PHY604 Lecture 9

September 23, 2025

Today's lecture: ODEs and Linear Algebra

Boundary Value problems

Eigenvalue problems

- Linear algebra
 - Gaussian elimination
 - LU decomposition

Boundary value problems

 The orbital example we have been studying is an initial value problem: Solving ODEs given some initial value

- Boundary value problems: Conditions needed to specify the solution given at some different (or additional) points to the initial point
 - E.g.: Find a solution for the EOM such that the trajectory passes through a specific point in the future
- Boundary value problems are more difficult to solve
 - Two methods: Shooting method and relaxation method (we will discuss the latter in terms of PDEs later)

Shooting method example: Ball thrown in the air

 "Trial-and-error" method: Searches for correct values of initial conditions that match a given set of boundary conditions

• Example (from Newman Sec. 8.6): Height of a ball thrown in the air

$$\frac{d^2x}{dt^2} = -G$$

 Guess initial conditions (initial vertical velocity) for which the ball will return to the ground at a given time t

How do we modify initial conditions between guesses?

- Write the height of the ball at the boundary t_1 as x = f(v) where v is the initial velocity
- If we want the ball to be at x = 0 at t_1 , we need to solve f(v) = 0

- So, we have reformulated the problem as finding a root of a function
 - We can use, e.g., the bisection method, Newton-Raphson method, secant method
- The function is "evaluated" by solving the differential equation
 - We can use any method discussed previously, e.g., Runge-Kutta, Bulirsch-Stoer, etc.

Today's lecture: ODEs and Linear Algebra

Boundary Value problems

Eigenvalue problems

- Linear algebra
 - Gaussian elimination
 - LU decomposition

Eigenvalue problems

- Special type of boundary value problem: Linear and homogeneous
 - Every term is linear in the dependent variable
- E.g.: Schrodinger equation:

$$-\frac{\hbar^2}{2m}\frac{d^2\psi}{dx^2} + V(x)\psi(x) = E\psi(x)$$

 Consider the Schrodinger equation in a 1D square well with infinite walls:

$$V(x) = \begin{cases} 0, & \text{for } 0 < x < L \\ \infty, & \text{elsewhere} \end{cases}$$

Schrodinger equation in 1D well

As usual, make into system of 1D ODEs:

$$\frac{d\psi}{dx} = \phi, \quad \frac{d\phi}{dx} = \frac{2m}{\hbar^2} [V(x) - E]\psi$$

- Know that $\psi = 0$ at x = 0 and x = L, but don't know ϕ
- Let's choose a value of E and solve using some choices for ϕ :
- Since the equation is linear, scaling the initial conditions exactly scales the $\psi(x)$
- No matter what ϕ , we will never get a valid solution! (only affects overall magnitude, not shape)

Only specific E has a valid solution

Solutions only exist for eigenvalues

• Need to vary E, ϕ can be fixed via normalization

• Same strategy, Find the E such that $\psi(L)=0$

Today's lecture: ODEs and Linear Algebra

Boundary Value problems

• Eigenvalue problems

- Linear algebra
 - Gaussian elimination
 - LU decomposition

Numerical linear algebra (Garcia Ch. 4)

- Basic problem to solve: A x = b
- We have already seen many cases where we need to solve linear systems of equations
 - E.g., ODE integration, cubic spline interpolation
- More that we will come across:
 - Solving the diffusion PDE
 - Multivariable root-finding
 - Curve fitting
- We will explore some key methods to understand what they do
 - Mostly, efficient and robust libraries exist, so no need to reprogram
- Often it is illustrative to compare between how we would solve linear algebra by hand and (efficiently) on the computer

Review of matrices: Multiplication

- Matrix-vector multiplication:
 - A is m x n matrix
 - **x** is *n* x 1 (column) vector
 - Result: **b** is *m* x 1 (column vector)
 - Simple scaling: $O(N^2)$ operations
- Matrix-matrix multiplication
 - **A** is *m* x *n* matrix
 - **B** is *n* x *p* matrix
 - Result: **AB** is $m \times p$ matrix
 - Direct multiplication: $O(N^3)$ operations
 - Some faster algorithms exist (make use of organization of sub-matrices for simplification)

$$b_i = (Ax)_i = \sum_{j=1}^n A_{ij} x_j$$

$$(AB)_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}$$

Review of matrices: Determinant

- Encodes some information about a square matrix
 - Used in some linear systems algorithms
 - Solution to linear systems only exists if determinant is nonzero
- Simple algorithm for obtaining determinant is Laplace expansion
- For simple matrices, can be done by hand:

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = a \begin{vmatrix} e & f \\ h & i \end{vmatrix} - b \begin{vmatrix} d & f \\ g & i \end{vmatrix} + c \begin{vmatrix} d & e \\ g & h \end{vmatrix}$$

What about big matrices?

