
PHY604 Lecture 9
September 23, 2025

Today’s lecture:
ODEs and Linear Algebra

• Boundary Value problems

• Eigenvalue problems

• Linear algebra
• Gaussian elimination

• LU decomposition

Boundary value problems

• The orbital example we have been studying is an initial value
problem: Solving ODEs given some initial value

• Boundary value problems: Conditions needed to specify the solution
given at some different (or additional) points to the initial point
• E.g.: Find a solution for the EOM such that the trajectory passes through a

specific point in the future

• Boundary value problems are more difficult to solve
• Two methods: Shooting method and relaxation method (we will discuss the

latter in terms of PDEs later)

Shooting method example: Ball thrown in the air

• “Trial-and-error” method: Searches for
correct values of initial conditions that
match a given set of boundary
conditions

• Example (from Newman Sec. 8.6):
Height of a ball thrown in the air

• Guess initial conditions (initial vertical
velocity) for which the ball will return
to the ground at a given time t

Guesses

Boundary value

How do we modify initial conditions between
guesses?
• Write the height of the ball at the boundary t1 as x = f(v) where v is

the initial velocity

• If we want the ball to be at x = 0 at t1, we need to solve f(v) = 0

• So, we have reformulated the problem as finding a root of a function
• We can use, e.g., the bisection method, Newton-Raphson method, secant

method

• The function is “evaluated” by solving the differential equation
• We can use any method discussed previously, e.g., Runge-Kutta, Bulirsch-

Stoer, etc.

Today’s lecture:
ODEs and Linear Algebra

• Boundary Value problems

• Eigenvalue problems

• Linear algebra
• Gaussian elimination

• LU decomposition

Eigenvalue problems

• Special type of boundary value problem: Linear and homogeneous
• Every term is linear in the dependent variable

• E.g.: Schrodinger equation:

• Consider the Schrodinger equation in a 1D square well with infinite
walls:

D

Schrodinger equation in 1D well
• As usual, make into system of 1D ODEs:

• Know that  = 0 at x = 0 and x = L, but
don’t know 

• Let’s choose a value of E and solve using
some choices for  :

• Since the equation is linear, scaling the
initial conditions exactly scales the (x)

• No matter what , we will never get a
valid solution! (only affects overall
magnitude, not shape)

E=700 eV

 = 1

 = 2

 = 3

Only specific E has a valid solution

• Solutions only exist for eigenvalues

• Need to vary E,  can be fixed via normalization

• Same strategy, Find the E such that  (L)= 0

D

Today’s lecture:
ODEs and Linear Algebra

• Boundary Value problems

• Eigenvalue problems

• Linear algebra
• Gaussian elimination

• LU decomposition

Numerical linear algebra (Garcia Ch. 4)

• Basic problem to solve: A x = b

• We have already seen many cases where we need to solve linear systems
of equations
• E.g., ODE integration, cubic spline interpolation

• More that we will come across:
• Solving the diffusion PDE
• Multivariable root-finding
• Curve fitting

• We will explore some key methods to understand what they do
• Mostly, efficient and robust libraries exist, so no need to reprogram

• Often it is illustrative to compare between how we would solve linear
algebra by hand and (efficiently) on the computer

Review of matrices: Multiplication

• Matrix-vector multiplication:
• A is m x n matrix
• x is n x 1 (column) vector
• Result: b is m x 1 (column vector)
• Simple scaling: O(N2) operations

• Matrix-matrix multiplication
• A is m x n matrix
• B is n x p matrix
• Result: AB is m x p matrix
• Direct multiplication: O(N3) operations

• Some faster algorithms exist (make use of
organization of sub-matrices for simplification)

Review of matrices: Determinant
• Encodes some information about a square matrix

• Used in some linear systems algorithms

• Solution to linear systems only exists if determinant is nonzero

• Simple algorithm for obtaining determinant is Laplace expansion

• For simple matrices, can be done by hand:

• What about big matrices?

