix

• We would like to find AA-1 = I

• We can use Gaussian elimination to solve: A xi = ei

• ei is a column of the identity:

• xi is a column of the inverse:



Singular matrix

• If a matrix has a vanishing determinant, then the system is not 
solvable

• Common way for this to enter, one equation in the system is a linear 
combination of some others

• Not always easy to detect from the start



Singular and close to singular matrices

• Condition number: Measures how close to singular we are
• How much x would change with a small change in b

• Requires defining a norm of A
• https://en.wikipedia.org/wiki/Matrix_norm

• See, e.g., numpy implementation:
• https://numpy.org/doc/stable/reference/generated/numpy.linalg.cond.html

• Rule of thumb:

https://en.wikipedia.org/wiki/Matrix_norm
https://en.wikipedia.org/wiki/Matrix_norm
https://numpy.org/doc/stable/reference/generated/numpy.linalg.cond.html
https://numpy.org/doc/stable/reference/generated/numpy.linalg.cond.html


Tridiagonal and banded matrices
• We saw this type of matrix when solving for cubic spline coefficients:

• Often come up in physical situations

• These types of matrices can be efficiently solved with Gaussian 
elimination



Gaussian elimination for banded matrices 

• Only need to do Gaussian elimination steps for m nonzero elements 
below given row (m is less than the number of diagonal bands)

• Example:



LU decomposition (Newman Ch. 6)

• Often happens that we would like to solve:   for the same 
A but many v 
• For example, our implementation for the inverse

• Wasteful to do Gaussian elimination over and over, we will always get the 
same row echelon matrix, just vi will be different

• Instead, we should keep track of operations we did to v1 and use them over 
and over

• Consider a general 4 x 4 matrix:

• Let’s perform Gaussian elimination



LU decomposition: First GE step 
• Write the first step of the GE as:

• Where the b’s are some linear combination of a coefficients 

• The first matrix on the LHS is a lower triangular matrix we call:



LU decomposition: Second LU step



LU decomposition: Last two steps for 4x4 matrix

• So, we can write:

• Afterwards, the equation is ready for back substitution

• Mathematically identical to Gaussian elimination, but we only have to 
find L0-L3 once, and then we can operate on many v’s



Slightly different formulation of LU decomposition
• From the properties of upper triangular matrices (same holds for 

lower):
• Product of two upper triangular matrices is an upper triangular matrix. 

• Inverse of an upper triangular matrix is an upper triangular matrix

• Consider the lower-diagonal matrix L and the upper-diagonal matrix 
U:

• Then trivially: LU = A, so for Ax = v,, we can write LUx = v



Expression for L

• We can confirm that for our 4 x 4 example,

• Multiplying together we get 



Solving the equation with L and U
• Break into two steps:

• 1. Ly = v can be solved by back substitution:

• 2. Now solve Ux = y by back substitution:



Some comments about LU decomposition

• Most common method for solving simultaneous equations

• Decomposition needs to be done once, then only back substitution is 
needed for different v

• In general, still may need to pivot
• Every time you swap rows, you have to do the same to L

• Need to perform the same sequence of swaps on v



After class tasks

• Readings:
• Newman Ch. 6

• Garcia Ch. 4

• Pang Sec. 5.3
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