Review of matrices: Determinant

- Encodes some information about a square matrix
 - Used in come linear systems algorithms
 - Solution to linear systems only exists if determinant is nonzero
- **By hand:** Simple algorithm for obtaining determinant is Laplace expansion
- For simple matrices, can be done by hand:

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = a \begin{vmatrix} e & f \\ h & i \end{vmatrix} - b \begin{vmatrix} d & f \\ g & i \end{vmatrix} + c \begin{vmatrix} d & e \\ g & h \end{vmatrix}$$

 What about big matrices? Will need a more efficient implementation!

Review of matrices: Inverse

• A-1A=AA-1=I

- Formally, the solution to a linear system $\mathbf{A} \mathbf{x} = \mathbf{b}$ is $\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$
 - Usually less expensive to get the solution without computing the inverse first
- Non-invertible (i.e., singular) if determinant is 0

By hand: Cramer's rule

• One simple way to solve $\mathbf{A} \mathbf{x} = \mathbf{b}$ is:

$$x_i = \frac{|\mathbf{A}_i|}{|\mathbf{A}|}$$

Where A_i is A with the ith column replaced by b

Comparable speed to calculating the inverse

By hand: Gaussian elimination

- Main general technique for solving A x = b
 - Does not involve matrix inversion
 - For "special" matrices, faster techniques may apply
- Involves forward-elimination and back-substitution

• Consider a simple example (from Garcia Ch. 4):

$$x_1 + x_2 + x_3 = 6$$
 $-x_1 + 2x_2 = 3$
 $2x_1 + x_3 = 5$

By hand: Forward elimination

• 1. Eliminate x_1 from second and third equation. Add first equation to the second and subtract twice the first equation from the third:

$$x_1+x_2 + x_3 = 6$$
 $3x_2+x_3 = 9$
 $-2x_2-x_3 = -7$

• 2. Eliminate x_2 from third equation. Multiply the second equation by (-2/3) and subtract it from the third

$$x_1 + x_2 + x_3 = 6$$

$$3x_2 + x_3 = 9$$

$$-\frac{1}{3}x_3 = -1$$

By hand: Back substitution

$$x_1 + x_2 + x_3 = 6$$

$$3x_2 + x_3 = 9$$

$$-\frac{1}{3}x_3 = -1$$

- 3. Solve for $x_3 = 3$.
- 4. Substitute x_3 into the second equation to get $x_2 = 2$
- 5. Substitute x_3 and x_2 into the first equation to get $x_1 = 1$
- In general, for N variables and N equations:
 - Use forward elimination make the last equation provide the solution for x_N
 - Back substitute from the Nth equation to the first
 - Scales like N³ (can do better for "sparse" equations)

Pitfalls of Gaussian substitution: Roundoff errors

• Consider a different example (also from Garcia):

$$\epsilon x_1 + x_2 + x_3 = 5$$
 $x_1 + x_2 = 3$
 $x_1 + x_3 = 4$

• First, lets take $\epsilon \to 0$ and solve:

Subtract second from third:

$$x_2+x_3 = 5$$
 $x_1+x_2 = 3$
 $-x_2+x_3 = 1$

Add first to third:

$$x_2 + x_3 = 5$$

$$x_1 + x_2 = 3$$

$$2x_3 = 6$$

Back substitute:

$$x_2 = 2$$

$$x_1 = 1$$

$$x_3 = 3$$

Roundoff error example: Now solve with arepsilon

• Forward elimination starts by multiplying first equation by $1/\varepsilon$ and subtracting it from second and third:

$$\epsilon x_1 + x_2 + x_3 = 5$$

$$(1 - 1/\epsilon)x_2 - (1/\epsilon)x_3 = 3 - 5/\epsilon$$

$$- (1/\epsilon)x_2 + (1 - 1/\epsilon)x_3 = 4 - 5/\epsilon$$

• Clearly have an issue if ε is near zero, e.g., if $C-1/\epsilon \to -1/\epsilon$ for C order unity:

$$\epsilon x_1 + x_2 + x_3 = 5$$

$$-(1/\epsilon)x_2 - (1/\epsilon)x_3 = -5/\epsilon$$
 Cannot solve, now have two equations, three unknowns