D

Review of matrices: Determinant
• Encodes some information about a square matrix

• Used in come linear systems algorithms
• Solution to linear systems only exists if determinant is nonzero

• By hand: Simple algorithm for obtaining determinant is Laplace
expansion

• For simple matrices, can be done by hand:

• What about big matrices? Will need a more efficient
implementation!

D

Review of matrices: Inverse

• A-1A=AA-1=I

• Formally, the solution to a linear system A x = b is x = A-1b
• Usually less expensive to get the solution without computing the inverse first

• Non-invertible (i.e., singular) if determinant is 0

By hand: Cramer’s rule

• One simple way to solve A x = b is:

• Where Ai is A with the ith column replaced by b

• Comparable speed to calculating the inverse

D

By hand: Gaussian elimination
• Main general technique for solving A x = b

• Does not involve matrix inversion

• For “special” matrices, faster techniques may apply

• Involves forward-elimination and back-substitution

• Consider a simple example (from Garcia Ch. 4):

By hand: Forward elimination
• 1. Eliminate x1 from second and third equation. Add first equation to

the second and subtract twice the first equation from the third:

• 2. Eliminate x2 from third equation. Multiply the second equation by
(-2/3) and subtract it from the third

By hand: Back substitution

• 3. Solve for x3 = 3.

• 4. Substitute x3 into the second equation to get x2 = 2

• 5. Substitute x3 and x2 into the first equation to get x1 = 1

• In general, for N variables and N equations:
• Use forward elimination make the last equation provide the solution for xN

• Back substitute from the Nth equation to the first

• Scales like N3 (can do better for “sparse” equations)

Pitfalls of Gaussian substitution: Roundoff errors

• Consider a different example (also from Garcia):

• First, lets take and solve:
Subtract second from third: Add first to third: Back substitute:

Roundoff error example: Now solve with 
• Forward elimination starts by multiplying first equation by 1/ and

subtracting it from second and third:

• Clearly have an issue if  is near zero, e.g., if for C
order unity:

Cannot solve,
now have two
equations, three
unknowns

Simple fix: Pivoting
• Interchange the order of the equations before performing the forward

elimination

• Now the first step of forward elimination gives us:

• Now we round off:

Same as when we

initially took  to 0.

Gaussian elimination with pivoting

• Partial-pivoting:
• Interchange of rows to move the one with the largest element in the current

column to the top

• (Full pivoting would allow for row and column swaps—more complicated)

• Scaled pivoting
• Consider largest element relative to all entries in its row

• Further reduces roundoff when elements vary in magnitude greatly

• Row echelon form: This is the form that the matrix is in after forward
elimination

Matrix determinants with Gaussian elimination

• Once we have done forward substitution and obtained a row echelon
matrix it is trivial to calculate the determinant:

• Every time we pivoted in the forward substitution, we change the sign

Matrix inverse with Gaussian elimination
• We can also use Gaussian elimination to fin the inverse of a matrix

• We would like to find AA-1 = I

• We can use Gaussian elimination to solve: A xi = ei

• ei is a column of the identity:

• xi is a column of the inverse:

Singular matrix

• If a matrix has a vanishing determinant, then the system is not
solvable

• Common way for this to enter, one equation in the system is a linear
combination of some others

• Not always easy to detect from the start

Singular and close to singular matrices

• Condition number: Measures how close to singular we are
• How much x would change with a small change in b

• Requires defining a norm of A
• https://en.wikipedia.org/wiki/Matrix_norm

• See, e.g., numpy implementation:
• https://numpy.org/doc/stable/reference/generated/numpy.linalg.cond.html

• Rule of thumb:

https://en.wikipedia.org/wiki/Matrix_norm
https://en.wikipedia.org/wiki/Matrix_norm
https://numpy.org/doc/stable/reference/generated/numpy.linalg.cond.html
https://numpy.org/doc/stable/reference/generated/numpy.linalg.cond.html

Tridiagonal and banded matrices
• We saw this type of matrix when solving for cubic spline coefficients:

• Often come up in physical situations

• These types of matrices can be efficiently solved with Gaussian
elimination

Gaussian elimination for banded matrices

• Only need to do Gaussian elimination steps for m nonzero elements
below given row (m is less than the number of diagonal bands)

• Example:

LU decomposition (Newman Ch. 6)

• Often happens that we would like to solve: for the same
A but many v
• For example, our implementation for the inverse

• Wasteful to do Gaussian elimination over and over, we will always get the
same row echelon matrix, just vi will be different

• Instead, we should keep track of operations we did to v1 and use them over
and over

• Consider a general 4 x 4 matrix:

• Let’s perform Gaussian elimination

LU decomposition: First GE step
• Write the first step of the GE as:

• Where the b’s are some linear combination of a coefficients

• The first matrix on the LHS is a lower triangular matrix we call:

LU decomposition: Second LU step

LU decomposition: Last two steps for 4x4 matrix

• So, we can write:

• Afterwards, the equation is ready for back substitution

• Mathematically identical to Gaussian elimination, but we only have to
find L0-L3 once, and then we can operate on many v’s

Slightly different formulation of LU decomposition
• From the properties of upper triangular matrices (same holds for

lower):
• Product of two upper triangular matrices is an upper triangular matrix.

• Inverse of an upper triangular matrix is an upper triangular matrix

• Consider the lower-diagonal matrix L and the upper-diagonal matrix
U:

• Then trivially: LU = A, so for Ax = v,, we can write LUx = v

Expression for L

• We can confirm that for our 4 x 4 example,

• Multiplying together we get

Solving the equation with L and U
• Break into two steps:

• 1. Ly = v can be solved by back substitution:

• 2. Now solve Ux = y by back substitution:

Some comments about LU decomposition

• Most common method for solving simultaneous equations

• Decomposition needs to be done once, then only back substitution is
needed for different v

• In general, still may need to pivot
• Every time you swap rows, you have to do the same to L

• Need to perform the same sequence of swaps on v

After class tasks

• Readings:
• Newman Ch. 6

• Garcia Ch. 4

• Pang Sec. 5.3

	Slide 1: PHY604 Lecture 9
	Slide 2: Today’s lecture: ODEs and Linear Algebra
	Slide 3: Boundary value problems
	Slide 4: Shooting method example: Ball thrown in the air
	Slide 5: How do we modify initial conditions between guesses?
	Slide 6: Today’s lecture: ODEs and Linear Algebra
	Slide 7: Eigenvalue problems
	Slide 8: Schrodinger equation in 1D well
	Slide 9: Only specific E has a valid solution
	Slide 10: Today’s lecture: ODEs and Linear Algebra
	Slide 11: Numerical linear algebra (Garcia Ch. 4)
	Slide 12: Review of matrices: Multiplication
	Slide 13: Review of matrices: Determinant
	Slide 14: Review of matrices: Determinant
	Slide 15: Review of matrices: Inverse
	Slide 16: By hand: Cramer’s rule
	Slide 17: By hand: Gaussian elimination
	Slide 18: By hand: Forward elimination
	Slide 19: By hand: Back substitution
	Slide 20: Pitfalls of Gaussian substitution: Roundoff errors
	Slide 21: Roundoff error example: Now solve with e
	Slide 22: Simple fix: Pivoting
	Slide 23: Gaussian elimination with pivoting
	Slide 24: Matrix determinants with Gaussian elimination
	Slide 25: Matrix inverse with Gaussian elimination
	Slide 26: Singular matrix
	Slide 27: Singular and close to singular matrices
	Slide 28: Tridiagonal and banded matrices
	Slide 29: Gaussian elimination for banded matrices
	Slide 30: LU decomposition (Newman Ch. 6)
	Slide 31: LU decomposition: First GE step
	Slide 32: LU decomposition: Second LU step
	Slide 33: LU decomposition: Last two steps for 4x4 matrix
	Slide 34: Slightly different formulation of LU decomposition
	Slide 35: Expression for L
	Slide 36: Solving the equation with L and U
	Slide 37: Some comments about LU decomposition
	Slide 38: After class tasks