Simple fix: Pivoting

• Interchange the order of the equations before performing the forward elimination $x_1 + x_2 = 3$

$$\epsilon x_1 + x_2 + x_3 = 5$$
 $x_1 + x_3 = 4$

Now the first step of forward elimination gives us:

$$x_1+x_2 = 3$$

$$(1-\epsilon)x_2+x_3 = 5-3\epsilon$$

$$-x_2 + x_3 = 1$$

Now we round off:

$$x_1 + x_2 = 3$$

$$x_1 + x_3 = 5$$

$$-x_2 + x_3 = 1$$
Same as when we initially took ε to 0.

Gaussian elimination with pivoting

- Partial-pivoting:
 - Interchange of rows to move the one with the largest element in the current column to the top
 - (Full pivoting would allow for row and column swaps—more complicated)

- Scaled pivoting
 - Consider largest element relative to all entries in its row
 - Further reduces roundoff when elements vary in magnitude greatly

 Row echelon form: This is the form that the matrix is in after forward elimination

Matrix determinants with Gaussian elimination

 Once we have done forward substitution and obtained a row echelon matrix it is trivial to calculate the determinant:

$$\det(\mathbf{A}) = (-1)^{N_{\text{pivot}}} \prod_{i=1}^{N} A_{ii}^{\text{row-echelon}}$$

• Every time we pivoted in the forward substitution, we change the sign

Matrix inverse with Gaussian elimination

- We can also use Gaussian elimination to fin the inverse of a matrix
- We would like to find $AA^{-1} = I$
- We can use Gaussian elimination to solve: $\mathbf{A} \mathbf{x}_i = \mathbf{e}_i$
 - \mathbf{e}_i is a column of the identity:

$$\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \end{bmatrix}, \quad \mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \\ \vdots \end{bmatrix}, \quad \mathbf{e}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ \vdots \end{bmatrix}, \dots, \quad \mathbf{e}_N = \begin{bmatrix} \vdots \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

• \mathbf{x}_i is a column of the inverse:

$$\mathbf{A}^{-1} = \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \mathbf{x}_3 & \dots & \mathbf{x}_N \end{bmatrix}$$

Singular matrix

 If a matrix has a vanishing determinant, then the system is not solvable

 Common way for this to enter, one equation in the system is a linear combination of some others

Not always easy to detect from the start

Singular and close to singular matrices

- Condition number: Measures how close to singular we are
 - How much x would change with a small change in b

$$\operatorname{cond}(\mathbf{A}) = ||\mathbf{A}|| \, ||\mathbf{A}^{-1}||$$

- Requires defining a norm of A
 - https://en.wikipedia.org/wiki/Matrix norm
- See, e.g., numpy implementation:
 - https://numpy.org/doc/stable/reference/generated/numpy.linalg.cond.html

• Rule of thumb:
$$\frac{||\mathbf{x}^{\text{exact}} - \mathbf{x}^{\text{calc}}||}{||\mathbf{x}^{\text{exact}}||} \simeq \text{cond}(\mathbf{A}) \cdot \epsilon^{\text{machine}}$$

Tridiagonal and banded matrices

We saw this type of matrix when solving for cubic spline coefficients:

$$\begin{pmatrix}
4\Delta x & \Delta x \\
\Delta x & 4\Delta x & \Delta x \\
& \Delta x & 4\Delta x & \Delta x
\end{pmatrix}
\begin{pmatrix}
p_1'' \\
p_2'' \\
p_3'' \\
\vdots \\
p_{n-2}'' \\
p_{n-1}''
\end{pmatrix} = \frac{6}{\Delta x} \begin{pmatrix}
f_0 - 2f_1 + f_2 \\
f_1 - 2f_2 + f_3 \\
f_2 - 2f_3 + f_4
\\
\vdots \\
f_{n-3} - 2f_{n-2} + f_{n-1} \\
f_{n-2} - 2f_{n-1} + f_n
\end{pmatrix}$$

- Often come up in physical situations
- These types of matrices can be efficiently solved with Gaussian elimination

Gaussian elimination for banded matrices

- Only need to do Gaussian elimination steps for *m* nonzero elements below given row (*m* is less than the number of diagonal bands)
- Example:

$$\begin{pmatrix}
2 & 1 & 0 & 0 \\
3 & 4 & -5 & 0 \\
0 & -4 & 3 & 5 \\
0 & 0 & 1 & 3
\end{pmatrix}
\rightarrow
\begin{pmatrix}
2 & 1 & 0 & 0 \\
0 & 2.5 & -5 & 0 \\
0 & -4 & 3 & 5 \\
0 & 0 & 1 & 3
\end{pmatrix}
\rightarrow
\begin{pmatrix}
2 & 1 & 0 & 0 \\
0 & 2.5 & -5 & 0 \\
0 & 0 & -5 & 5 \\
0 & 0 & 1 & 3
\end{pmatrix}
\rightarrow
\begin{pmatrix}
2 & 1 & 0 & 0 \\
0 & 2.5 & -5 & 0 \\
0 & 0 & -5 & 5 \\
0 & 0 & 1 & 3
\end{pmatrix}$$

LU decomposition (Newman Ch. 6)

- Often happens that we would like to solve: $\mathbf{A}\mathbf{x}_i = \mathbf{v}_i$ for the same **A** but many **v**
 - For example, our implementation for the inverse
 - Wasteful to do Gaussian elimination over and over, we will always get the same row echelon matrix, just \mathbf{v}_i will be different
 - Instead, we should keep track of operations we did to \mathbf{v}_1 and use them over and over
- Consider a general 4 x 4 matrix:

$$\begin{pmatrix} a_{00} & a_{01} & a_{02} & a_{03} \\ a_{10} & a_{11} & a_{12} & a_{13} \\ a_{20} & a_{21} & a_{22} & a_{23} \\ a_{30} & a_{31} & a_{32} & a_{33} \end{pmatrix}$$

Let's perform Gaussian elimination

LU decomposition: First GE step

Write the first step of the GE as:

$$\frac{1}{a_{00}} \begin{pmatrix} 1 & 0 & 0 & 0 \\ -a_{10} & a_{00} & 0 & 0 \\ -a_{20} & 0 & a_{00} & 0 \\ -a_{30} & 0 & 0 & a_{00} \end{pmatrix} \begin{pmatrix} a_{00} & a_{01} & a_{02} & a_{03} \\ a_{10} & a_{11} & a_{12} & a_{13} \\ a_{20} & a_{21} & a_{22} & a_{23} \\ a_{30} & a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} 1 & b_{01} & b_{02} & b_{03} \\ 0 & b_{11} & b_{12} & b_{13} \\ 0 & b_{21} & b_{22} & b_{23} \\ 0 & b_{31} & b_{32} & b_{33} \end{pmatrix}$$

- Where the b's are some linear combination of a coefficients
- The first matrix on the LHS is a lower triangular matrix we call:

$$\mathbf{L}_0 \equiv \frac{1}{a_{00}} \begin{pmatrix} 1 & 0 & 0 & 0 \\ -a_{10} & a_{00} & 0 & 0 \\ -a_{20} & 0 & a_{00} & 0 \\ -a_{30} & 0 & 0 & a_{00} \end{pmatrix}$$

LU decomposition: Second LU step

$$\frac{1}{b_{11}} \begin{pmatrix} b_{11} & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -b_{21} & b_{11} & 0 \\ 0 & -b_{31} & 0 & b_{11} \end{pmatrix} \begin{pmatrix} 1 & b_{01} & b_{02} & b_{03} \\ 0 & b_{11} & b_{12} & b_{13} \\ 0 & b_{21} & b_{22} & b_{23} \\ 0 & b_{31} & b_{32} & b_{33} \end{pmatrix} = \begin{pmatrix} 1 & c_{01} & c_{02} & c_{03} \\ 0 & 1 & c_{12} & c_{13} \\ 0 & 0 & c_{22} & c_{23} \\ 0 & 0 & c_{32} & c_{33} \end{pmatrix}$$

$$\mathbf{L}_{1} \equiv \frac{1}{b_{11}} \begin{pmatrix} b_{11} & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & -b_{21} & b_{11} & 0\\ 0 & -b_{31} & 0 & b_{11} \end{pmatrix}$$

LU decomposition: Last two steps for 4x4 matrix

$$\mathbf{L}_2 \equiv \frac{1}{c_{22}} \begin{pmatrix} c_{22} & 0 & 0 & 0 \\ 0 & c_{22} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -c_{32} & c_{22} \end{pmatrix}, \quad \mathbf{L}_3 \equiv \frac{1}{d_{33}} \begin{pmatrix} d_{33} & 0 & 0 & 0 \\ 0 & d_{33} & 0 & 0 \\ 0 & 0 & d_{33} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

• So, we can write:

$$\mathbf{L}_{3}\mathbf{L}_{2}\mathbf{L}_{1}\mathbf{L}_{0}\mathbf{A} = \mathbf{L}_{3}\mathbf{L}_{2}\mathbf{L}_{1}\mathbf{L}_{0}\mathbf{v}$$

• Afterwards, the equation is ready for back substitution

• Mathematically identical to Gaussian elimination, but we only have to find \mathbf{L}_0 - \mathbf{L}_3 once, and then we can operate on many \mathbf{v}' s

Slightly different formulation of LU decomposition

- From the properties of upper triangular matrices (same holds for lower):
 - Product of two upper triangular matrices is an upper triangular matrix.
 - Inverse of an upper triangular matrix is an upper triangular matrix

Consider the lower-diagonal matrix L and the upper-diagonal matrix
 U:

$$\mathbf{L} = \mathbf{L}_0^{-1} \mathbf{L}_1^{-1} \mathbf{L}_2^{-1} \mathbf{L}_3^{-1}, \quad \mathbf{U} = \mathbf{L}_3 \mathbf{L}_2 \mathbf{L}_1 \mathbf{L}_0 \mathbf{A}$$

• Then trivially: LU = A, so for Ax = v,, we can write LUx = v

Expression for L

• We can confirm that for our 4 x 4 example,

$$\mathbf{L}_{0}^{-1} = \begin{pmatrix} a_{00} & 0 & 0 & 0 \\ a_{10} & 1 & 0 & 0 \\ a_{20} & 0 & 1 & 0 \\ a_{30} & 0 & 0 & 1 \end{pmatrix}, \quad \mathbf{L}_{1}^{-1} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & b_{11} & 0 & 0 \\ 0 & b_{21} & 1 & 0 \\ 0 & b_{31} & 0 & 1 \end{pmatrix}, \quad \mathbf{L}_{2}^{-1} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & c_{22} & 0 \\ 0 & 0 & c_{32} & 1 \end{pmatrix}, \quad \mathbf{L}_{3}^{-1} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & d_{33} \end{pmatrix}$$

Multiplying together we get

$$\mathbf{L} = \begin{pmatrix} a_{00} & 0 & 0 & 0 \\ a_{10} & b_{11} & 0 & 0 \\ a_{20} & b_{21} & c_{22} & 0 \\ a_{30} & b_{31} & c_{32} & d_{33} \end{pmatrix}$$

Solving the equation with L and U

- Break into two steps:
 - 1. Ly = v can be solved by back substitution:

$$\begin{pmatrix} l_{00} & 0 & 0 & 0 \\ l_{10} & l_{11} & 0 & 0 \\ l_{20} & l_{21} & l_{22} & 0 \\ l_{30} & l_{31} & l_{32} & l_{33} \end{pmatrix} \begin{pmatrix} y_0 \\ y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} v_0 \\ v_1 \\ v_2 \\ v_3 \end{pmatrix}$$

• 2. Now solve **Ux** = **y** by back substitution:

$$\begin{pmatrix} u_{00} & u_{01} & u_{02} & u_{03} \\ 0 & u_{11} & u_{12} & u_{13} \\ 0 & 0 & u_{22} & u_{23} \\ 0 & 0 & 0 & u_{33} \end{pmatrix} \begin{pmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} y_0 \\ y_1 \\ y_2 \\ y_3 \end{pmatrix}$$

Some comments about LU decomposition

Most common method for solving simultaneous equations

 Decomposition needs to be done once, then only back substitution is needed for different v

- In general, still may need to pivot
 - Every time you swap rows, you have to do the same to L
 - Need to perform the same sequence of swaps on v

After class tasks

- Readings:
 - Newman Ch. 6
 - Garcia Ch. 4
 - Pang Sec. 5.3